EXTREMAL SEQUENCES RELATED TO THE JACOBI SYMBOL

Santanu Mondal
Department of Mathematics, Ramakrishna Mission Vivekananda Educational and
Research Institute, Dist. Howrah, India
santanu.mondal.math18@gm.rkmvu.ac.in
Krishnendu Paul
Department of Mathematics, Ramakrishna Mission Vivekananda Educational and
Research Institute, Dist. Howrah, India
krishnendu.p.math18@gm.rkmvu.ac.in
Shameek Paul
Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute, Dist. Howrah, India
shameek. paul@rkmvu.ac.in

Received: 1/4/22, Revised: 4/22/23, Accepted: 7/1/23, Published: 7/21/23

Abstract

Given $A \subseteq \mathbb{Z}_{n}$, the A-weighted zero-sum constant C_{A} is defined to be the smallest natural number k such that any sequence of k elements in \mathbb{Z}_{n} has an A-weighted zero-sum subsequence of consecutive terms. A sequence of length $C_{A}-1$ in \mathbb{Z}_{n} which does not have any A-weighted zero-sum subsequence of consecutive terms is called a C-extremal sequence for A. For n odd, let $S(n)$ be the set of all units in \mathbb{Z}_{n} whose Jacobi symbol with respect to n is one. Given a prime divisor p of n, let $L(n ; p)$ be the set of all units \mathbb{Z}_{n} whose Jacobi symbol with respect to n is the same as their Legendre symbol with respect to p. We characterize the C-extremal sequences for $S(n)$ and $L(n ; p)$. Given $A \subseteq \mathbb{Z}_{n}$, the A-weighted Davenport constant D_{A} is defined to be the smallest natural number k such that any sequence of k elements in \mathbb{Z}_{n} has an A-weighted zero-sum subsequence. A sequence of length $D_{A}-1$ in \mathbb{Z}_{n} which does not have any A-weighted zero-sum subsequence is called a D-extremal sequence for A. We characterize the D-extremal sequences for $S(n)$ and $L(n ; p)$.

1. Introduction

This paper is a complementary paper to [7]. For $a, b \in \mathbb{Z}$, we denote the set $\{x \in \mathbb{Z}: a \leq x \leq b\}$ by $[a, b]$. Let $U(n)$ denote the group of units in the ring \mathbb{Z}_{n}.

[^0]Let $U(n)^{2}=\left\{x^{2}: x \in U(n)\right\}$. Let Q_{p} denote the set $U(p)^{2}$ when p is an odd prime. We say that $\Omega(n)=k$ if n is a product of k primes.

Definition 1.1. For a subset $A \subseteq \mathbb{Z}_{n}$, the A-weighted Davenport constant D_{A}, is defined to be the least positive integer k such that any sequence in \mathbb{Z}_{n} of length k has an A-weighted zero-sum subsequence.

Adhikari and Rath [3] gave the previous definition. Mondal, K. Paul, and S. Paul [5] gave the following definition.

Definition 1.2. For a subset $A \subseteq \mathbb{Z}_{n}$, the A-weighted zero-sum constant C_{A}, is defined to be the least positive integer k such that any sequence in \mathbb{Z}_{n} of length k has an A-weighted zero-sum subsequence of consecutive terms.

Griffiths [4, Theorem 1.2] along with Yuan and Zeng [8, Theorem 1.2], and Mondal, K. Paul, and S. Paul [5, Corollary 4] showed the next result.

Theorem $1.3([4],[5])$. Let n be an odd number. Then we have $D_{U(n)}=\Omega(n)+1$ and $C_{U(n)}=2^{\Omega(n)}$.

Let m be a divisor of n. We refer to the homomorphism $f_{n, m}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ given by $a+n \mathbb{Z} \mapsto a+m \mathbb{Z}$ as the natural map. Clearly this map is onto. As the image of $U(n)$ under $f_{n, m}$ is contained in $U(m)$, we get a map $U(n) \rightarrow U(m)$ which we also refer to as the natural map and denote by $f_{n, m}$.

For $x \in \mathbb{Z}_{n}$ the Jacobi symbol $\left(\frac{x}{n}\right)$ is defined in [7]. For a prime divisor p of n, let $\left(\frac{x}{p}\right)$ denote the Legendre symbol of $f_{n, p}(x) \in \mathbb{Z}_{p}$.

Let $S(n)=\left\{x \in U(n):\left(\frac{x}{n}\right)=1\right\}$ and $L(n ; p)=\left\{x \in U(n):\left(\frac{x}{n}\right)=\left(\frac{x}{p}\right)\right\}$.
When p is an odd prime, we see that $S(p)=Q_{p}$. Adhikari and Rath [3, Theorem 2], and Mondal, K. Paul, and S. Paul [5, Theorem 4] showed the next result.

Theorem 1.4 ([3],[5]). Let p be an odd prime. Then we have $C_{Q_{p}}=D_{Q_{p}}=3$.
Mondal, K. Paul, and S. Paul [7, Theorems 3.3 and 3.4] showed the next result.
Theorem 1.5 ([7]). When n is a squarefree number which is not a prime and every prime divisor of n is at least seven, we have $D_{S(n)}=\Omega(n)+1$ and $C_{S(n)}=2^{\Omega(n)}$.

The next two results follow from Theorems 5.2, 5.3, 5.4 and 5.5 of [7].
Theorem 1.6 ([7]). When n is a squarefree number which is not a product of two primes and every prime divisor of n is at least seven, we have $D_{L(n ; p)}=\Omega(n)+1$ and $C_{L(n ; p)}=2^{\Omega(n)}$ where p is a prime divisor of n.

Theorem 1.7 ([7]). Let $n=p q$ where p and q are distinct primes which are at least seven. Then we have that $D_{L(n ; p)}=4$ and $C_{L(n ; p)}=6$.

Adhikari, Molla, and Paul [2] gave the following definition.
Definition 1.8. A sequence S in \mathbb{Z}_{n} of length $D_{A}-1$ which has no A-weighted zero-sum subsequence is called a D-extremal sequence for A.

Mondal, K. Paul, and S. Paul [6] gave the following definition.
Definition 1.9. A sequence S in \mathbb{Z}_{n} of length $C_{A}-1$ which has no A-weighted zero-sum subsequence of consecutive terms is called a C-extremal sequence for A.

Assume that n is a squarefree number such that every prime divisor of n is at least seven. Let p be a prime divisor of n. For a sequence S in \mathbb{Z}_{n} we have shown the following:

- Suppose $\Omega(n) \neq 1$. Then S is a C-extremal sequence for $S(n)$ if and only if S is a C-extremal sequence for $U(n)$.
- Suppose $\Omega(n) \neq 1,2$. Then S is a D-extremal sequence for $S(n)$ if and only if S is a D-extremal sequence for $U(n)$.
- Suppose $\Omega(n) \neq 2$. Then S is a C-extremal sequence for $L(n ; p)$ if and only if S is a C-extremal sequence for $U(n)$.
- Suppose $\Omega(n) \neq 2,3$. Then S is a D-extremal sequence for $L(n ; p)$ if and only if S is a D-extremal sequence for $U(n)$.

Remark 1.10. When n is odd, Adhikari, Molla, and Paul have characterized the D-extremal sequences for $U(n)$ in [2, Theorem 6]. Mondal, K. Paul, and S. Paul have characterized the C-extremal sequences for $U(n)$ in $[6$, Theorems 5 and 6$]$.

If p is a prime divisor of n, we use the notation $v_{p}(n)=r$ to mean that $p^{r} \mid n$ and $p^{r+1} \nmid n$. Let $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n} and let p be a prime divisor of n such that $v_{p}(n)=r$. We denote the image of $x \in \mathbb{Z}_{n}$ under $f_{n, p^{r}}$ by $x^{(p)}$ and we denote the sequence $\left(x_{1}^{(p)}, \ldots, x_{l}^{(p)}\right)$ in $\mathbb{Z}_{p^{r}}$ by $S^{(p)}$.

2. Some Results about $\boldsymbol{S (n)}$-Weighted Zero-Sum Sequences

From this point onwards, we assume that n is odd.
The set $S(n)=\left\{x \in U(n):\left(\frac{x}{n}\right)=1\right\}$ was considered as a weight-set in Section 3 of [1]. From Proposition 2.2 of [7] we see that $S(n)=U(n)$ if n is a square, and $S(n)$ is a subgroup of index two in $U(n)$, otherwise.

The next four results are Lemmas 2.5, 2.6, 3.1 and 3.2 of [7]. They are used in the next section.

Lemma 2.1 ([7]). Let d be a proper divisor of n such that d is not a square. Suppose d is coprime with m where $m=n / d$. Then we have that $U(m) \subseteq f_{n, m}(S(n))$.

Lemma 2.2 ([7]). Let S be a sequence in \mathbb{Z}_{n} and d be a proper divisor of n which divides every element of S. Suppose that d is coprime with $m=n / d$. Let S^{\prime} be the image of S under the map $f_{n, m}$. Let $A \subseteq \mathbb{Z}_{n}$ and $B \subseteq f_{n, m}(A)$. Suppose S^{\prime} is a B-weighted zero-sum sequence. Then S is an A-weighted zero-sum sequence.

Lemma 2.3 ([7]). Let n be an odd, squarefree number. Suppose S is a sequence in \mathbb{Z}_{n} such that at most one term of S is a unit, and for every prime divisor q of n at least two terms of S are coprime to q. Then S is an $S(n)$-weighted zero-sum sequence.

Lemma 2.4 ([7]). Let n be a squarefree number whose every prime divisor is at least seven. Suppose S is a sequence in \mathbb{Z}_{n} such that for every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n such that at least three terms of S are coprime to p. Then S is an $S(n)$-weighted zero-sum sequence.

3. D-Extremal Sequences for $S(n)$

Remark 3.1. As $S(n) \subseteq U(n)$, an $S(n)$-weighted zero-sum subsequence is also a $U(n)$-weighted zero-sum subsequence. So if n is such that $D_{S(n)}=D_{U(n)}$, then every D-extremal sequence for $U(n)$ is also a D-extremal sequence for $S(n)$. Also, if n is such that $C_{S(n)}=C_{U(n)}$, then every C-extremal sequence for $U(n)$ is also a C-extremal sequence for $S(n)$.

Theorem 3.2. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose $\Omega(n) \geq 3$ and S is a sequence in \mathbb{Z}_{n}. Then S is a D-extremal sequence for $S(n)$ if and only if S is a D-extremal sequence for $U(n)$.

Proof. As $\Omega(n) \geq 3$, by Theorems 1.3 and 1.5 we see that $D_{S(n)}=D_{U(n)}$. So by Remark 3.1 it is enough to show that every D-extremal sequence for $S(n)$ is a D-extremal sequence for $U(n)$.

Let $S=\left(x_{1}, \ldots, x_{k}\right)$ be a D-extremal sequence for $S(n)$. By Theorem 1.5 we have $D_{S(n)}=\Omega(n)+1$. Hence, it follows that $k=\Omega(n)$. Clearly, all the terms of S are non-zero. We have three cases to consider.
Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose all terms of S are divisible by p. Let $m=n / p$ and S^{\prime} be the image of S under $f_{n, m}$. By Theorem 1.3 we have $D_{U(m)}=\Omega(m)+1$. As S^{\prime} has length $\Omega(n)=\Omega(m)+1$, we see that S^{\prime} has a $U(m)$-weighted zero-sum subsequence. As n
is squarefree, it follows that p is coprime to m. So by Lemmas 2.1 and 2.2, we get the contradiction that S has an $S(n)$-weighted zero-sum subsequence.

So in this case, exactly one term of S is not divisible by p. Let us assume that that term is x_{1}. Let $T=\left(x_{2}, \ldots, x_{k}\right)$ and T^{\prime} be the image of T under $f_{n, m}$. Suppose T^{\prime} has a $U(m)$-weighted zero-sum subsequence. By Lemmas 2.1 and 2.2, we get the contradiction that S has an $S(n)$-weighted zero-sum subsequence. Thus, the sequence T^{\prime} in \mathbb{Z}_{m} does not have any $U(m)$-weighted zero-sum subsequence. As $D_{U(m)}=\Omega(m)+1$ and the length of T^{\prime} is $\Omega(m)$, it follows that T^{\prime} is a D-extremal sequence for $U(m)$. So from Theorem 5 of [2] we see that S is a D-extremal sequence for $U(n)$.
Case 2. For every prime divisor q of n, exactly two terms of S are coprime to q.
Suppose S has at most one unit. By Lemma 2.3 we get the contradiction that S is an $S(n)$-weighted zero-sum sequence. So we can assume that S has at least two units. By the assumption in this case, we see that S has exactly two units and the other terms of S are divisible by n. As the length of S is $\Omega(n)$, which is at least three, we get the contradiction that some term of S is zero.
Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n such that at least three terms of S are coprime to p.

In this case, by Lemma 2.4 we get the contradiction that S is an $S(n)$-weighted zero-sum sequence.

Theorem 3.3. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose $\Omega(n)=2$. Then a sequence S in \mathbb{Z}_{n} is a D-extremal sequence for $S(n)$ if and only if S is either a D-extremal sequence for $U(n)$ or $S=\left(x_{1}, x_{2}\right)$ where x_{1} and $-x_{2}$ are in different cosets of $S(n)$ in $U(n)$.

Proof. From Theorems 1.3 and 1.5 we have $D_{U(n)}=D_{S(n)}$. So from Remark 3.1 we see that if S is a D-extremal sequence for $U(n)$, then S is a D-extremal sequence for $S(n)$.

Let $S=\left(x_{1}, x_{2}\right)$ where x_{1} and $-x_{2}$ are in different cosets of $S(n)$ in $U(n)$. Suppose T is an $S(n)$-weighted zero-sum subsequence of S. Then we see that T must be S itself. So there exist $a, b \in S(n)$ such that $a x_{1}+b x_{2}=0$ and hence there exists $c \in S(n)$ such that $-x_{2}=c x_{1}$. As x_{1} and $-x_{2}$ are in different cosets of $S(n)$ in $U(n)$, we get the contradiction that $c \notin S(n)$. Thus, it follows that S does not have any $S(n)$-weighted zero-sum subsequence. From Theorem 1.5, we have that $D_{S(n)}=3$ and so we see that S is a D-extremal sequence for $S(n)$.

Conversely, suppose S is a D-extremal sequence for $S(n)$. By Theorem 1.5 we have $D_{S(n)}=\Omega(n)+1=3$. Hence, it follows that S has length 2 . Let $S=\left(x_{1}, x_{2}\right)$. We have two cases to consider.
Case 1. For every prime divisor q of n, exactly two terms of S are coprime to q.

As x_{1} and x_{2} are coprime to every prime divisor of n, it follows that $x_{1}, x_{2} \in U(n)$. As n is squarefree, from Proposition 2.2 of [7] we get that $S(n)$ has index two in $U(n)$. Suppose either $x_{1},-x_{2} \in S(n)$ or $x_{1},-x_{2} \in U(n) \backslash S(n)$. Then we see that $a=-x_{2} x_{1}^{-1} \in S(n)$. As $1 \in S(n)$ and $a x_{1}+x_{2}=0$, we get the contradiction that S is an $S(n)$-weighted zero-sum sequence. Thus, the sequence $S=\left(x_{1}, x_{2}\right)$ where x_{1} and $-x_{2}$ are in different cosets of $S(n)$ in $U(n)$.
Case 2. The assumption in Case 1 does not hold.
We use similar arguments as in the proof of Theorem 3.2 to conclude that S is a D-extremal sequence for $U(n)$.

Remark 3.4. For a prime p, we have that $S(p)=Q_{p}$. From Corollary 2 of [6], we can see that the D-extremal sequences for Q_{p} are precisely those which are of the form $\left(x_{1}, x_{2}\right)$ where x_{1} and $-x_{2}$ are in different cosets of Q_{p} in $U(p)$.

4. C-Extremal Sequences for $S(n)$

Theorem 4.1. Let n be a non-prime squarefree number such that every prime divisor of n is at least seven. Then a sequence S in \mathbb{Z}_{n} is a C-extremal sequence for $S(n)$ if and only if S is a C-extremal sequence for $U(n)$.

Proof. By Theorems 1.3 and 1.5 we get $C_{U(n)}=C_{S(n)}$. So by Remark 3.1 it is enough to show that every C-extremal sequence for $S(n)$ is a C-extremal sequence for $U(n)$.

Suppose a sequence $S=\left(x_{1}, \ldots, x_{l}\right)$ in \mathbb{Z}_{n} is a C-extremal sequence for $S(n)$. By Theorem 1.5 we have $C_{S(n)}=2^{\Omega(n)}$ and so we see that $l=2^{\Omega(n)}-1$. Clearly, all the terms of S must be non-zero. We have three cases to consider.
Case 1. There is a prime divisor p of n such that at most one term of S is not divisible by p.

Suppose all the terms of S are divisible by p. Let $m=n / p$ and S^{\prime} be the image of S under $f_{n, m}$. By Theorem 1.3 we have $C_{U(m)}=2^{\Omega(m)}$. As S^{\prime} has length $l=2^{\Omega(n)}-1$ and as $\Omega(n)=\Omega(m)+1$, we get that $l>2^{\Omega(m)}$. Hence, it follows that S^{\prime} has a $U(m)$-weighted zero-sum subsequence of consecutive terms. Thus by Lemmas 2.1 and 2.2, we get the contradiction that S has an $S(n)$-weighted zero-sum subsequence of consecutive terms.

Thus, in this case, we see that exactly one term x^{*} of S is coprime to p. Suppose $x^{*} \neq x_{k+1}$ where $k+1=(l+1) / 2$. Then there is a subsequence T of consecutive terms of S of length at least $k+1$ such that p divides every term of T. As we have $l+1=2^{\Omega(n)}$, we see that $k+1=(l+1) / 2=2^{\Omega(n)-1}=2^{\Omega(m)}$. So by a similar argument as in the previous paragraph, we get the contradiction that T (and hence S) has an $S(n)$-weighted zero-sum subsequence of consecutive terms. Thus, we see that $x^{*}=x_{k+1}$.

Let $S_{1}=\left(x_{1}, \ldots, x_{k}\right)$ and $S_{2}=\left(x_{k+2}, \ldots, x_{l}\right)$. Let S_{1}^{\prime} and S_{2}^{\prime} be the images of the sequences S_{1} and S_{2} respectively under the map $f_{n, m}$. Suppose S_{1}^{\prime} has a $U(m)$-weighted zero-sum subsequence of consecutive terms. By Lemma 2.1, we have $U(m) \subseteq f_{n, m}(S(n))$. As p divides every term of S_{1}, by Lemma 2.2 we get the contradiction that S_{1} (and hence S) has an $S(n)$-weighted zero-sum subsequence of consecutive terms. Thus, the sequence S_{1}^{\prime} does not have any $U(m)$-weighted zerosum subsequence of consecutive terms. As S_{1}^{\prime} has length $k=2^{\Omega(m)}-1=C_{U(m)}-1$, it follows that S_{1}^{\prime} is a C-extremal sequence for $U(m)$.

A similar argument shows that S_{2}^{\prime} is also a C-extremal sequence for $U(m)$. Thus, from Theorem 5 of [6] it follows that S is a C-extremal sequence for $U(n)$.
Case 2. For every prime divisor q of n, exactly two terms of S are coprime to q.
If S has at most one unit, by Lemma 2.3 we get the contradiction that S is an $S(n)$-weighted zero-sum sequence. So we can assume that S has at least two units. By the assumption in this case, we see that S has exactly two units and the other terms of S are divisible by n. As the length of S is $2^{\Omega(n)}-1$ and as $\Omega(n) \geq 2$, we see that S has at least three terms. Thus, we get the contradiction that S has a term which is zero.
Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n such that at least three terms of S are coprime to p.

In this case, by Lemma 2.4 we get the contradiction that S is an $S(n)$-weighted zero-sum sequence.

Remark 4.2. For a prime p, we have that $S(p)=Q_{p}$. The C-extremal sequences for Q_{p} have been characterized in Corollary 2 of [6]. They are the sequences which are of the form $\left(x_{1}, x_{2}\right)$ where x_{1} and $-x_{2}$ are in different cosets of Q_{p} in $U(p)$.

5. Some Results about the Weight-Set $L(n ; p)$

In [7] we considered the subset $L(n ; p)$ of \mathbb{Z}_{n}. Let us recall the definition.
Definition 5.1. For a prime divisor p of n, let

$$
L(n ; p)=\left\{a \in U(n) \left\lvert\,\left(\frac{a}{n}\right)=\left(\frac{a}{p}\right)\right.\right\} .
$$

Remark 5.2. From Proposition 4.2 of [7], we see that $L(n ; p)=U(n)$ if n has a unique prime divisor p such that $v_{p}(n)$ is odd, and $L(n ; p)$ is a subgroup of $U(n)$ having index two, otherwise.

The next five results are Lemmas 4.4, 4.5, 4.7 and 5.1 and Observation 4.6 of [7]. They will be used in the next section.

Lemma 5.3 ([7]). Let p^{\prime}, p be prime divisors of n. Suppose p is coprime to $m=n / p$. Then we have that $S(m) \subseteq f_{n, m}\left(L\left(n ; p^{\prime}\right)\right)$.

Lemma $5.4([7])$. Let p^{\prime} be a prime divisor of n which is coprime to $m=n / p^{\prime}$. Then we have that $U\left(p^{\prime}\right) \subseteq f_{n, p^{\prime}}\left(L\left(n ; p^{\prime}\right)\right)$.

Lemma 5.5 ([7]). Let n be squarefree and p^{\prime} be a prime divisor of n. Suppose the map $\psi: U(n) \rightarrow U(m) \times U\left(p^{\prime}\right)$ is the isomorphism given by the Chinese remainder theorem where $m=n / p^{\prime}$. Then we have that $S(m) \times U\left(p^{\prime}\right) \subseteq \psi\left(L\left(n ; p^{\prime}\right)\right)$.

Lemma 5.6 ([7]). Let n be squarefree and p^{\prime} be a prime divisor of n. Let S be a sequence in \mathbb{Z}_{n} such that for every prime divisor q of n, at least two terms of S are coprime to q. Let $m=n / p^{\prime}$ and S^{\prime} be the image of S under $f_{n, m}$. Suppose at most one term of S^{\prime} is a unit, or there is a prime divisor p of m such that at least three terms of S are coprime to p. Then S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence.

Observation 5.7 ([7]). Let $n=m_{1} m_{2}$ where m_{1} and m_{2} are coprime. Let $A \subseteq \mathbb{Z}_{n}$ and S be a sequence in \mathbb{Z}_{n}. Let S_{i} denote the image of the sequence S under $f_{n, m_{i}}$ for each $i \in[1,2]$. Let $\psi: U(n) \rightarrow U\left(m_{1}\right) \times U\left(m_{2}\right)$ be the isomorphism given by the Chinese remainder theorem. Suppose $A_{1} \subseteq U\left(m_{1}\right)$ and $A_{2} \subseteq U\left(m_{2}\right)$ are such that $A_{1} \times A_{2} \subseteq \psi(A)$. If S_{1} is an A_{1}-weighted zero-sum sequence and S_{2} is an A_{2}-weighted zero-sum sequence, then S is an A-weighted zero-sum sequence.

6. D-Extremal Sequences for $L(n ; p)$

Remark 6.1. Let p be a prime divisor of n. As $L(n ; p) \subseteq U(n)$, an $L(n ; p)$-weighted zero-sum subsequence is also a $U(n)$-weighted zero-sum subsequence. So if n is such that $D_{L(n ; p)}=D_{U(n)}$, then every D-extremal sequence for $U(n)$ is a D-extremal sequence for $L(n ; p)$. Also, if n is such that $C_{L(n ; p)}=C_{U(n)}$, then every C-extremal sequence for $U(n)$ is a C-extremal sequence for $L(n ; p)$.

Theorem 6.2. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose p^{\prime} is a prime divisor of n and $\Omega(n) \neq 2,3$. Then S is a D-extremal sequence for $L\left(n ; p^{\prime}\right)$ if and only if S is a D-extremal sequence for $U(n)$.

Proof. As $\Omega(n) \neq 2$, by Theorems 1.3 and 1.6 we have that $D_{L(n ; p)}=D_{U(n)}$. So by Remark 6.1 it is enough to show that every D-extremal sequence for $L\left(n ; p^{\prime}\right)$ is a D-extremal sequence for $U(n)$.

Let S be a D-extremal sequence for $L\left(n ; p^{\prime}\right)$. If $\Omega(n)=1$, then $n=p^{\prime}$. As $L\left(n ; p^{\prime}\right)=U(n)$, it follows that S is a D-extremal sequence for $U(n)$. So we may assume that $\Omega(n) \geq 4$. By Theorem 1.6 we have $D_{L\left(n ; p^{\prime}\right)}=\Omega(n)+1$. Thus S must have length $\Omega(n)$. Let $S=\left(x_{1}, \ldots, x_{k}\right)$ where $k=\Omega(n)$. Clearly, all the terms of S are non-zero. We have three cases to consider.

Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose all terms of S are divisible by p. Let $m=n / p$ and S^{\prime} be the image of S under $f_{n, m}$. By Theorem 1.5 we have $D_{S(m)}=\Omega(m)+1$. As S^{\prime} has length $\Omega(n)=\Omega(m)+1$, we see that S^{\prime} has an $S(m)$-weighted zero-sum subsequence. As n is squarefree, so p is coprime to m. So from Lemmas 2.2 and 5.3 we get the contradiction that S has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence.

So in this case, exactly one term of S is not divisible by p. Let us assume that that term is x_{1}. Let $T=\left(x_{2}, \ldots, x_{k}\right)$ and T^{\prime} be the image of T under $f_{n, m}$. Suppose T^{\prime} has an $S(m)$-weighted zero-sum subsequence. By Lemma 5.3 we have that $S(m) \subseteq f_{n, m}\left(L\left(n ; p^{\prime}\right)\right)$ and so by Lemma 2.2 we get the contradiction that S has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence. Thus, the sequence T^{\prime} in \mathbb{Z}_{m} does not have any $S(m)$-weighted zero-sum subsequence. As $D_{S(m)}=\Omega(m)+1$ and the length of T^{\prime} is $\Omega(m)$, it follows that T^{\prime} is a D-extremal sequence for $S(m)$.

As $\Omega(n) \geq 4$, we have that $\Omega(m) \geq 3$ and so from Theorem 3.2 , we get that T^{\prime} is a D-extremal sequence for $U(m)$. Thus, by Theorem 6 of [2] we see that S is a D-extremal sequence for $U(n)$.
Case 2. For every prime divisor q of n / p^{\prime} exactly two terms of S are coprime to q, and at least two terms of S are coprime to p^{\prime}.

Let $m=n / p^{\prime}$ and S^{\prime} be the image of S under $f_{n, m}$. Suppose at most one term of S^{\prime} is a unit. By Lemma 5.6 we see that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence. Suppose at least two terms of S^{\prime} are units. By the assumption in this case we see that exactly two terms of S^{\prime} are units, say $x_{j_{1}}^{\prime}$ and $x_{j_{2}}^{\prime}$ and the other terms of S^{\prime} are zero.

It follows that all terms of S are divisible by m except $x_{j_{1}}$ and $x_{j_{2}}$. As the sequence S has length at least four, we can find a subsequence T of S having length at least two which does not contain the terms $x_{j_{1}}$ and $x_{j_{2}}$. If x_{j} is divisible by p^{\prime} where $j \neq j_{1}, j_{2}$, we get the contradiction that $x_{j}=0$. So it follows that all the terms of the sequence $T^{\left(p^{\prime}\right)}$ are non-zero. As $T^{\left(p^{\prime}\right)}$ has length at least two, from [4, Lemma 2.1] we see that $T^{\left(p^{\prime}\right)}$ is a $U\left(p^{\prime}\right)$-weighted zero-sum sequence. Also all the terms of T are divisible by m. Hence, by taking $d=m$ in Lemma 2.2 and by Lemma 5.4 we get the contradiction that T is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of S.
Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n / p^{\prime} such that at least three terms of S are coprime to p.

In this case, by Lemma 5.6 we get the contradiction that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence.

Lemma 6.3. Let $n=p^{\prime} p q$ where p^{\prime}, p, q are distinct primes and $m=n / p$. Then we have $U(m) \subseteq f_{n, m}\left(L\left(n ; p^{\prime}\right)\right)$.

Proof. As p is coprime with m, by the Chinese remainder theorem we have an isomorphism $\psi: U(n) \rightarrow U(m) \times U(p)$. Let $b \in U(m)$. There exists $c \in U(p)$ such that $\left(\frac{c}{p}\right)=\left(\frac{b}{q}\right)$. Let $a \in U(n)$ such that $\psi(a)=(b, c)$. Then $a \in L\left(n ; p^{\prime}\right)$ as

$$
\left(\frac{a}{n}\right)=\left(\frac{b}{m}\right)\left(\frac{c}{p}\right)=\left(\frac{b}{p^{\prime} q}\right)\left(\frac{b}{q}\right)=\left(\frac{b}{p^{\prime}}\right)=\left(\frac{a}{p^{\prime}}\right)
$$

As $f_{n, m}(a)=b$, we get that $b \in f_{n, m}\left(L\left(n ; p^{\prime}\right)\right)$.
Theorem 6.4. Let n be squarefree such that every prime divisor of n is at least seven. Let p^{\prime} be a prime divisor of n and $m=n / p^{\prime}$. Suppose $\Omega(n)=3$ and S is a sequence in \mathbb{Z}_{n}. Then the sequence S is a D-extremal sequence for $L\left(n ; p^{\prime}\right)$ if and only if either S is a D-extremal sequence for $U(n)$ or S is a permutation of a sequence $\left(x_{1}, x_{2}, x_{3}\right)$ where the image of the sequence $\left(x_{2}, x_{3}\right)$ under $f_{n, m}$ is a D-extremal sequence for $S(m)$ and x_{1} satisfies one of the following conditions:

- The term x_{1} is a non-zero multiple of m.
- The term x_{1} is the only term of S which is coprime to p^{\prime}.

Proof. From Theorems 1.3 and 1.6 we have $D_{U(n)}=D_{L\left(n ; p^{\prime}\right)}$. From Remark 6.1 we see that if S is a D-extremal sequence for $U(n)$, then S is a D-extremal sequence for $L\left(n ; p^{\prime}\right)$. For any $a \in U(n)$ we have $\left(\frac{a}{n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{p}\right)$ and so $f_{n, m}\left(L\left(n ; p^{\prime}\right)\right) \subseteq S(m)$. Let $S=\left(x_{1}, x_{2}, x_{3}\right)$ where the image of the sequence $\left(x_{2}, x_{3}\right)$ under $f_{n, m}$ is a D extremal sequence for $S(m)$.

Consider the case when the term x_{1} is a non-zero multiple of m. Suppose T is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of S. As $f_{n, m}\left(L\left(n ; p^{\prime}\right)\right) \subseteq S(m)$ and $f_{n, m}\left(x_{1}\right)=0$, we get the contradiction that the image of $\left(x_{2}, x_{3}\right)$ under $f_{n, m}$ has an $S(m)$-weighted zero-sum subsequence.

Consider the case when the term x_{1} is the only term of S which is coprime to p^{\prime}. Suppose T is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of S. Then we see that T cannot contain x_{1}. As $f_{n, m}\left(L\left(n ; p^{\prime}\right)\right) \subseteq S(m)$, we get the contradiction that the image of (x_{2}, x_{3}) under $f_{n, m}$ has an $S(m)$-weighted zero-sum subsequence.

So we see that the sequences of the other two types are also D-extremal sequences for $L\left(n ; p^{\prime}\right)$. Thus, we have shown that the reverse implication in the statement of Theorem 6.4 is true. We now proceed to prove the forward implication.

Suppose the sequence $S=\left(x_{1}, x_{2}, x_{3}\right)$ is a D-extremal sequence for $L\left(n ; p^{\prime}\right)$. Clearly, all the terms of S must be non-zero. We have three cases to consider.
Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose all the terms of S are divisible by p. We use a similar argument as in Case 1 of Theorem 6.2 to get the contradiction that S has an $L\left(n ; p^{\prime}\right)$-weighted zerosum subsequence. So in this case, exactly one term of S is not divisible by p. Let
us assume that that term is x_{1}. Let $m=n / p$ and T^{\prime} be the image of $T=\left(x_{2}, x_{3}\right)$ under $f_{n, m}$. By a similar argument as in Case 1 of Theorem 6.2 , we see that T^{\prime} is a D-extremal sequence for $S(m)$.

Suppose we have that $p \neq p^{\prime}$. We claim that T^{\prime} is a D-extremal sequence for $U(m)$. As $\Omega(m)=2$, by Theorem 1.3 we have $D_{U(m)}=3$. As T^{\prime} has length two, it is enough to show that T^{\prime} does not have any $U(m)$-weighted zero-sum subsequence. As n is squarefree and $\Omega(n)=3$, by Lemma 6.3 we have $U(m) \subseteq f_{n, m}\left(L\left(n ; p^{\prime}\right)\right)$. So if T^{\prime} has a $U(m)$-weighted zero-sum subsequence, by Lemma 2.2 we get the contradiction that T (and hence S) has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence. Hence, it follows that our claim is true.

Thus, by Theorem 6 of [2] we see that S is a D-extremal sequence for $U(n)$ when $p \neq p^{\prime}$.
Case 2. For every prime divisor q of n / p^{\prime} exactly two terms of S are coprime to q, and at least two terms of S are coprime to p^{\prime}.

Let $m=n / p^{\prime}$ and $S^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ be the image of S under $f_{n, m}$. Suppose at most one term of S^{\prime} is a unit. By Lemma 5.6 , we see that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence. So we can assume that at least two terms of S^{\prime} are units. By the assumption in this case, we see that exactly two terms of S are units and the other term is zero. Let us assume that $x_{1}^{\prime}=0$ and the terms x_{2}^{\prime} and x_{3}^{\prime} are units. Thus, it follows that the term x_{1} is a non-zero multiple of m.

If $\left(x_{2}^{\prime}, x_{3}^{\prime}\right)$ has an $S(m)$-weighted zero-sum subsequence, then the sequence S^{\prime} is an $S(m)$-weighted zero-sum sequence as $x_{1}^{\prime}=0$. From [4, Lemma 2.1], we see that $S^{\left(p^{\prime}\right)}$ is a $U\left(p^{\prime}\right)$-weighted zero-sum sequence. Let $\psi: U(n) \rightarrow U(m) \times U\left(p^{\prime}\right)$ be the isomorphism given by the Chinese remainder theorem. From Lemma 5.5, we have $S(m) \times U\left(p^{\prime}\right) \subseteq \psi\left(L\left(n ; p^{\prime}\right)\right)$. So from Observation 5.7 we get the contradiction that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence.

Hence, the sequence $\left(x_{2}^{\prime}, x_{3}^{\prime}\right)$ does not have any $S(m)$-weighted zero-sum subsequence. By Theorem 1.5 we have $D_{S(m)}=3$. So it follows that the sequence $\left(x_{2}^{\prime}, x_{3}^{\prime}\right)$ is a D-extremal sequence for $S(m)$.
Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n / p^{\prime} such that at least three terms of S are coprime to p.

In this case, by Lemma 5.6 we get the contradiction that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence.

Theorem 6.5. Let $n=p^{\prime} q$ where p^{\prime} and q are distinct primes which are at least seven. Suppose S is a sequence in \mathbb{Z}_{n}. Then S is a D-extremal sequence for $L\left(n ; p^{\prime}\right)$ if and only if S is a permutation of a sequence $\left(x_{1}, x_{2}, x_{3}\right)$ where the image of the sequence $\left(x_{2}, x_{3}\right)$ under $f_{n, q}$ is a D-extremal sequence for Q_{q} and x_{1} satisfies one of the following conditions:

- The term x_{1} is a non-zero multiple of q.
- The term x_{1} is the only term of S which is coprime to p^{\prime}.

We omit the proof of Theorem 6.5 to avoid making the paper lengthy.

7. C-Extremal Sequences for $L(n ; p)$

Theorem 7.1. Let n be a squarefree number such that every prime divisor of n is at least seven. Suppose p^{\prime} is a prime divisor of n and $\Omega(n) \neq 2$. Then the C-extremal sequences for $L\left(n ; p^{\prime}\right)$ are the same as the C-extremal sequences for $U(n)$.

Proof. As $\Omega(n) \neq 2$, by Theorems 1.3 and 1.6 we have $C_{L\left(n ; p^{\prime}\right)}=C_{U(n)}$. So by Remark 6.1 it is enough to show that every C-extremal sequence for $L\left(n ; p^{\prime}\right)$ is a C-extremal sequence for $U(n)$.

Let S be a C-extremal sequence for $L\left(n ; p^{\prime}\right)$. When n is a prime, then $n=p^{\prime}$ and $L\left(n ; p^{\prime}\right)=U(n)$. So S is a C-extremal sequence for $U(n)$. Thus, we may assume that $\Omega(n) \geq 3$. By Theorem 1.6 we have $C_{L\left(n ; p^{\prime}\right)}=2^{\Omega(n)}$. So $S=\left(x_{1}, \ldots, x_{l}\right)$ where $l=2^{\Omega(n)}-1$. Clearly, all the terms of S must be non-zero. We have three cases to consider.
Case 1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Suppose the 'middle' term x_{k+1} is divisible by p where $k+1=(l+1) / 2$. Then we can find a subsequence T having consecutive terms of S of length $k+1$ such that all the terms of T are divisible by p. Let $m=n / p$ and T^{\prime} be the image of T under $f_{n, m}$.

As $\Omega(m)=\Omega(n)-1 \geq 2$ and T^{\prime} has length $2^{\Omega(m)}$, by Theorem 1.5 we see that T^{\prime} has an $S(m)$-weighted zero-sum subsequence of consecutive terms. By Lemma 5.3 we have that $S(m) \subseteq f_{n, m}\left(L\left(n ; p^{\prime}\right)\right)$. So by Lemma 2.2 we get the contradiction that T (and hence S) has an $L\left(n ; p^{\prime}\right.$)-weighted zero-sum subsequence of consecutive terms.

Thus, we see that the term x_{k+1} is not divisible by p. Let $S_{1}=\left(x_{1}, \ldots, x_{k}\right)$ and $S_{2}=\left(x_{k+2}, \ldots, x_{l}\right)$. Let S_{1}^{\prime} and S_{2}^{\prime} be the images of S_{1} and S_{2} respectively under $f_{n, m}$. Suppose S_{1}^{\prime} has an $S(m)$-weighted zero-sum subsequence of consecutive terms. As we have that $S(m) \subseteq f_{n, m}\left(L\left(n ; p^{\prime}\right)\right)$, by Lemma 2.2 we get the contradiction that S_{1} (and hence S) has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of consecutive terms.

So the sequence S_{1}^{\prime} does not have any $S(m)$-weighted zero-sum subsequence of consecutive terms. From Theorem 1.5 as $\Omega(m) \geq 2$ we have that $C_{S(m)}=2^{\Omega(m)}$. As S_{1}^{\prime} has length $k=2^{\Omega(m)}-1$, it follows that S_{1}^{\prime} is a C-extremal sequence for $S(m)$. As $\Omega(m) \geq 2$, from Theorem 4.1 we see that S_{1}^{\prime} is a C-extremal sequence for $U(m)$.

By a similar argument we see that S_{2}^{\prime} is also a C-extremal sequence for $U(m)$. So by Theorem 5 of $[6]$ it follows that S is a C-extremal sequence for $U(n)$.
Case 2. For every prime divisor q of n / p^{\prime} exactly two terms of S are coprime to q, and at least two terms of S are coprime to p^{\prime}.

We use a similar argument as the one given in the same case in the proof of Theorem 6.2. We just observe that as the sequence S has length at least seven, we can find a subsequence T having consecutive terms of S and having length at least two, which does not contain the terms $x_{j_{1}}$ and $x_{j_{2}}$.
Case 3. For every prime divisor q of n at least two terms of S are coprime to q, and there is a prime divisor p of n / p^{\prime} such that at least three terms of S are coprime to p.

In this case, by Lemma 5.6 we get the contradiction that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence.

Theorem 7.2. Let $n=p^{\prime} q$ where p^{\prime} and q are distinct primes which are at least seven. Suppose $S=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is a sequence in \mathbb{Z}_{n}. Then S is a C-extremal sequence for $L\left(n ; p^{\prime}\right)$ if and only if S has either of the following two forms:

- The terms x_{1}, x_{3} and x_{5} are non-zero multiples of q and the image of the sequence $\left(x_{2}, x_{4}\right)$ under $f_{n, q}$ is a C-extremal sequence for Q_{q}.
- The term x_{3} is the only term of S which is coprime to p^{\prime} and the images of the sequences $\left(x_{1}, x_{2}\right)$ and $\left(x_{4}, x_{5}\right)$ under $f_{n, q}$ are C-extremal sequences for Q_{q}.

We omit the proof of Theorem 7.2 to avoid making the paper lengthy.

8. Concluding Remarks

When $\Omega(n)=2$, from Theorem 3.3 we see that there exist D-extremal sequences for $S(n)$ which are not D-extremal sequences for $U(n)$. When $\Omega(n)=3$, from Theorem 6.4 we see that there exist D-extremal sequences for $L\left(n ; p^{\prime}\right)$ which are not D-extremal sequences for $U(n)$.

Let $n=p^{\prime} q$ where p^{\prime} and q are distinct primes which are at least seven. From Theorems 1.3 and 1.7, we have $D_{U(n)}=3$ and $D_{L\left(n ; p^{\prime}\right)}=4$, and so we cannot compare the D-extremal sequences for $U(n)$ with the D-extremal sequences for $L\left(n ; p^{\prime}\right)$. For such an n, as $C_{U(n)}=4$ and $C_{L\left(n ; p^{\prime}\right)}=6$, we cannot compare the C-extremal sequences for $U(n)$ with the C-extremal sequences for $L\left(n ; p^{\prime}\right)$. The following questions can be investigated as well as their analogues for the constants $C_{S(n)}$ and $C_{U(n)}$.

- Can we determine the value of $D_{S(n)}$ and characterize the D-extremal sequences for $S(n)$ when n is a non-prime, squarefree number which is not coprime with thirty?
- If n is a non-squarefree number such that $D_{U(n)}=D_{S(n)}$, can we say that a D-extremal sequence for $S(n)$ is also a D-extremal sequence for $U(n)$?

Acknowledgements. Santanu Mondal would like to acknowledge CSIR, Govt. of India for a research fellowship whose file number is $09 / 934(0013) / 2019-E M R-I$. We thank the referee for taking the time to go through this paper and for the corrections and suggestions.

References

[1] S. D. Adhikari, C. David, and J. J. Urroz, Generalizations of some zero-sum theorems, Integers 8 (2008), \#A52.
[2] S. D. Adhikari, I. Molla, and S. Paul, Extremal sequences for some weighted zero-sum constants for cyclic groups, CANT IV, Springer Proc. Math. Stat. 347 (2021), 1-10.
[3] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, Integers 6 (2006), \#A30.
[4] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units, Discrete Math. 308 (2008), 54735484.
[5] S. Mondal, K. Paul, and S. Paul, On a different weighted zero-sum constant, Discrete Math. 346 (2023), 113350.
[6] S. Mondal, K. Paul, and S. Paul, Extremal sequences for a weighted zero-sum constant, Integers 22 (2022), \#A93.
[7] S. Mondal, K. Paul, and S. Paul, Zero-sum constants related to the Jacobi symbol, e-print is available at arxiv:2111.14477v3.
[8] P. Yuan and X. Zeng, Davenport constant with weights, European J. Combin. 31 (2010), 677-680.

[^0]: DOI: 10.5281/zenodo. 8174508

