

EXTREMAL SEQUENCES RELATED TO THE JACOBI SYMBOL

Santanu Mondal

Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute, Dist. Howrah, India santanu.mondal.math180gm.rkmvu.ac.in

Krishnendu Paul

Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute, Dist. Howrah, India krishnendu.p.math180gm.rkmvu.ac.in

Shameek Paul

Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute, Dist. Howrah, India shameek.paul@rkmvu.ac.in

Received: 1/4/22, Revised: 4/22/23, Accepted: 7/1/23, Published: 7/21/23

Abstract

Given $A \subseteq \mathbb{Z}_n$, the A-weighted zero-sum constant C_A is defined to be the smallest natural number k such that any sequence of k elements in \mathbb{Z}_n has an A-weighted zero-sum subsequence of consecutive terms. A sequence of length $C_A - 1$ in \mathbb{Z}_n which does not have any A-weighted zero-sum subsequence of consecutive terms is called a C-extremal sequence for A. For n odd, let S(n) be the set of all units in \mathbb{Z}_n whose Jacobi symbol with respect to n is one. Given a prime divisor p of n, let L(n;p) be the set of all units \mathbb{Z}_n whose Jacobi symbol with respect to n is the same as their Legendre symbol with respect to p. We characterize the C-extremal sequences for S(n) and L(n;p). Given $A \subseteq \mathbb{Z}_n$, the A-weighted Davenport constant D_A is defined to be the smallest natural number k such that any sequence of k elements in \mathbb{Z}_n has an A-weighted zero-sum subsequence. A sequence of length $D_A - 1$ in \mathbb{Z}_n which does not have any A-weighted zero-sum subsequence is called a D-extremal sequence for A. We characterize the D-extremal sequences for S(n)and L(n;p).

1. Introduction

This paper is a complementary paper to [7]. For $a, b \in \mathbb{Z}$, we denote the set $\{x \in \mathbb{Z} : a \leq x \leq b\}$ by [a, b]. Let U(n) denote the group of units in the ring \mathbb{Z}_n .

DOI: 10.5281/zenodo.8174508

Let $U(n)^2 = \{x^2 : x \in U(n)\}$. Let Q_p denote the set $U(p)^2$ when p is an odd prime. We say that $\Omega(n) = k$ if n is a product of k primes.

Definition 1.1. For a subset $A \subseteq \mathbb{Z}_n$, the *A*-weighted Davenport constant D_A , is defined to be the least positive integer k such that any sequence in \mathbb{Z}_n of length k has an A-weighted zero-sum subsequence.

Adhikari and Rath [3] gave the previous definition. Mondal, K. Paul, and S. Paul [5] gave the following definition.

Definition 1.2. For a subset $A \subseteq \mathbb{Z}_n$, the *A*-weighted zero-sum constant C_A , is defined to be the least positive integer k such that any sequence in \mathbb{Z}_n of length k has an A-weighted zero-sum subsequence of consecutive terms.

Griffiths [4, Theorem 1.2] along with Yuan and Zeng [8, Theorem 1.2], and Mondal, K. Paul, and S. Paul [5, Corollary 4] showed the next result.

Theorem 1.3 ([4],[5]). Let n be an odd number. Then we have $D_{U(n)} = \Omega(n) + 1$ and $C_{U(n)} = 2^{\Omega(n)}$.

Let *m* be a divisor of *n*. We refer to the homomorphism $f_{n,m} : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $a + n\mathbb{Z} \mapsto a + m\mathbb{Z}$ as the natural map. Clearly this map is onto. As the image of U(n) under $f_{n,m}$ is contained in U(m), we get a map $U(n) \to U(m)$ which we also refer to as the natural map and denote by $f_{n,m}$.

For $x \in \mathbb{Z}_n$ the Jacobi symbol $\left(\frac{x}{n}\right)$ is defined in [7]. For a prime divisor p of n, let $\left(\frac{x}{n}\right)$ denote the Legendre symbol of $f_{n,p}(x) \in \mathbb{Z}_p$.

Let
$$S(n) = \left\{ x \in U(n) : \left(\frac{x}{n}\right) = 1 \right\}$$
 and $L(n;p) = \left\{ x \in U(n) : \left(\frac{x}{n}\right) = \left(\frac{x}{p}\right) \right\}$.

When p is an odd prime, we see that $S(p) = Q_p$. Adhikari and Rath [3, Theorem 2], and Mondal, K. Paul, and S. Paul [5, Theorem 4] showed the next result.

Theorem 1.4 ([3],[5]). Let p be an odd prime. Then we have $C_{Q_p} = D_{Q_p} = 3$.

Mondal, K. Paul, and S. Paul [7, Theorems 3.3 and 3.4] showed the next result.

Theorem 1.5 ([7]). When n is a squarefree number which is not a prime and every prime divisor of n is at least seven, we have $D_{S(n)} = \Omega(n) + 1$ and $C_{S(n)} = 2^{\Omega(n)}$.

The next two results follow from Theorems 5.2, 5.3, 5.4 and 5.5 of [7].

Theorem 1.6 ([7]). When n is a squarefree number which is not a product of two primes and every prime divisor of n is at least seven, we have $D_{L(n;p)} = \Omega(n) + 1$ and $C_{L(n;p)} = 2^{\Omega(n)}$ where p is a prime divisor of n.

Theorem 1.7 ([7]). Let n = pq where p and q are distinct primes which are at least seven. Then we have that $D_{L(n;p)} = 4$ and $C_{L(n;p)} = 6$.

Adhikari, Molla, and Paul [2] gave the following definition.

Definition 1.8. A sequence S in \mathbb{Z}_n of length $D_A - 1$ which has no A-weighted zero-sum subsequence is called a *D*-extremal sequence for A.

Mondal, K. Paul, and S. Paul [6] gave the following definition.

Definition 1.9. A sequence S in \mathbb{Z}_n of length $C_A - 1$ which has no A-weighted zero-sum subsequence of consecutive terms is called a C-extremal sequence for A.

Assume that n is a squarefree number such that every prime divisor of n is at least seven. Let p be a prime divisor of n. For a sequence S in \mathbb{Z}_n we have shown the following:

- Suppose Ω(n) ≠ 1. Then S is a C-extremal sequence for S(n) if and only if S is a C-extremal sequence for U(n).
- Suppose $\Omega(n) \neq 1, 2$. Then S is a D-extremal sequence for S(n) if and only if S is a D-extremal sequence for U(n).
- Suppose $\Omega(n) \neq 2$. Then S is a C-extremal sequence for L(n; p) if and only if S is a C-extremal sequence for U(n).
- Suppose $\Omega(n) \neq 2, 3$. Then S is a D-extremal sequence for L(n; p) if and only if S is a D-extremal sequence for U(n).

Remark 1.10. When n is odd, Adhikari, Molla, and Paul have characterized the *D*-extremal sequences for U(n) in [2, Theorem 6]. Mondal, K. Paul, and S. Paul have characterized the *C*-extremal sequences for U(n) in [6, Theorems 5 and 6].

If p is a prime divisor of n, we use the notation $v_p(n) = r$ to mean that $p^r \mid n$ and $p^{r+1} \nmid n$. Let $S = (x_1, \ldots, x_l)$ be a sequence in \mathbb{Z}_n and let p be a prime divisor of n such that $v_p(n) = r$. We denote the image of $x \in \mathbb{Z}_n$ under f_{n,p^r} by $x^{(p)}$ and we denote the sequence $(x_1^{(p)}, \ldots, x_l^{(p)})$ in \mathbb{Z}_{p^r} by $S^{(p)}$.

2. Some Results about S(n)-Weighted Zero-Sum Sequences

From this point onwards, we assume that n is odd.

The set $S(n) = \{x \in U(n) : (\frac{x}{n}) = 1\}$ was considered as a weight-set in Section 3 of [1]. From Proposition 2.2 of [7] we see that S(n) = U(n) if n is a square, and S(n) is a subgroup of index two in U(n), otherwise.

The next four results are Lemmas 2.5, 2.6, 3.1 and 3.2 of [7]. They are used in the next section.

Lemma 2.1 ([7]). Let d be a proper divisor of n such that d is not a square. Suppose d is coprime with m where m = n/d. Then we have that $U(m) \subseteq f_{n,m}(S(n))$.

Lemma 2.2 ([7]). Let S be a sequence in \mathbb{Z}_n and d be a proper divisor of n which divides every element of S. Suppose that d is coprime with m = n/d. Let S' be the image of S under the map $f_{n,m}$. Let $A \subseteq \mathbb{Z}_n$ and $B \subseteq f_{n,m}(A)$. Suppose S' is a B-weighted zero-sum sequence. Then S is an A-weighted zero-sum sequence.

Lemma 2.3 ([7]). Let n be an odd, squarefree number. Suppose S is a sequence in \mathbb{Z}_n such that at most one term of S is a unit, and for every prime divisor q of n at least two terms of S are coprime to q. Then S is an S(n)-weighted zero-sum sequence.

Lemma 2.4 ([7]). Let n be a squarefree number whose every prime divisor is at least seven. Suppose S is a sequence in \mathbb{Z}_n such that for every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n such that at least three terms of S are coprime to p. Then S is an S(n)-weighted zero-sum sequence.

3. D-Extremal Sequences for S(n)

Remark 3.1. As $S(n) \subseteq U(n)$, an S(n)-weighted zero-sum subsequence is also a U(n)-weighted zero-sum subsequence. So if n is such that $D_{S(n)} = D_{U(n)}$, then every D-extremal sequence for U(n) is also a D-extremal sequence for S(n). Also, if n is such that $C_{S(n)} = C_{U(n)}$, then every C-extremal sequence for U(n) is also a C-extremal sequence for S(n).

Theorem 3.2. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose $\Omega(n) \geq 3$ and S is a sequence in \mathbb{Z}_n . Then S is a D-extremal sequence for S(n) if and only if S is a D-extremal sequence for U(n).

Proof. As $\Omega(n) \geq 3$, by Theorems 1.3 and 1.5 we see that $D_{S(n)} = D_{U(n)}$. So by Remark 3.1 it is enough to show that every *D*-extremal sequence for S(n) is a *D*-extremal sequence for U(n).

Let $S = (x_1, \ldots, x_k)$ be a *D*-extremal sequence for S(n). By Theorem 1.5 we have $D_{S(n)} = \Omega(n) + 1$. Hence, it follows that $k = \Omega(n)$. Clearly, all the terms of S are non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose all terms of S are divisible by p. Let m = n/p and S' be the image of S under $f_{n,m}$. By Theorem 1.3 we have $D_{U(m)} = \Omega(m) + 1$. As S' has length $\Omega(n) = \Omega(m) + 1$, we see that S' has a U(m)-weighted zero-sum subsequence. As n is squarefree, it follows that p is coprime to m. So by Lemmas 2.1 and 2.2, we get the contradiction that S has an S(n)-weighted zero-sum subsequence.

So in this case, exactly one term of S is not divisible by p. Let us assume that that term is x_1 . Let $T = (x_2, \ldots, x_k)$ and T' be the image of T under $f_{n,m}$. Suppose T' has a U(m)-weighted zero-sum subsequence. By Lemmas 2.1 and 2.2, we get the contradiction that S has an S(n)-weighted zero-sum subsequence. Thus, the sequence T' in \mathbb{Z}_m does not have any U(m)-weighted zero-sum subsequence. As $D_{U(m)} = \Omega(m) + 1$ and the length of T' is $\Omega(m)$, it follows that T' is a D-extremal sequence for U(m). So from Theorem 5 of [2] we see that S is a D-extremal sequence for U(n).

Case 2. For every prime divisor q of n, exactly two terms of S are coprime to q.

Suppose S has at most one unit. By Lemma 2.3 we get the contradiction that S is an S(n)-weighted zero-sum sequence. So we can assume that S has at least two units. By the assumption in this case, we see that S has exactly two units and the other terms of S are divisible by n. As the length of S is $\Omega(n)$, which is at least three, we get the contradiction that some term of S is zero.

Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n such that at least three terms of S are coprime to p.

In this case, by Lemma 2.4 we get the contradiction that S is an S(n)-weighted zero-sum sequence.

Theorem 3.3. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose $\Omega(n) = 2$. Then a sequence S in \mathbb{Z}_n is a D-extremal sequence for S(n) if and only if S is either a D-extremal sequence for U(n) or $S = (x_1, x_2)$ where x_1 and $-x_2$ are in different cosets of S(n) in U(n).

Proof. From Theorems 1.3 and 1.5 we have $D_{U(n)} = D_{S(n)}$. So from Remark 3.1 we see that if S is a D-extremal sequence for U(n), then S is a D-extremal sequence for S(n).

Let $S = (x_1, x_2)$ where x_1 and $-x_2$ are in different cosets of S(n) in U(n). Suppose T is an S(n)-weighted zero-sum subsequence of S. Then we see that T must be S itself. So there exist $a, b \in S(n)$ such that $ax_1 + bx_2 = 0$ and hence there exists $c \in S(n)$ such that $-x_2 = cx_1$. As x_1 and $-x_2$ are in different cosets of S(n) in U(n), we get the contradiction that $c \notin S(n)$. Thus, it follows that S does not have any S(n)-weighted zero-sum subsequence. From Theorem 1.5, we have that $D_{S(n)} = 3$ and so we see that S is a D-extremal sequence for S(n).

Conversely, suppose S is a D-extremal sequence for S(n). By Theorem 1.5 we have $D_{S(n)} = \Omega(n) + 1 = 3$. Hence, it follows that S has length 2. Let $S = (x_1, x_2)$. We have two cases to consider.

Case 1. For every prime divisor q of n, exactly two terms of S are coprime to q.

As x_1 and x_2 are coprime to every prime divisor of n, it follows that $x_1, x_2 \in U(n)$. As n is squarefree, from Proposition 2.2 of [7] we get that S(n) has index two in U(n). Suppose either $x_1, -x_2 \in S(n)$ or $x_1, -x_2 \in U(n) \setminus S(n)$. Then we see that $a = -x_2x_1^{-1} \in S(n)$. As $1 \in S(n)$ and $ax_1 + x_2 = 0$, we get the contradiction that S is an S(n)-weighted zero-sum sequence. Thus, the sequence $S = (x_1, x_2)$ where x_1 and $-x_2$ are in different cosets of S(n) in U(n).

Case 2. The assumption in Case 1 does not hold.

We use similar arguments as in the proof of Theorem 3.2 to conclude that S is a D-extremal sequence for U(n).

Remark 3.4. For a prime p, we have that $S(p) = Q_p$. From Corollary 2 of [6], we can see that the *D*-extremal sequences for Q_p are precisely those which are of the form (x_1, x_2) where x_1 and $-x_2$ are in different cosets of Q_p in U(p).

4. C-Extremal Sequences for S(n)

Theorem 4.1. Let n be a non-prime squarefree number such that every prime divisor of n is at least seven. Then a sequence S in \mathbb{Z}_n is a C-extremal sequence for S(n) if and only if S is a C-extremal sequence for U(n).

Proof. By Theorems 1.3 and 1.5 we get $C_{U(n)} = C_{S(n)}$. So by Remark 3.1 it is enough to show that every C-extremal sequence for S(n) is a C-extremal sequence for U(n).

Suppose a sequence $S = (x_1, \ldots, x_l)$ in \mathbb{Z}_n is a *C*-extremal sequence for S(n). By Theorem 1.5 we have $C_{S(n)} = 2^{\Omega(n)}$ and so we see that $l = 2^{\Omega(n)} - 1$. Clearly, all the terms of *S* must be non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is not divisible by p.

Suppose all the terms of S are divisible by p. Let m = n/p and S' be the image of S under $f_{n,m}$. By Theorem 1.3 we have $C_{U(m)} = 2^{\Omega(m)}$. As S' has length $l = 2^{\Omega(n)} - 1$ and as $\Omega(n) = \Omega(m) + 1$, we get that $l > 2^{\Omega(m)}$. Hence, it follows that S' has a U(m)-weighted zero-sum subsequence of consecutive terms. Thus by Lemmas 2.1 and 2.2, we get the contradiction that S has an S(n)-weighted zero-sum subsequence of consecutive terms.

Thus, in this case, we see that exactly one term x^* of S is coprime to p. Suppose $x^* \neq x_{k+1}$ where k+1 = (l+1)/2. Then there is a subsequence T of consecutive terms of S of length at least k+1 such that p divides every term of T. As we have $l+1 = 2^{\Omega(n)}$, we see that $k+1 = (l+1)/2 = 2^{\Omega(n)-1} = 2^{\Omega(m)}$. So by a similar argument as in the previous paragraph, we get the contradiction that T (and hence S) has an S(n)-weighted zero-sum subsequence of consecutive terms. Thus, we see that $x^* = x_{k+1}$.

Let $S_1 = (x_1, \ldots, x_k)$ and $S_2 = (x_{k+2}, \ldots, x_l)$. Let S'_1 and S'_2 be the images of the sequences S_1 and S_2 respectively under the map $f_{n,m}$. Suppose S'_1 has a U(m)-weighted zero-sum subsequence of consecutive terms. By Lemma 2.1, we have $U(m) \subseteq f_{n,m}(S(n))$. As p divides every term of S_1 , by Lemma 2.2 we get the contradiction that S_1 (and hence S) has an S(n)-weighted zero-sum subsequence of consecutive terms. Thus, the sequence S'_1 does not have any U(m)-weighted zerosum subsequence of consecutive terms. As S'_1 has length $k = 2^{\Omega(m)} - 1 = C_{U(m)} - 1$, it follows that S'_1 is a C-extremal sequence for U(m).

A similar argument shows that S'_2 is also a *C*-extremal sequence for U(m). Thus, from Theorem 5 of [6] it follows that *S* is a *C*-extremal sequence for U(n).

Case 2. For every prime divisor q of n, exactly two terms of S are coprime to q.

If S has at most one unit, by Lemma 2.3 we get the contradiction that S is an S(n)-weighted zero-sum sequence. So we can assume that S has at least two units. By the assumption in this case, we see that S has exactly two units and the other terms of S are divisible by n. As the length of S is $2^{\Omega(n)} - 1$ and as $\Omega(n) \ge 2$, we see that S has at least three terms. Thus, we get the contradiction that S has a term which is zero.

Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n such that at least three terms of S are coprime to p.

In this case, by Lemma 2.4 we get the contradiction that S is an S(n)-weighted zero-sum sequence.

Remark 4.2. For a prime p, we have that $S(p) = Q_p$. The *C*-extremal sequences for Q_p have been characterized in Corollary 2 of [6]. They are the sequences which are of the form (x_1, x_2) where x_1 and $-x_2$ are in different cosets of Q_p in U(p).

5. Some Results about the Weight-Set L(n; p)

In [7] we considered the subset L(n; p) of \mathbb{Z}_n . Let us recall the definition.

Definition 5.1. For a prime divisor p of n, let

$$L(n;p) = \left\{ a \in U(n) \left| \left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \right\} \right\}$$

Remark 5.2. From Proposition 4.2 of [7], we see that L(n;p) = U(n) if n has a unique prime divisor p such that $v_p(n)$ is odd, and L(n;p) is a subgroup of U(n) having index two, otherwise.

The next five results are Lemmas 4.4, 4.5, 4.7 and 5.1 and Observation 4.6 of [7]. They will be used in the next section.

Lemma 5.3 ([7]). Let p', p be prime divisors of n. Suppose p is coprime to m = n/p. Then we have that $S(m) \subseteq f_{n,m}(L(n;p'))$.

Lemma 5.4 ([7]). Let p' be a prime divisor of n which is coprime to m = n/p'. Then we have that $U(p') \subseteq f_{n,p'}(L(n;p'))$.

Lemma 5.5 ([7]). Let n be squarefree and p' be a prime divisor of n. Suppose the map $\psi : U(n) \to U(m) \times U(p')$ is the isomorphism given by the Chinese remainder theorem where m = n/p'. Then we have that $S(m) \times U(p') \subseteq \psi(L(n;p'))$.

Lemma 5.6 ([7]). Let n be squarefree and p' be a prime divisor of n. Let S be a sequence in \mathbb{Z}_n such that for every prime divisor q of n, at least two terms of S are coprime to q. Let m = n/p' and S' be the image of S under $f_{n,m}$. Suppose at most one term of S' is a unit, or there is a prime divisor p of m such that at least three terms of S are coprime to p. Then S is an L(n;p')-weighted zero-sum sequence.

Observation 5.7 ([7]). Let $n = m_1m_2$ where m_1 and m_2 are coprime. Let $A \subseteq \mathbb{Z}_n$ and S be a sequence in \mathbb{Z}_n . Let S_i denote the image of the sequence S under f_{n,m_i} for each $i \in [1,2]$. Let $\psi : U(n) \to U(m_1) \times U(m_2)$ be the isomorphism given by the Chinese remainder theorem. Suppose $A_1 \subseteq U(m_1)$ and $A_2 \subseteq U(m_2)$ are such that $A_1 \times A_2 \subseteq \psi(A)$. If S_1 is an A_1 -weighted zero-sum sequence and S_2 is an A_2 -weighted zero-sum sequence, then S is an A-weighted zero-sum sequence.

6. D-Extremal Sequences for L(n; p)

Remark 6.1. Let p be a prime divisor of n. As $L(n; p) \subseteq U(n)$, an L(n; p)-weighted zero-sum subsequence is also a U(n)-weighted zero-sum subsequence. So if n is such that $D_{L(n;p)} = D_{U(n)}$, then every D-extremal sequence for U(n) is a D-extremal sequence for L(n;p). Also, if n is such that $C_{L(n;p)} = C_{U(n)}$, then every C-extremal sequence for U(n) is a C-extremal sequence for L(n;p).

Theorem 6.2. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose p' is a prime divisor of n and $\Omega(n) \neq 2,3$. Then S is a D-extremal sequence for L(n;p') if and only if S is a D-extremal sequence for U(n).

Proof. As $\Omega(n) \neq 2$, by Theorems 1.3 and 1.6 we have that $D_{L(n;p)} = D_{U(n)}$. So by Remark 6.1 it is enough to show that every *D*-extremal sequence for L(n;p') is a *D*-extremal sequence for U(n).

Let S be a D-extremal sequence for L(n;p'). If $\Omega(n) = 1$, then n = p'. As L(n;p') = U(n), it follows that S is a D-extremal sequence for U(n). So we may assume that $\Omega(n) \ge 4$. By Theorem 1.6 we have $D_{L(n;p')} = \Omega(n) + 1$. Thus S must have length $\Omega(n)$. Let $S = (x_1, \ldots, x_k)$ where $k = \Omega(n)$. Clearly, all the terms of S are non-zero. We have three cases to consider.

INTEGERS: 23 (2023)

Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose all terms of S are divisible by p. Let m = n/p and S' be the image of S under $f_{n,m}$. By Theorem 1.5 we have $D_{S(m)} = \Omega(m) + 1$. As S' has length $\Omega(n) = \Omega(m) + 1$, we see that S' has an S(m)-weighted zero-sum subsequence. As n is squarefree, so p is coprime to m. So from Lemmas 2.2 and 5.3 we get the contradiction that S has an L(n; p')-weighted zero-sum subsequence.

So in this case, exactly one term of S is not divisible by p. Let us assume that that term is x_1 . Let $T = (x_2, \ldots, x_k)$ and T' be the image of T under $f_{n,m}$. Suppose T' has an S(m)-weighted zero-sum subsequence. By Lemma 5.3 we have that $S(m) \subseteq f_{n,m}(L(n;p'))$ and so by Lemma 2.2 we get the contradiction that Shas an L(n;p')-weighted zero-sum subsequence. Thus, the sequence T' in \mathbb{Z}_m does not have any S(m)-weighted zero-sum subsequence. As $D_{S(m)} = \Omega(m) + 1$ and the length of T' is $\Omega(m)$, it follows that T' is a D-extremal sequence for S(m).

As $\Omega(n) \ge 4$, we have that $\Omega(m) \ge 3$ and so from Theorem 3.2, we get that T' is a *D*-extremal sequence for U(m). Thus, by Theorem 6 of [2] we see that *S* is a *D*-extremal sequence for U(n).

Case 2. For every prime divisor q of n/p' exactly two terms of S are coprime to q, and at least two terms of S are coprime to p'.

Let m = n/p' and S' be the image of S under $f_{n,m}$. Suppose at most one term of S' is a unit. By Lemma 5.6 we see that S is an L(n; p')-weighted zero-sum sequence. Suppose at least two terms of S' are units. By the assumption in this case we see that exactly two terms of S' are units, say x'_{j_1} and x'_{j_2} and the other terms of S' are zero.

It follows that all terms of S are divisible by m except x_{j_1} and x_{j_2} . As the sequence S has length at least four, we can find a subsequence T of S having length at least two which does not contain the terms x_{j_1} and x_{j_2} . If x_j is divisible by p' where $j \neq j_1, j_2$, we get the contradiction that $x_j = 0$. So it follows that all the terms of the sequence $T^{(p')}$ are non-zero. As $T^{(p')}$ has length at least two, from [4, Lemma 2.1] we see that $T^{(p')}$ is a U(p')-weighted zero-sum sequence. Also all the terms of T are divisible by m. Hence, by taking d = m in Lemma 2.2 and by Lemma 5.4 we get the contradiction that T is an L(n; p')-weighted zero-sum subsequence of S.

Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n/p' such that at least three terms of S are coprime to p.

In this case, by Lemma 5.6 we get the contradiction that S is an L(n; p')-weighted zero-sum sequence.

Lemma 6.3. Let n = p'pq where p', p, q are distinct primes and m = n/p. Then we have $U(m) \subseteq f_{n,m}(L(n;p'))$.

Proof. As p is coprime with m, by the Chinese remainder theorem we have an isomorphism $\psi: U(n) \to U(m) \times U(p)$. Let $b \in U(m)$. There exists $c \in U(p)$ such that $\left(\frac{c}{p}\right) = \left(\frac{b}{q}\right)$. Let $a \in U(n)$ such that $\psi(a) = (b, c)$. Then $a \in L(n; p')$ as

$$\left(\frac{a}{n}\right) = \left(\frac{b}{m}\right)\left(\frac{c}{p}\right) = \left(\frac{b}{p'q}\right)\left(\frac{b}{q}\right) = \left(\frac{b}{p'}\right) = \left(\frac{a}{p'}\right).$$

As $f_{n,m}(a) = b$, we get that $b \in f_{n,m}(L(n;p'))$.

Theorem 6.4. Let n be squarefree such that every prime divisor of n is at least seven. Let p' be a prime divisor of n and m = n/p'. Suppose $\Omega(n) = 3$ and S is a sequence in \mathbb{Z}_n . Then the sequence S is a D-extremal sequence for L(n;p')if and only if either S is a D-extremal sequence for U(n) or S is a permutation of a sequence (x_1, x_2, x_3) where the image of the sequence (x_2, x_3) under $f_{n,m}$ is a D-extremal sequence for S(m) and x_1 satisfies one of the following conditions:

- The term x_1 is a non-zero multiple of m.
- The term x_1 is the only term of S which is coprime to p'.

Proof. From Theorems 1.3 and 1.6 we have $D_{U(n)} = D_{L(n;p')}$. From Remark 6.1 we see that if S is a D-extremal sequence for U(n), then S is a D-extremal sequence for L(n;p'). For any $a \in U(n)$ we have $\left(\frac{a}{n}\right) = \left(\frac{a}{m}\right)\left(\frac{a}{p}\right)$ and so $f_{n,m}\left(L(n;p')\right) \subseteq S(m)$. Let $S = (x_1, x_2, x_3)$ where the image of the sequence (x_2, x_3) under $f_{n,m}$ is a D-extremal sequence for S(m).

Consider the case when the term x_1 is a non-zero multiple of m. Suppose T is an L(n; p')-weighted zero-sum subsequence of S. As $f_{n,m}(L(n; p')) \subseteq S(m)$ and $f_{n,m}(x_1) = 0$, we get the contradiction that the image of (x_2, x_3) under $f_{n,m}$ has an S(m)-weighted zero-sum subsequence.

Consider the case when the term x_1 is the only term of S which is coprime to p'. Suppose T is an L(n;p')-weighted zero-sum subsequence of S. Then we see that T cannot contain x_1 . As $f_{n,m}(L(n;p')) \subseteq S(m)$, we get the contradiction that the image of (x_2, x_3) under $f_{n,m}$ has an S(m)-weighted zero-sum subsequence.

So we see that the sequences of the other two types are also *D*-extremal sequences for L(n;p'). Thus, we have shown that the reverse implication in the statement of Theorem 6.4 is true. We now proceed to prove the forward implication.

Suppose the sequence $S = (x_1, x_2, x_3)$ is a *D*-extremal sequence for L(n; p'). Clearly, all the terms of *S* must be non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose all the terms of S are divisible by p. We use a similar argument as in Case 1 of Theorem 6.2 to get the contradiction that S has an L(n; p')-weighted zerosum subsequence. So in this case, exactly one term of S is not divisible by p. Let

us assume that that term is x_1 . Let m = n/p and T' be the image of $T = (x_2, x_3)$ under $f_{n,m}$. By a similar argument as in Case 1 of Theorem 6.2, we see that T' is a *D*-extremal sequence for S(m).

Suppose we have that $p \neq p'$. We claim that T' is a *D*-extremal sequence for U(m). As $\Omega(m) = 2$, by Theorem 1.3 we have $D_{U(m)} = 3$. As T' has length two, it is enough to show that T' does not have any U(m)-weighted zero-sum subsequence. As n is squarefree and $\Omega(n) = 3$, by Lemma 6.3 we have $U(m) \subseteq f_{n,m}(L(n;p'))$. So if T' has a U(m)-weighted zero-sum subsequence, by Lemma 2.2 we get the contradiction that T (and hence S) has an L(n;p')-weighted zero-sum subsequence. Hence, it follows that our claim is true.

Thus, by Theorem 6 of [2] we see that S is a D-extremal sequence for U(n) when $p \neq p'$.

Case 2. For every prime divisor q of n/p' exactly two terms of S are coprime to q, and at least two terms of S are coprime to p'.

Let m = n/p' and $S' = (x'_1, x'_2, x'_3)$ be the image of S under $f_{n,m}$. Suppose at most one term of S' is a unit. By Lemma 5.6, we see that S is an L(n;p')-weighted zero-sum sequence. So we can assume that at least two terms of S' are units. By the assumption in this case, we see that exactly two terms of S are units and the other term is zero. Let us assume that $x'_1 = 0$ and the terms x'_2 and x'_3 are units. Thus, it follows that the term x_1 is a non-zero multiple of m.

If (x'_2, x'_3) has an S(m)-weighted zero-sum subsequence, then the sequence S' is an S(m)-weighted zero-sum sequence as $x'_1 = 0$. From [4, Lemma 2.1], we see that $S^{(p')}$ is a U(p')-weighted zero-sum sequence. Let $\psi : U(n) \to U(m) \times U(p')$ be the isomorphism given by the Chinese remainder theorem. From Lemma 5.5, we have $S(m) \times U(p') \subseteq \psi(L(n;p'))$. So from Observation 5.7 we get the contradiction that S is an L(n;p')-weighted zero-sum sequence.

Hence, the sequence (x'_2, x'_3) does not have any S(m)-weighted zero-sum subsequence. By Theorem 1.5 we have $D_{S(m)} = 3$. So it follows that the sequence (x'_2, x'_3) is a *D*-extremal sequence for S(m).

Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n/p' such that at least three terms of S are coprime to p.

In this case, by Lemma 5.6 we get the contradiction that S is an L(n; p')-weighted zero-sum sequence.

Theorem 6.5. Let n = p'q where p' and q are distinct primes which are at least seven. Suppose S is a sequence in \mathbb{Z}_n . Then S is a D-extremal sequence for L(n;p')if and only if S is a permutation of a sequence (x_1, x_2, x_3) where the image of the sequence (x_2, x_3) under $f_{n,q}$ is a D-extremal sequence for Q_q and x_1 satisfies one of the following conditions:

• The term x_1 is a non-zero multiple of q.

• The term x_1 is the only term of S which is coprime to p'.

We omit the proof of Theorem 6.5 to avoid making the paper lengthy.

7. C-Extremal Sequences for L(n; p)

Theorem 7.1. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose p' is a prime divisor of n and $\Omega(n) \neq 2$. Then the C-extremal sequences for L(n; p') are the same as the C-extremal sequences for U(n).

Proof. As $\Omega(n) \neq 2$, by Theorems 1.3 and 1.6 we have $C_{L(n;p')} = C_{U(n)}$. So by Remark 6.1 it is enough to show that every *C*-extremal sequence for L(n;p') is a *C*-extremal sequence for U(n).

Let S be a C-extremal sequence for L(n; p'). When n is a prime, then n = p' and L(n; p') = U(n). So S is a C-extremal sequence for U(n). Thus, we may assume that $\Omega(n) \geq 3$. By Theorem 1.6 we have $C_{L(n; p')} = 2^{\Omega(n)}$. So $S = (x_1, \ldots, x_l)$ where $l = 2^{\Omega(n)} - 1$. Clearly, all the terms of S must be non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose the 'middle' term x_{k+1} is divisible by p where k+1 = (l+1)/2. Then we can find a subsequence T having consecutive terms of S of length k+1 such that all the terms of T are divisible by p. Let m = n/p and T' be the image of Tunder $f_{n,m}$.

As $\Omega(m) = \Omega(n) - 1 \ge 2$ and T' has length $2^{\Omega(m)}$, by Theorem 1.5 we see that T' has an S(m)-weighted zero-sum subsequence of consecutive terms. By Lemma 5.3 we have that $S(m) \subseteq f_{n,m}(L(n;p'))$. So by Lemma 2.2 we get the contradiction that T (and hence S) has an L(n;p')-weighted zero-sum subsequence of consecutive terms.

Thus, we see that the term x_{k+1} is not divisible by p. Let $S_1 = (x_1, \ldots, x_k)$ and $S_2 = (x_{k+2}, \ldots, x_l)$. Let S'_1 and S'_2 be the images of S_1 and S_2 respectively under $f_{n,m}$. Suppose S'_1 has an S(m)-weighted zero-sum subsequence of consecutive terms. As we have that $S(m) \subseteq f_{n,m}(L(n;p'))$, by Lemma 2.2 we get the contradiction that S_1 (and hence S) has an L(n;p')-weighted zero-sum subsequence of consecutive terms.

So the sequence S'_1 does not have any S(m)-weighted zero-sum subsequence of consecutive terms. From Theorem 1.5 as $\Omega(m) \ge 2$ we have that $C_{S(m)} = 2^{\Omega(m)}$. As S'_1 has length $k = 2^{\Omega(m)} - 1$, it follows that S'_1 is a *C*-extremal sequence for S(m). As $\Omega(m) \ge 2$, from Theorem 4.1 we see that S'_1 is a *C*-extremal sequence for U(m).

By a similar argument we see that S'_2 is also a *C*-extremal sequence for U(m). So by Theorem 5 of [6] it follows that *S* is a *C*-extremal sequence for U(n).

Case 2. For every prime divisor q of n/p' exactly two terms of S are coprime to q, and at least two terms of S are coprime to p'.

We use a similar argument as the one given in the same case in the proof of Theorem 6.2. We just observe that as the sequence S has length at least seven, we can find a subsequence T having consecutive terms of S and having length at least two, which does not contain the terms x_{i_1} and x_{i_2} .

Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n/p' such that at least three terms of S are coprime to p.

In this case, by Lemma 5.6 we get the contradiction that S is an L(n; p')-weighted zero-sum sequence.

Theorem 7.2. Let n = p'q where p' and q are distinct primes which are at least seven. Suppose $S = (x_1, x_2, x_3, x_4, x_5)$ is a sequence in \mathbb{Z}_n . Then S is a C-extremal sequence for L(n; p') if and only if S has either of the following two forms:

- The terms x_1, x_3 and x_5 are non-zero multiples of q and the image of the sequence (x_2, x_4) under $f_{n,q}$ is a C-extremal sequence for Q_q .
- The term x_3 is the only term of S which is coprime to p' and the images of the sequences (x_1, x_2) and (x_4, x_5) under $f_{n,q}$ are C-extremal sequences for Q_q .

We omit the proof of Theorem 7.2 to avoid making the paper lengthy.

8. Concluding Remarks

When $\Omega(n) = 2$, from Theorem 3.3 we see that there exist *D*-extremal sequences for S(n) which are not *D*-extremal sequences for U(n). When $\Omega(n) = 3$, from Theorem 6.4 we see that there exist *D*-extremal sequences for L(n; p') which are not *D*-extremal sequences for U(n).

Let n = p'q where p' and q are distinct primes which are at least seven. From Theorems 1.3 and 1.7, we have $D_{U(n)} = 3$ and $D_{L(n;p')} = 4$, and so we cannot compare the *D*-extremal sequences for U(n) with the *D*-extremal sequences for L(n;p'). For such an n, as $C_{U(n)} = 4$ and $C_{L(n;p')} = 6$, we cannot compare the *C*-extremal sequences for U(n) with the *C*-extremal sequences for L(n;p'). The following questions can be investigated as well as their analogues for the constants $C_{S(n)}$ and $C_{U(n)}$.

- Can we determine the value of $D_{S(n)}$ and characterize the *D*-extremal sequences for S(n) when *n* is a non-prime, squarefree number which is not coprime with thirty?
- If n is a non-squarefree number such that $D_{U(n)} = D_{S(n)}$, can we say that a D-extremal sequence for S(n) is also a D-extremal sequence for U(n)?

Acknowledgements. Santanu Mondal would like to acknowledge CSIR, Govt. of India for a research fellowship whose file number is 09/934(0013)/2019-EMR-I. We thank the referee for taking the time to go through this paper and for the corrections and suggestions.

References

- S. D. Adhikari, C. David, and J. J. Urroz, Generalizations of some zero-sum theorems, *Integers* 8 (2008), #A52.
- [2] S. D. Adhikari, I. Molla, and S. Paul, Extremal sequences for some weighted zero-sum constants for cyclic groups, CANT IV, Springer Proc. Math. Stat. 347 (2021), 1-10.
- [3] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, Integers 6 (2006), #A30.
- [4] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units, Discrete Math. 308 (2008), 5473-5484.
- [5] S. Mondal, K. Paul, and S. Paul, On a different weighted zero-sum constant, *Discrete Math.* 346 (2023), 113350.
- [6] S. Mondal, K. Paul, and S. Paul, Extremal sequences for a weighted zero-sum constant, Integers 22 (2022), #A93.
- [7] S. Mondal, K. Paul, and S. Paul, Zero-sum constants related to the Jacobi symbol, e-print is available at arxiv:2111.14477v3.
- [8] P. Yuan and X. Zeng, Davenport constant with weights, European J. Combin. 31 (2010), 677-680.