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Abstract

Given A ⊆ Zn, the A-weighted zero-sum constant CA is defined to be the smallest
natural number k such that any sequence of k elements in Zn has an A-weighted
zero-sum subsequence of consecutive terms. A sequence of length CA − 1 in Zn

which does not have any A-weighted zero-sum subsequence of consecutive terms is
called a C-extremal sequence for A. For n odd, let S(n) be the set of all units in
Zn whose Jacobi symbol with respect to n is one. Given a prime divisor p of n,
let L(n; p) be the set of all units Zn whose Jacobi symbol with respect to n is the
same as their Legendre symbol with respect to p. We characterize the C-extremal
sequences for S(n) and L(n; p). Given A ⊆ Zn, the A-weighted Davenport constant
DA is defined to be the smallest natural number k such that any sequence of k
elements in Zn has an A-weighted zero-sum subsequence. A sequence of length
DA − 1 in Zn which does not have any A-weighted zero-sum subsequence is called
a D-extremal sequence for A. We characterize the D-extremal sequences for S(n)
and L(n; p).

1. Introduction

This paper is a complementary paper to [7]. For a, b ∈ Z, we denote the set

{x ∈ Z : a ≤ x ≤ b} by [a, b]. Let U(n) denote the group of units in the ring Zn.
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Let U(n)2 = {x2 : x ∈ U(n) }. Let Qp denote the set U(p)2 when p is an odd

prime. We say that Ω(n) = k if n is a product of k primes.

Definition 1.1. For a subset A ⊆ Zn, the A-weighted Davenport constant DA, is

defined to be the least positive integer k such that any sequence in Zn of length k

has an A-weighted zero-sum subsequence.

Adhikari and Rath [3] gave the previous definition. Mondal, K. Paul, and S. Paul

[5] gave the following definition.

Definition 1.2. For a subset A ⊆ Zn, the A-weighted zero-sum constant CA, is

defined to be the least positive integer k such that any sequence in Zn of length k

has an A-weighted zero-sum subsequence of consecutive terms.

Griffiths [4, Theorem 1.2] along with Yuan and Zeng [8, Theorem 1.2], and Mon-

dal, K. Paul, and S. Paul [5, Corollary 4] showed the next result.

Theorem 1.3 ([4],[5]). Let n be an odd number. Then we have DU(n) = Ω(n) + 1

and CU(n) = 2Ω(n).

Let m be a divisor of n. We refer to the homomorphism fn,m : Zn → Zm given

by a+nZ 7→ a+mZ as the natural map. Clearly this map is onto. As the image of

U(n) under fn,m is contained in U(m), we get a map U(n)→ U(m) which we also

refer to as the natural map and denote by fn,m.

For x ∈ Zn the Jacobi symbol ( x
n ) is defined in [7]. For a prime divisor p of n,

let (x
p ) denote the Legendre symbol of fn,p(x) ∈ Zp.

Let S(n) =
{
x ∈ U(n) :

(x
n

)
= 1

}
and L(n; p) =

{
x ∈ U(n) :

(x
n

)
=
(x
p

)}
.

When p is an odd prime, we see that S(p) = Qp. Adhikari and Rath [3, Theorem

2], and Mondal, K. Paul, and S. Paul [5, Theorem 4] showed the next result.

Theorem 1.4 ([3],[5]). Let p be an odd prime. Then we have CQp = DQp = 3.

Mondal, K. Paul, and S. Paul [7, Theorems 3.3 and 3.4] showed the next result.

Theorem 1.5 ([7]). When n is a squarefree number which is not a prime and every

prime divisor of n is at least seven, we have DS(n) = Ω(n) + 1 and CS(n) = 2Ω(n).

The next two results follow from Theorems 5.2, 5.3, 5.4 and 5.5 of [7].

Theorem 1.6 ([7]). When n is a squarefree number which is not a product of two

primes and every prime divisor of n is at least seven, we have DL(n;p) = Ω(n) + 1

and CL(n;p) = 2Ω(n) where p is a prime divisor of n.

Theorem 1.7 ([7]). Let n = pq where p and q are distinct primes which are at

least seven. Then we have that DL(n; p) = 4 and CL(n; p) = 6.
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Adhikari, Molla, and Paul [2] gave the following definition.

Definition 1.8. A sequence S in Zn of length DA − 1 which has no A-weighted

zero-sum subsequence is called a D-extremal sequence for A.

Mondal, K. Paul, and S. Paul [6] gave the following definition.

Definition 1.9. A sequence S in Zn of length CA − 1 which has no A-weighted

zero-sum subsequence of consecutive terms is called a C-extremal sequence for A.

Assume that n is a squarefree number such that every prime divisor of n is at

least seven. Let p be a prime divisor of n. For a sequence S in Zn we have shown

the following:

• Suppose Ω(n) 6= 1. Then S is a C-extremal sequence for S(n) if and only if S

is a C-extremal sequence for U(n).

• Suppose Ω(n) 6= 1, 2. Then S is a D-extremal sequence for S(n) if and only

if S is a D-extremal sequence for U(n).

• Suppose Ω(n) 6= 2. Then S is a C-extremal sequence for L(n; p) if and only if

S is a C-extremal sequence for U(n).

• Suppose Ω(n) 6= 2, 3. Then S is a D-extremal sequence for L(n; p) if and only

if S is a D-extremal sequence for U(n).

Remark 1.10. When n is odd, Adhikari, Molla, and Paul have characterized the

D-extremal sequences for U(n) in [2, Theorem 6]. Mondal, K. Paul, and S. Paul

have characterized the C-extremal sequences for U(n) in [6, Theorems 5 and 6].

If p is a prime divisor of n, we use the notation vp(n) = r to mean that pr | n
and pr+1 - n. Let S = (x1, . . . , xl) be a sequence in Zn and let p be a prime divisor

of n such that vp(n) = r. We denote the image of x ∈ Zn under fn,pr by x(p) and

we denote the sequence (x
(p)
1 , . . . , x

(p)
l ) in Zpr by S(p).

2. Some Results about S(n)-Weighted Zero-Sum Sequences

From this point onwards, we assume that n is odd.

The set S(n) = {x ∈ U(n) : ( x
n ) = 1} was considered as a weight-set in Section

3 of [1]. From Proposition 2.2 of [7] we see that S(n) = U(n) if n is a square, and

S(n) is a subgroup of index two in U(n), otherwise.

The next four results are Lemmas 2.5, 2.6, 3.1 and 3.2 of [7]. They are used in

the next section.
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Lemma 2.1 ([7]). Let d be a proper divisor of n such that d is not a square. Suppose

d is coprime with m where m = n/d. Then we have that U(m) ⊆ fn,m
(
S(n)

)
.

Lemma 2.2 ([7]). Let S be a sequence in Zn and d be a proper divisor of n which

divides every element of S. Suppose that d is coprime with m = n/d. Let S′ be the

image of S under the map fn,m. Let A ⊆ Zn and B ⊆ fn,m(A). Suppose S′ is a

B-weighted zero-sum sequence. Then S is an A-weighted zero-sum sequence.

Lemma 2.3 ([7]). Let n be an odd, squarefree number. Suppose S is a sequence

in Zn such that at most one term of S is a unit, and for every prime divisor q of

n at least two terms of S are coprime to q. Then S is an S(n)-weighted zero-sum

sequence.

Lemma 2.4 ([7]). Let n be a squarefree number whose every prime divisor is at

least seven. Suppose S is a sequence in Zn such that for every prime divisor q of

n at least two terms of S are coprime to q, and there is a prime divisor p of n

such that at least three terms of S are coprime to p. Then S is an S(n)-weighted

zero-sum sequence.

3. D-Extremal Sequences for S(n)

Remark 3.1. As S(n) ⊆ U(n), an S(n)-weighted zero-sum subsequence is also a

U(n)-weighted zero-sum subsequence. So if n is such that DS(n) = DU(n), then

every D-extremal sequence for U(n) is also a D-extremal sequence for S(n). Also,

if n is such that CS(n) = CU(n), then every C-extremal sequence for U(n) is also a

C-extremal sequence for S(n).

Theorem 3.2. Let n be a squarefree number such that every prime divisor of n is at

least seven. Suppose Ω(n) ≥ 3 and S is a sequence in Zn. Then S is a D-extremal

sequence for S(n) if and only if S is a D-extremal sequence for U(n).

Proof. As Ω(n) ≥ 3, by Theorems 1.3 and 1.5 we see that DS(n) = DU(n). So

by Remark 3.1 it is enough to show that every D-extremal sequence for S(n) is a

D-extremal sequence for U(n).

Let S = (x1, . . . , xk) be a D-extremal sequence for S(n). By Theorem 1.5 we

have DS(n) = Ω(n) + 1. Hence, it follows that k = Ω(n). Clearly, all the terms of

S are non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is coprime

to p.

Suppose all terms of S are divisible by p. Let m = n/p and S′ be the image

of S under fn,m. By Theorem 1.3 we have DU(m) = Ω(m) + 1. As S′ has length

Ω(n) = Ω(m) + 1, we see that S′ has a U(m)-weighted zero-sum subsequence. As n
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is squarefree, it follows that p is coprime to m. So by Lemmas 2.1 and 2.2, we get

the contradiction that S has an S(n)-weighted zero-sum subsequence.

So in this case, exactly one term of S is not divisible by p. Let us assume that

that term is x1. Let T = (x2, . . . , xk) and T ′ be the image of T under fn,m. Suppose

T ′ has a U(m)-weighted zero-sum subsequence. By Lemmas 2.1 and 2.2, we get

the contradiction that S has an S(n)-weighted zero-sum subsequence. Thus, the

sequence T ′ in Zm does not have any U(m)-weighted zero-sum subsequence. As

DU(m) = Ω(m) + 1 and the length of T ′ is Ω(m), it follows that T ′ is a D-extremal

sequence for U(m). So from Theorem 5 of [2] we see that S is a D-extremal sequence

for U(n).

Case 2. For every prime divisor q of n, exactly two terms of S are coprime to q.

Suppose S has at most one unit. By Lemma 2.3 we get the contradiction that S

is an S(n)-weighted zero-sum sequence. So we can assume that S has at least two

units. By the assumption in this case, we see that S has exactly two units and the

other terms of S are divisible by n. As the length of S is Ω(n), which is at least

three, we get the contradiction that some term of S is zero.

Case 3. For every prime divisor q of n at least two terms of S are coprime to q,

and there is a prime divisor p of n such that at least three terms of S are coprime

to p.

In this case, by Lemma 2.4 we get the contradiction that S is an S(n)-weighted

zero-sum sequence.

Theorem 3.3. Let n be a squarefree number such that every prime divisor of n is at

least seven. Suppose Ω(n) = 2. Then a sequence S in Zn is a D-extremal sequence

for S(n) if and only if S is either a D-extremal sequence for U(n) or S = (x1, x2)

where x1 and −x2 are in different cosets of S(n) in U(n).

Proof. From Theorems 1.3 and 1.5 we have DU(n) = DS(n). So from Remark 3.1 we

see that if S is a D-extremal sequence for U(n), then S is a D-extremal sequence

for S(n).

Let S = (x1, x2) where x1 and −x2 are in different cosets of S(n) in U(n).

Suppose T is an S(n)-weighted zero-sum subsequence of S. Then we see that T

must be S itself. So there exist a, b ∈ S(n) such that ax1 + bx2 = 0 and hence there

exists c ∈ S(n) such that −x2 = cx1. As x1 and −x2 are in different cosets of S(n)

in U(n), we get the contradiction that c /∈ S(n). Thus, it follows that S does not

have any S(n)-weighted zero-sum subsequence. From Theorem 1.5, we have that

DS(n) = 3 and so we see that S is a D-extremal sequence for S(n).

Conversely, suppose S is a D-extremal sequence for S(n). By Theorem 1.5 we

have DS(n) = Ω(n) + 1 = 3. Hence, it follows that S has length 2. Let S = (x1, x2).

We have two cases to consider.

Case 1. For every prime divisor q of n, exactly two terms of S are coprime to q.
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As x1 and x2 are coprime to every prime divisor of n, it follows that x1, x2 ∈ U(n).

As n is squarefree, from Proposition 2.2 of [7] we get that S(n) has index two in

U(n). Suppose either x1,−x2 ∈ S(n) or x1,−x2 ∈ U(n) \ S(n). Then we see that

a = −x2x
−1
1 ∈ S(n). As 1 ∈ S(n) and ax1 + x2 = 0, we get the contradiction that

S is an S(n)-weighted zero-sum sequence. Thus, the sequence S = (x1, x2) where

x1 and −x2 are in different cosets of S(n) in U(n).

Case 2. The assumption in Case 1 does not hold.

We use similar arguments as in the proof of Theorem 3.2 to conclude that S is a

D-extremal sequence for U(n).

Remark 3.4. For a prime p, we have that S(p) = Qp. From Corollary 2 of [6], we

can see that the D-extremal sequences for Qp are precisely those which are of the

form (x1, x2) where x1 and −x2 are in different cosets of Qp in U(p).

4. C-Extremal Sequences for S(n)

Theorem 4.1. Let n be a non-prime squarefree number such that every prime

divisor of n is at least seven. Then a sequence S in Zn is a C-extremal sequence

for S(n) if and only if S is a C-extremal sequence for U(n).

Proof. By Theorems 1.3 and 1.5 we get CU(n) = CS(n). So by Remark 3.1 it is

enough to show that every C-extremal sequence for S(n) is a C-extremal sequence

for U(n).

Suppose a sequence S = (x1, . . . , xl) in Zn is a C-extremal sequence for S(n).

By Theorem 1.5 we have CS(n) = 2Ω(n) and so we see that l = 2Ω(n) − 1. Clearly,

all the terms of S must be non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is not

divisible by p.

Suppose all the terms of S are divisible by p. Let m = n/p and S′ be the image

of S under fn,m. By Theorem 1.3 we have CU(m) = 2Ω(m). As S′ has length

l = 2Ω(n) − 1 and as Ω(n) = Ω(m) + 1, we get that l > 2Ω(m). Hence, it follows

that S′ has a U(m)-weighted zero-sum subsequence of consecutive terms. Thus by

Lemmas 2.1 and 2.2, we get the contradiction that S has an S(n)-weighted zero-sum

subsequence of consecutive terms.

Thus, in this case, we see that exactly one term x∗ of S is coprime to p. Suppose

x∗ 6= xk+1 where k + 1 = (l + 1)/2. Then there is a subsequence T of consecutive

terms of S of length at least k+ 1 such that p divides every term of T . As we have

l + 1 = 2Ω(n), we see that k + 1 = (l + 1)/2 = 2Ω(n)−1 = 2Ω(m). So by a similar

argument as in the previous paragraph, we get the contradiction that T (and hence

S) has an S(n)-weighted zero-sum subsequence of consecutive terms. Thus, we see

that x∗ = xk+1.
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Let S1 = (x1, . . . , xk) and S2 = (xk+2, . . . , xl). Let S′1 and S′2 be the images

of the sequences S1 and S2 respectively under the map fn,m. Suppose S′1 has a

U(m)-weighted zero-sum subsequence of consecutive terms. By Lemma 2.1, we

have U(m) ⊆ fn,m
(
S(n)

)
. As p divides every term of S1, by Lemma 2.2 we get the

contradiction that S1 (and hence S) has an S(n)-weighted zero-sum subsequence of

consecutive terms. Thus, the sequence S′1 does not have any U(m)-weighted zero-

sum subsequence of consecutive terms. As S′1 has length k = 2Ω(m)−1 = CU(m)−1,

it follows that S′1 is a C-extremal sequence for U(m).

A similar argument shows that S′2 is also a C-extremal sequence for U(m). Thus,

from Theorem 5 of [6] it follows that S is a C-extremal sequence for U(n).

Case 2. For every prime divisor q of n, exactly two terms of S are coprime to q.

If S has at most one unit, by Lemma 2.3 we get the contradiction that S is an

S(n)-weighted zero-sum sequence. So we can assume that S has at least two units.

By the assumption in this case, we see that S has exactly two units and the other

terms of S are divisible by n. As the length of S is 2Ω(n) − 1 and as Ω(n) ≥ 2, we

see that S has at least three terms. Thus, we get the contradiction that S has a

term which is zero.

Case 3. For every prime divisor q of n at least two terms of S are coprime to q,

and there is a prime divisor p of n such that at least three terms of S are coprime

to p.

In this case, by Lemma 2.4 we get the contradiction that S is an S(n)-weighted

zero-sum sequence.

Remark 4.2. For a prime p, we have that S(p) = Qp. The C-extremal sequences

for Qp have been characterized in Corollary 2 of [6]. They are the sequences which

are of the form (x1, x2) where x1 and −x2 are in different cosets of Qp in U(p).

5. Some Results about the Weight-Set L(n; p)

In [7] we considered the subset L(n; p) of Zn. Let us recall the definition.

Definition 5.1. For a prime divisor p of n, let

L(n; p) =
{
a ∈ U(n)

∣∣∣ (a
n

)
=
(a
p

)}
.

Remark 5.2. From Proposition 4.2 of [7], we see that L(n; p) = U(n) if n has a

unique prime divisor p such that vp(n) is odd, and L(n; p) is a subgroup of U(n)

having index two, otherwise.

The next five results are Lemmas 4.4, 4.5, 4.7 and 5.1 and Observation 4.6 of [7].

They will be used in the next section.
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Lemma 5.3 ([7]). Let p′, p be prime divisors of n. Suppose p is coprime to m = n/p.

Then we have that S(m) ⊆ fn,m
(
L(n; p′)

)
.

Lemma 5.4 ([7]). Let p′ be a prime divisor of n which is coprime to m = n/p′.

Then we have that U(p′) ⊆ fn, p′
(
L(n; p′)

)
.

Lemma 5.5 ([7]). Let n be squarefree and p′ be a prime divisor of n. Suppose the

map ψ : U(n)→ U(m)× U(p′) is the isomorphism given by the Chinese remainder

theorem where m = n/p′. Then we have that S(m)× U(p′) ⊆ ψ
(
L(n; p′)

)
.

Lemma 5.6 ([7]). Let n be squarefree and p′ be a prime divisor of n. Let S be a

sequence in Zn such that for every prime divisor q of n, at least two terms of S are

coprime to q. Let m = n/p′ and S′ be the image of S under fn,m. Suppose at most

one term of S′ is a unit, or there is a prime divisor p of m such that at least three

terms of S are coprime to p. Then S is an L(n; p′)-weighted zero-sum sequence.

Observation 5.7 ([7]). Let n = m1m2 where m1 and m2 are coprime. Let A ⊆ Zn

and S be a sequence in Zn. Let Si denote the image of the sequence S under fn,mi

for each i ∈ [1, 2]. Let ψ : U(n) → U(m1) × U(m2) be the isomorphism given by

the Chinese remainder theorem. Suppose A1 ⊆ U(m1) and A2 ⊆ U(m2) are such

that A1 × A2 ⊆ ψ(A). If S1 is an A1-weighted zero-sum sequence and S2 is an

A2-weighted zero-sum sequence, then S is an A-weighted zero-sum sequence.

6. D-Extremal Sequences for L(n; p)

Remark 6.1. Let p be a prime divisor of n. As L(n; p) ⊆ U(n), an L(n; p)-weighted

zero-sum subsequence is also a U(n)-weighted zero-sum subsequence. So if n is such

that DL(n; p) = DU(n), then every D-extremal sequence for U(n) is a D-extremal

sequence for L(n; p). Also, if n is such that CL(n; p) = CU(n), then every C-extremal

sequence for U(n) is a C-extremal sequence for L(n; p).

Theorem 6.2. Let n be a squarefree number such that every prime divisor of n is

at least seven. Suppose p′ is a prime divisor of n and Ω(n) 6= 2, 3. Then S is a

D-extremal sequence for L(n; p′) if and only if S is a D-extremal sequence for U(n).

Proof. As Ω(n) 6= 2, by Theorems 1.3 and 1.6 we have that DL(n; p) = DU(n). So

by Remark 6.1 it is enough to show that every D-extremal sequence for L(n; p′) is

a D-extremal sequence for U(n).

Let S be a D-extremal sequence for L(n; p′). If Ω(n) = 1, then n = p′. As

L(n; p′) = U(n), it follows that S is a D-extremal sequence for U(n). So we may

assume that Ω(n) ≥ 4. By Theorem 1.6 we have DL(n; p′) = Ω(n) + 1. Thus S must

have length Ω(n). Let S = (x1, . . . , xk) where k = Ω(n). Clearly, all the terms of S

are non-zero. We have three cases to consider.
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Case 1. There is a prime divisor p of n such that at most one term of S is coprime

to p.

Suppose all terms of S are divisible by p. Let m = n/p and S′ be the image

of S under fn,m. By Theorem 1.5 we have DS(m) = Ω(m) + 1. As S′ has length

Ω(n) = Ω(m) + 1, we see that S′ has an S(m)-weighted zero-sum subsequence. As

n is squarefree, so p is coprime to m. So from Lemmas 2.2 and 5.3 we get the

contradiction that S has an L(n; p′)-weighted zero-sum subsequence.

So in this case, exactly one term of S is not divisible by p. Let us assume

that that term is x1. Let T = (x2, . . . , xk) and T ′ be the image of T under fn,m.

Suppose T ′ has an S(m)-weighted zero-sum subsequence. By Lemma 5.3 we have

that S(m) ⊆ fn,m
(
L(n; p′)

)
and so by Lemma 2.2 we get the contradiction that S

has an L(n; p′)-weighted zero-sum subsequence. Thus, the sequence T ′ in Zm does

not have any S(m)-weighted zero-sum subsequence. As DS(m) = Ω(m) + 1 and the

length of T ′ is Ω(m), it follows that T ′ is a D-extremal sequence for S(m).

As Ω(n) ≥ 4, we have that Ω(m) ≥ 3 and so from Theorem 3.2, we get that T ′

is a D-extremal sequence for U(m). Thus, by Theorem 6 of [2] we see that S is a

D-extremal sequence for U(n).

Case 2. For every prime divisor q of n/p′ exactly two terms of S are coprime to q,

and at least two terms of S are coprime to p′.

Let m = n/p′ and S′ be the image of S under fn,m. Suppose at most one term of

S′ is a unit. By Lemma 5.6 we see that S is an L(n; p′)-weighted zero-sum sequence.

Suppose at least two terms of S′ are units. By the assumption in this case we see

that exactly two terms of S′ are units, say x′j1 and x′j2 and the other terms of S′

are zero.

It follows that all terms of S are divisible by m except xj1 and xj2 . As the

sequence S has length at least four, we can find a subsequence T of S having length

at least two which does not contain the terms xj1 and xj2 . If xj is divisible by p′

where j 6= j1, j2, we get the contradiction that xj = 0. So it follows that all the

terms of the sequence T (p′) are non-zero. As T (p′) has length at least two, from [4,

Lemma 2.1] we see that T (p′) is a U(p′)-weighted zero-sum sequence. Also all the

terms of T are divisible by m. Hence, by taking d = m in Lemma 2.2 and by Lemma

5.4 we get the contradiction that T is an L(n; p′)-weighted zero-sum subsequence

of S.

Case 3. For every prime divisor q of n at least two terms of S are coprime to q,

and there is a prime divisor p of n/p′ such that at least three terms of S are coprime

to p.

In this case, by Lemma 5.6 we get the contradiction that S is an L(n; p′)-weighted

zero-sum sequence.

Lemma 6.3. Let n = p′p q where p′, p , q are distinct primes and m = n/p. Then

we have U(m) ⊆ fn,m
(
L(n; p′)

)
.
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Proof. As p is coprime with m, by the Chinese remainder theorem we have an

isomorphism ψ : U(n)→ U(m)× U(p). Let b ∈ U(m). There exists c ∈ U(p) such

that
( c
p

)
=
( b
q

)
. Let a ∈ U(n) such that ψ(a) = (b, c). Then a ∈ L(n; p′) as

(a
n

)
=
( b
m

)( c
p

)
=
( b

p′q

)( b
q

)
=
( b
p′

)
=
( a
p′

)
.

As fn,m(a) = b, we get that b ∈ fn,m
(
L(n; p′)

)
.

Theorem 6.4. Let n be squarefree such that every prime divisor of n is at least

seven. Let p′ be a prime divisor of n and m = n/p′. Suppose Ω(n) = 3 and S

is a sequence in Zn. Then the sequence S is a D-extremal sequence for L(n; p′)

if and only if either S is a D-extremal sequence for U(n) or S is a permutation

of a sequence (x1, x2, x3) where the image of the sequence (x2, x3) under fn,m is a

D-extremal sequence for S(m) and x1 satisfies one of the following conditions:

• The term x1 is a non-zero multiple of m.

• The term x1 is the only term of S which is coprime to p′.

Proof. From Theorems 1.3 and 1.6 we have DU(n) = DL(n; p′). From Remark 6.1 we

see that if S is a D-extremal sequence for U(n), then S is a D-extremal sequence for

L(n; p′). For any a ∈ U(n) we have ( a
n ) = ( a

m )(a
p ) and so fn,m

(
L(n; p′)

)
⊆ S(m).

Let S = (x1, x2, x3) where the image of the sequence (x2, x3) under fn,m is a D-

extremal sequence for S(m).

Consider the case when the term x1 is a non-zero multiple of m. Suppose T is

an L(n; p′)-weighted zero-sum subsequence of S. As fn,m
(
L(n; p′)

)
⊆ S(m) and

fn,m(x1) = 0, we get the contradiction that the image of (x2, x3) under fn,m has

an S(m)-weighted zero-sum subsequence.

Consider the case when the term x1 is the only term of S which is coprime to p′.

Suppose T is an L(n; p′)-weighted zero-sum subsequence of S. Then we see that T

cannot contain x1. As fn,m
(
L(n; p′)

)
⊆ S(m), we get the contradiction that the

image of (x2, x3) under fn,m has an S(m)-weighted zero-sum subsequence.

So we see that the sequences of the other two types are also D-extremal sequences

for L(n; p′). Thus, we have shown that the reverse implication in the statement of

Theorem 6.4 is true. We now proceed to prove the forward implication.

Suppose the sequence S = (x1, x2, x3) is a D-extremal sequence for L(n; p′).

Clearly, all the terms of S must be non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is coprime

to p.

Suppose all the terms of S are divisible by p. We use a similar argument as in

Case 1 of Theorem 6.2 to get the contradiction that S has an L(n; p′)-weighted zero-

sum subsequence. So in this case, exactly one term of S is not divisible by p. Let
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us assume that that term is x1. Let m = n/p and T ′ be the image of T = (x2, x3)

under fn,m. By a similar argument as in Case 1 of Theorem 6.2, we see that T ′ is

a D-extremal sequence for S(m).

Suppose we have that p 6= p′. We claim that T ′ is a D-extremal sequence for

U(m). As Ω(m) = 2, by Theorem 1.3 we have DU(m) = 3. As T ′ has length two, it

is enough to show that T ′ does not have any U(m)-weighted zero-sum subsequence.

As n is squarefree and Ω(n) = 3, by Lemma 6.3 we have U(m) ⊆ fn,m
(
L(n; p′)

)
.

So if T ′ has a U(m)-weighted zero-sum subsequence, by Lemma 2.2 we get the

contradiction that T (and hence S) has an L(n; p′)-weighted zero-sum subsequence.

Hence, it follows that our claim is true.

Thus, by Theorem 6 of [2] we see that S is a D-extremal sequence for U(n) when

p 6= p′.

Case 2. For every prime divisor q of n/p′ exactly two terms of S are coprime to q,

and at least two terms of S are coprime to p′.

Let m = n/p′ and S′ = (x′1, x
′
2, x
′
3) be the image of S under fn,m. Suppose at

most one term of S′ is a unit. By Lemma 5.6, we see that S is an L(n; p′)-weighted

zero-sum sequence. So we can assume that at least two terms of S′ are units. By

the assumption in this case, we see that exactly two terms of S are units and the

other term is zero. Let us assume that x′1 = 0 and the terms x′2 and x′3 are units.

Thus, it follows that the term x1 is a non-zero multiple of m.

If (x′2, x
′
3) has an S(m)-weighted zero-sum subsequence, then the sequence S′ is

an S(m)-weighted zero-sum sequence as x′1 = 0. From [4, Lemma 2.1], we see that

S(p′) is a U(p′)-weighted zero-sum sequence. Let ψ : U(n)→ U(m)× U(p′) be the

isomorphism given by the Chinese remainder theorem. From Lemma 5.5, we have

S(m)×U(p′) ⊆ ψ
(
L(n; p′)

)
. So from Observation 5.7 we get the contradiction that

S is an L(n; p′)-weighted zero-sum sequence.

Hence, the sequence (x′2, x
′
3) does not have any S(m)-weighted zero-sum sub-

sequence. By Theorem 1.5 we have DS(m) = 3. So it follows that the sequence

(x′2, x
′
3) is a D-extremal sequence for S(m).

Case 3. For every prime divisor q of n at least two terms of S are coprime to q,

and there is a prime divisor p of n/p′ such that at least three terms of S are coprime

to p.

In this case, by Lemma 5.6 we get the contradiction that S is an L(n; p′)-weighted

zero-sum sequence.

Theorem 6.5. Let n = p′q where p′ and q are distinct primes which are at least

seven. Suppose S is a sequence in Zn. Then S is a D-extremal sequence for L(n; p′)

if and only if S is a permutation of a sequence (x1, x2, x3) where the image of the

sequence (x2, x3) under fn,q is a D-extremal sequence for Qq and x1 satisfies one

of the following conditions:

• The term x1 is a non-zero multiple of q.
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• The term x1 is the only term of S which is coprime to p′.

We omit the proof of Theorem 6.5 to avoid making the paper lengthy.

7. C-Extremal Sequences for L(n; p)

Theorem 7.1. Let n be a squarefree number such that every prime divisor of n is at

least seven. Suppose p′ is a prime divisor of n and Ω(n) 6= 2. Then the C-extremal

sequences for L(n; p′) are the same as the C-extremal sequences for U(n).

Proof. As Ω(n) 6= 2, by Theorems 1.3 and 1.6 we have CL(n; p′) = CU(n). So by

Remark 6.1 it is enough to show that every C-extremal sequence for L(n; p′) is a

C-extremal sequence for U(n).

Let S be a C-extremal sequence for L(n; p′). When n is a prime, then n = p′ and

L(n; p′) = U(n). So S is a C-extremal sequence for U(n). Thus, we may assume

that Ω(n) ≥ 3. By Theorem 1.6 we have CL(n; p′) = 2Ω(n). So S = (x1, . . . , xl)

where l = 2Ω(n) − 1. Clearly, all the terms of S must be non-zero. We have three

cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is coprime

to p.

Suppose the ‘middle’ term xk+1 is divisible by p where k + 1 = (l + 1)/2. Then

we can find a subsequence T having consecutive terms of S of length k + 1 such

that all the terms of T are divisible by p. Let m = n/p and T ′ be the image of T

under fn,m.

As Ω(m) = Ω(n) − 1 ≥ 2 and T ′ has length 2Ω(m), by Theorem 1.5 we see that

T ′ has an S(m)-weighted zero-sum subsequence of consecutive terms. By Lemma

5.3 we have that S(m) ⊆ fn,m
(
L(n; p′)

)
. So by Lemma 2.2 we get the contradiction

that T (and hence S) has an L(n; p′)-weighted zero-sum subsequence of consecutive

terms.

Thus, we see that the term xk+1 is not divisible by p. Let S1 = (x1, . . . , xk) and

S2 = (xk+2, . . . , xl). Let S′1 and S′2 be the images of S1 and S2 respectively under

fn,m. Suppose S′1 has an S(m)-weighted zero-sum subsequence of consecutive terms.

As we have that S(m) ⊆ fn,m
(
L(n; p′)

)
, by Lemma 2.2 we get the contradiction

that S1 (and hence S) has an L(n; p′)-weighted zero-sum subsequence of consecutive

terms.

So the sequence S′1 does not have any S(m)-weighted zero-sum subsequence of

consecutive terms. From Theorem 1.5 as Ω(m) ≥ 2 we have that CS(m) = 2Ω(m).

As S′1 has length k = 2Ω(m) − 1, it follows that S′1 is a C-extremal sequence for

S(m). As Ω(m) ≥ 2, from Theorem 4.1 we see that S′1 is a C-extremal sequence for

U(m).
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By a similar argument we see that S′2 is also a C-extremal sequence for U(m).

So by Theorem 5 of [6] it follows that S is a C-extremal sequence for U(n).

Case 2. For every prime divisor q of n/p′ exactly two terms of S are coprime to q,

and at least two terms of S are coprime to p′.

We use a similar argument as the one given in the same case in the proof of

Theorem 6.2. We just observe that as the sequence S has length at least seven, we

can find a subsequence T having consecutive terms of S and having length at least

two, which does not contain the terms xj1 and xj2 .

Case 3. For every prime divisor q of n at least two terms of S are coprime to q,

and there is a prime divisor p of n/p′ such that at least three terms of S are coprime

to p.

In this case, by Lemma 5.6 we get the contradiction that S is an L(n; p′)-weighted

zero-sum sequence.

Theorem 7.2. Let n = p′q where p′ and q are distinct primes which are at least

seven. Suppose S = (x1, x2, x3, x4, x5) is a sequence in Zn. Then S is a C-extremal

sequence for L(n; p′) if and only if S has either of the following two forms:

• The terms x1, x3 and x5 are non-zero multiples of q and the image of the

sequence (x2, x4) under fn,q is a C-extremal sequence for Qq.

• The term x3 is the only term of S which is coprime to p′ and the images of

the sequences (x1, x2) and (x4, x5) under fn,q are C-extremal sequences for

Qq.

We omit the proof of Theorem 7.2 to avoid making the paper lengthy.

8. Concluding Remarks

When Ω(n) = 2, from Theorem 3.3 we see that there exist D-extremal sequences

for S(n) which are not D-extremal sequences for U(n). When Ω(n) = 3, from

Theorem 6.4 we see that there exist D-extremal sequences for L(n; p′) which are

not D-extremal sequences for U(n).

Let n = p′q where p′ and q are distinct primes which are at least seven. From

Theorems 1.3 and 1.7, we have DU(n) = 3 and DL(n; p′) = 4, and so we cannot

compare the D-extremal sequences for U(n) with the D-extremal sequences for

L(n; p′). For such an n, as CU(n) = 4 and CL(n; p′) = 6, we cannot compare the

C-extremal sequences for U(n) with the C-extremal sequences for L(n; p′). The

following questions can be investigated as well as their analogues for the constants

CS(n) and CU(n).
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• Can we determine the value of DS(n) and characterize the D-extremal se-

quences for S(n) when n is a non-prime, squarefree number which is not

coprime with thirty?

• If n is a non-squarefree number such that DU(n) = DS(n), can we say that a

D-extremal sequence for S(n) is also a D-extremal sequence for U(n)?
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[4] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units, Discrete Math. 308 (2008), 5473-
5484.

[5] S. Mondal, K. Paul, and S. Paul, On a different weighted zero-sum constant, Discrete Math.
346 (2023), 113350.

[6] S. Mondal, K. Paul, and S. Paul, Extremal sequences for a weighted zero-sum constant,
Integers 22 (2022), #A93.

[7] S. Mondal, K. Paul, and S. Paul, Zero-sum constants related to the Jacobi symbol, e-print is
available at arxiv:2111.14477v3.

[8] P. Yuan and X. Zeng, Davenport constant with weights, European J. Combin. 31 (2010),
677-680.


