# ON RATIOS OF CONSECUTIVE PRIME GAPS 

William D. Banks<br>Department of Mathematics, University of Missouri, Columbia, Missouri<br>bankswd@missouri.edu

Received: 5/15/22, Revised: 3/4/23, Accepted: 7/7/23, Published: 7/21/23


#### Abstract

Let $p_{n}$ be the $n$th smallest prime and $d_{n}:=p_{n+1}-p_{n}$ the gap between $p_{n}$ and $p_{n+1}$. For any fixed $c \geq 0$, we conjecture that the estimate $$
\left|\left\{p_{n} \leq x: d_{n+1} / d_{n} \geq c\right\}\right|=(c+1)^{-1} \pi(x)+O\left(x(\log x)^{-3 / 2+\varepsilon}\right)
$$


holds for any $\varepsilon>0$, and we give a heuristic argument to support this conjecture which is based on a strong form of the Hardy-Littlewood conjectures.

## 1. Introduction

Let $p_{1}:=2<p_{2}:=3<p_{3}:=5<\cdots$ be the sequence of prime numbers. The Prime Number Theorem implies that the $n$th prime gap

$$
d_{n}:=p_{n+1}-p_{n}
$$

has length $\log p_{n}$ on average; in other words, the $n$th normalized prime gap

$$
\widehat{d}_{n}:=d_{n} / \log p_{n}
$$

takes the value one on average. For any fixed number $c \geq 0$, heuristics based on Cramér's probabilistic model of the primes lead to the conjecture that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} N^{-1}\left|\left\{n \leq N: \widehat{d}_{n} \geq c\right\}\right|=e^{-c} \tag{1}
\end{equation*}
$$

Thus, we expect that the normalized prime gaps are distributed according to a Poisson process. We refer the reader to the expository article [7] of Soundararajan for an excellent account of these intriguing statistics.

The conjectural relation (1) also leads to a natural conjecture concerning ratios of consecutive prime gaps. More specifically, it seems likely that for any fixed $c \geq 0$ the following relation holds:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} N^{-1}\left|\left\{n \leq N: d_{n+1} / d_{n} \geq c\right\}\right|=(c+1)^{-1} \tag{2}
\end{equation*}
$$

Indeed, (1) suggests that for any fixed $x \geq 0$ the normalized prime gap $\widehat{d}_{n}$ lies in the infinitesimal interval $(x, x+d x)$ with probability $e^{-x} d x$. The probability that both events $\widehat{d}_{n} \in(x, x+d x)$ and $\widehat{d}_{n+1} \in(y, y+d y)$ happen simultaneously is therefore $e^{-x-y} d x d y$, assuming these two events are independent. Integrating over all pairs $(x, y)$ with $y \geq c x$, we expect that

$$
\lim _{N \rightarrow \infty} N^{-1}\left|\left\{n \leq N: \widehat{d}_{n+1} / \widehat{d}_{n} \geq c\right\}\right|=\int_{0}^{\infty} \int_{c x}^{\infty} e^{-x-y} d y d x=(c+1)^{-1}
$$

Since $\log p_{n+1}=\log p_{n}+o(1)$ as $n \rightarrow \infty$, it follows that $\widehat{d}_{n+1} / \widehat{d}_{n} \rightarrow d_{n+1} / d_{n}$, and in this way we arrive at the conjectural relation (2).

Note that (2) can be reformulated as follows. Let $\pi(x)$ denote the prime counting function, and for any fixed $c \geq 0$ let $\pi_{c}(x)$ be the function given by

$$
\pi_{c}(x):=\left|\left\{p_{n} \leq x: d_{n+1} / d_{n} \geq c\right\}\right|
$$

Then (2) is equivalent to the conjectural relation

$$
\begin{equation*}
\pi_{c}(x) \sim(c+1)^{-1} \pi(x) \quad(x \rightarrow \infty) \tag{3}
\end{equation*}
$$

In this note, we present a heuristic argument, based on a quantitative form of the Hardy-Littlewood prime $k$-tuple conjecture, to support the following stronger form of the conjecture (3).

Conjecture 1. For any $c \geq 0$ and $\varepsilon>0$, one has the estimate

$$
\pi_{c}(x)=(c+1)^{-1} \pi(x)+O\left(x(\log x)^{-3 / 2+\varepsilon}\right)
$$

where the implied constant depends only on $c$ and $\varepsilon$.
The results of the present paper are inspired by a celebrated work of Lemke Oliver and Soundararajan [4] that studies the surprisingly erratic distribution of pairs of consecutive primes among the $\phi(q)^{2}$ permissible reduced residue classes modulo $q$. In [4] a conjectural explanation for this phenomenon is offered, which is based on a strong form of the Hardy-Littlewood conjecture (see [4, Equation (2.4)]).

## 2. Preliminaries

### 2.1 Notation

Let $\mathbb{P}$ denote the set of primes in $\mathbb{N}$.
For an arbitrary set $\mathcal{S}$, we use $\mathbf{1}_{\mathcal{S}}$ to denote its indicator function:

$$
\mathbf{1}_{\mathcal{S}}(n):= \begin{cases}1 & \text { if } n \in \mathcal{S} \\ 0 & \text { if } n \notin \mathcal{S}\end{cases}
$$

Throughout the paper, implied constants in symbols $O, \ll$ and $\gg$ may depend (where obvious) on the parameters $c$ and $\varepsilon$ but are independent of other variables except where indicated. For given functions $F$ and $G$, the notations $F \ll G, G \gg F$ and $F=O(G)$ are all equivalent to the statement that the inequality $|F| \leq k|G|$ holds with some constant $k>0$.

### 2.2 The Modified Singular Series

Gallagher [2] has shown that the relation (1) is a consequence of Hardy and Littlewood's [3, p. 61] quantitative version of the prime $k$-tuple conjecture, which asserts that for every finite subset $\mathcal{H}$ of $\mathbb{Z}$ one has

$$
\begin{equation*}
\sum_{n \leq x} \prod_{h \in \mathcal{H}} \Lambda(n+h)=(\mathfrak{S}(\mathcal{H})+o(1)) x \quad(x \rightarrow \infty) \tag{4}
\end{equation*}
$$

Here, $\Lambda$ is the von Mangoldt function, and $\mathfrak{S}(\mathcal{H})$ is the singular series defined by

$$
\mathfrak{S}(\mathcal{H}):=\prod_{p}\left(1-\frac{|(\mathcal{H} \bmod p)|}{p}\right)\left(1-\frac{1}{p}\right)^{-|\mathcal{H}|}
$$

To prove (1), Gallagher showed that for any fixed $\ell \geq 1$ one has

$$
\begin{equation*}
\sum_{\substack{\mathcal{H} \subseteq[0, n] \\|\overline{\mathcal{H}}|=\ell}} \mathfrak{S}(\mathcal{H}) \sim\binom{n+1}{\ell} \quad(n \rightarrow \infty) \tag{5}
\end{equation*}
$$

In other words, the singular series has an average value of one.
In their study of the distribution of primes in longer intervals, Montgomery and Soundararajan [6] employ a more precise form of the Hardy-Littlewood conjecture (4), which is supported by results in their earlier paper [5]: If $\mathcal{H}$ is any finite set of integers, then

$$
\sum_{n \leq x} \prod_{h \in \mathcal{H}} \mathbf{1}_{\mathbb{P}}(n+h)=\mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{d u}{(\log u)^{|\mathcal{H}|}}+O\left(x^{1 / 2+\varepsilon}\right)
$$

In [6] the authors also introduce the modified singular series

$$
\mathfrak{S}_{0}(\mathcal{H}):=\sum_{\mathcal{H}^{\prime} \subseteq \mathcal{H}}(-1)^{\left|\mathcal{H} \backslash \mathcal{H}^{\prime}\right|} \mathfrak{S}\left(\mathcal{H}^{\prime}\right)
$$

which satisfies

$$
\mathfrak{S}(\mathcal{H})=\sum_{\mathcal{H}^{\prime} \subseteq \mathcal{H}} \mathfrak{S}_{0}\left(\mathcal{H}^{\prime}\right)
$$

with $\mathfrak{S}(\varnothing)=\mathfrak{S}_{0}(\varnothing)=1$. The modified singular series arises naturally in the following formulation of the Hardy-Littlewood conjecture (regarding the elements of $\mathcal{H}$ as being small relative to $x$ ): If $\mathcal{H}$ is any finite set of integers, then

$$
\begin{equation*}
\sum_{n \leq x} \prod_{h \in \mathcal{H}}\left(\mathbf{1}_{\mathbb{P}}(n+h)-\frac{1}{\log n}\right)=\mathfrak{S}_{0}(\mathcal{H}) \int_{2}^{x} \frac{d u}{(\log u)^{|\mathcal{H}|}}+O\left(x^{1 / 2+\varepsilon}\right) \tag{6}
\end{equation*}
$$

Here, the term $1 / \log n$ being subtracted from $\mathbf{1}_{\mathbb{P}}(n+h)$ represents the probability that the "random number" $n+h$ is a prime number.

### 2.3 Essential Estimates

Montgomery and Soundararajan [6, Theorem 2] gave the following refinement of Gallagher's estimate (5):

$$
\sum_{\substack{\mathcal{H} \subseteq[0, n] \\|\mathcal{H}|=\ell}} \mathfrak{S}_{0}(\mathcal{H})=\frac{\mu_{\ell}}{\ell!}(-n \log n+A n)^{\ell / 2}+O_{\ell}\left(n^{\ell / 2-1 /(7 \ell)+\varepsilon}\right)
$$

showing that the modified singular series exhibits square-root cancellation in each variable. Here, $\mu_{\ell}$ is the $\ell$ th moment of the standard Gaussian:

$$
\mu_{\ell}:= \begin{cases}1 \cdot 3 \cdots(\ell-1) & \text { if } \ell \text { is even } \\ 0 & \text { if } \ell \text { is odd }\end{cases}
$$

and $A$ is given by

$$
\begin{equation*}
A:=2-C_{0}-\log 2 \pi \tag{7}
\end{equation*}
$$

with $C_{0}$ the Euler-Mascheroni constant. For small values of $\ell$, one can be more precise; in particular, [6, Equation (16)] implies for the case $\ell=2$ :

$$
\begin{equation*}
\sum_{\substack{\mathcal{H} \subseteq[0, n] \\|\mathcal{H}|=2}} \mathfrak{S}_{0}(\mathcal{H})=-\frac{1}{2} n \log n+\frac{1}{2} A n+O\left(n^{1 / 2+\varepsilon}\right) \tag{8}
\end{equation*}
$$

Throughout the sequel, we denote (as in [4])

$$
\alpha(u):=1-\frac{1}{\log u} \quad(u>1)
$$

Taking into account that $|\alpha(u)|<\frac{1}{2}$ for $u \in[2,3]$ and $0<\alpha(u)<1$ for all $u \geq 3$, the following is a straightforward variant of Banks and Guo [1, Lemma 2.3].

Lemma 1. Let $f$ be an arithmetic function such that

$$
\|f\|_{\infty}:=\sup \{|f(n)|: n \geq 1\}<\infty
$$

Uniformly for $2 \leq u \leq x$ and $y \geq(\log x)^{3}$ we have

$$
\sum_{\substack{n \leq y \\ 2 \mid n}} f(n) \alpha(u)^{n}=\sum_{\substack{n \geq 1 \\ 2 \mid n}} f(n) \alpha(u)^{n}+O\left(x^{-1}\|f\|_{\infty}\right)
$$

where the implied constant is absolute.
Lemma 2. Let $c \geq 0$ be fixed. Uniformly for $2 \leq u \leq x$ and $y \geq(\log x)^{2}$ we have

$$
\sum_{\substack{m, n \leq y \\ 2|m, 2| n \\ n \geq c m}} \alpha(u)^{m+n}=(4 c+4)^{-1}\left((\log u)^{2}+O(\log u)\right)
$$

where the implied constant depends only on $c$.
Proof. Writing $\alpha:=\alpha(u)$ we have

$$
\sum_{\substack{n \geq 1 \\ 2 \mid n, n \geq c m}} \alpha^{n}=\frac{\alpha^{2\lceil c m / 2\rceil}}{1-\alpha^{2}}
$$

Since

$$
|\alpha|^{c m} \leq|\alpha|^{2\lceil c m / 2\rceil}<|\alpha|^{c m-2}, \quad \alpha^{-2}=1+O\left((\log u)^{-1}\right)
$$

and

$$
1-\alpha^{2}=2(\log u)^{-1}+O\left((\log u)^{-2}\right)
$$

it follows that

$$
\begin{equation*}
\sum_{\substack{n \geq 1 \\ 2 \mid n, n \geq c m}} \alpha^{n}=\frac{1}{2} \alpha^{c m}(\log u+O(1)) \tag{9}
\end{equation*}
$$

Using Lemma 1 with $f:=\mathbf{1}_{\mathbb{N}}$ we see that

$$
g(m):=\sum_{\substack{n \leq y \\ 2 \mid n, n \geq c m}} \alpha^{n}=\sum_{\substack{n \geq 1 \\ 2 \mid n, n \geq c m}} \alpha^{n}+O\left(x^{-1}\right)=\frac{1}{2} \alpha^{c m} \log u+O\left(\alpha^{c m}+x^{-1}\right)
$$

in particular, $\|g\|_{\infty} \leq \log u$. A second application of Lemma 1 with $f:=g$ gives

$$
\begin{aligned}
\sum_{\substack{m, n \leq y \\
2|m, 2| n \\
n \geq c m}} \alpha^{m+n} & =\sum_{\substack{m \leq y \\
2 \mid m}} g(m) \alpha^{m}=\sum_{\substack{m \geq 1 \\
2 \mid m}} g(m) \alpha^{m}+O\left(x^{-1} \log u\right) \\
& =\sum_{\substack{m \geq 1 \\
2 \mid m}}\left(\frac{1}{2} \alpha^{(c+1) m} \log u+O\left(\alpha^{(c+1) m}+\alpha^{m} x^{-1}\right)\right)+O\left(x^{-1} \log u\right) \\
& =\frac{\frac{1}{2} \alpha^{2 c+2}}{1-\alpha^{2 c+2}}(\log u+O(1))+O\left(x^{-1} \log u\right)
\end{aligned}
$$

Since

$$
\frac{\frac{1}{2} \alpha^{2 c+2}}{1-\alpha^{2 c+2}}=\frac{\frac{1}{2}(\log u-1)^{2 c+2}}{(\log u)^{2 c+2}-(\log u-1)^{2 c+2}}=(4 c+4)^{-1} \log u+O(1)
$$

the result follows.
The following statement is a straightforward extension of [1, Lemma 2.4].
Lemma 3. Fix $\theta \geq 0, \xi=0$ or 1 , and $\lambda>0$. For all $u \geq 2$ the sums

$$
F(\theta, \xi, \lambda ; u):=\sum_{\substack{n \geq 1 \\ 2 \backslash n}} n^{\theta}(\log n)^{\xi} \alpha(u)^{\lambda n}
$$

and

$$
G(\xi, \lambda ; u):=\sum_{\substack{n \geq 1 \\ 2 \mid n}} \mathfrak{S}_{0}(\{0, n\}) n^{\xi} \alpha(u)^{\lambda n}
$$

satisfy the estimates

$$
\begin{align*}
F(\theta, 0, \lambda ; u) & =\frac{1}{2} \lambda^{-(1+\theta)} \Gamma(1+\theta)(\log u)^{1+\theta}+O\left((\log u)^{\theta}\right),  \tag{10}\\
F(\theta, 1, \lambda ; u) & =\frac{1}{2} \lambda^{-(1+\theta)}(\log 2) \Gamma(1+\theta)(\log u)^{1+\theta}+O\left((\log u)^{\theta}\right),  \tag{11}\\
G(0, \lambda ; u) & =\frac{1}{2} \lambda^{-1} \log u-\frac{1}{2} \log \log u+O(1),  \tag{12}\\
G(1, \lambda ; u) & =\frac{1}{2} \lambda^{-2}(\log u)^{2}+O(\log u), \tag{13}
\end{align*}
$$

where the implied constants depend only on $\theta, \xi$ and $\lambda$.
Lemma 4. For any set $\mathcal{Z} \subseteq[0, n]$ of cardinality $k:=|\mathcal{Z}|$ we have

$$
\begin{equation*}
\sum_{\substack{\mathcal{A} \subseteq \mathcal{Z} \\|\mathcal{A}|=1}} \sum_{\substack{\mathcal{B} \subseteq[0, n] \backslash \mathcal{Z} \\|\mathcal{B}|=1}} \mathfrak{S}_{0}(\mathcal{A} \cup \mathcal{B})=O_{k}\left(n^{1 / 2+\varepsilon}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{\mathcal{B} \subseteq[0, n] \backslash \mathcal{Z} \\|\mathcal{B}|=2}} \mathfrak{S}_{0}(\mathcal{B})=-\frac{1}{2} n \log n+\frac{1}{2} A n+O_{k}\left(n^{1 / 2+\varepsilon}\right) \tag{15}
\end{equation*}
$$

where $A$ is defined by (7).
Proof. Let $s, u$ be arbitrary integers such that $0 \leq s<u \leq n$. Using the translationinvariance of the singular series and applying [1, Lemma 2.2], we see that

$$
\begin{align*}
& \sum_{s<t<u} \mathfrak{S}_{0}(\{s, t\})=\sum_{0<t<u-s} \mathfrak{S}_{0}(\{0, t\}) \ll(u-s)^{1 / 2+\varepsilon} \ll n^{1 / 2+\varepsilon},  \tag{16}\\
& \sum_{s<t<u} \mathfrak{S}_{0}(\{t, u\})=\sum_{0<t<u-s} \mathfrak{S}_{0}(\{t, u-s\}) \ll(u-s)^{1 / 2+\varepsilon} \ll n^{1 / 2+\varepsilon} .
\end{align*}
$$

Next, let $x, y$ be arbitrary integers such that $0 \leq x<y \leq n$. Suppose that $a \in \mathcal{Z}$ and $a \notin(x, y)$. Then

$$
\sum_{b \in(x, y)} \mathfrak{S}_{0}(\{a, b\})= \begin{cases}\sum_{a<t<y} \mathfrak{S}_{0}(\{a, t\})-\sum_{a<t<x} \mathfrak{S}_{0}(\{a, t\}) & \text { if } a \leq x ; \\ \sum_{x<t<a} \mathfrak{S}_{0}(\{t, a\})-\sum_{y<t<a} \mathfrak{S}_{0}(\{t, a\}) & \text { if } a \geq y,\end{cases}
$$

hence from (16) it follows that

$$
\begin{equation*}
\sum_{b \in(x, y)} \mathfrak{S}_{0}(\{a, b\}) \ll n^{1 / 2+\varepsilon} \tag{17}
\end{equation*}
$$

Now suppose $\mathcal{Z}=\left\{z_{1}, \ldots, z_{k}\right\}$ with

$$
z_{0}:=-1<z_{1}<\cdots<z_{k}<z_{k+1}:=n+1 .
$$

For $j=1, \ldots, k$ let $\left(x_{j}, y_{j}\right)$ be the open interval with $x_{j}:=z_{j}$ and $y_{j}:=z_{j+1}$. Using (17) we have for each $a \in \mathcal{Z}$ :

$$
\sum_{b \in[0, n] \backslash \mathcal{Z}} \mathfrak{S}_{0}(\{a, b\})=\sum_{j=1}^{k} \sum_{b \in\left(x_{j}, y_{j}\right)} \mathfrak{S}_{0}(\{a, b\})=O_{k}\left(n^{1 / 2+\varepsilon}\right)
$$

Summing this bound over all $a \in \mathcal{Z}$, we obtain (14).
To prove (15), we observe that

$$
\begin{aligned}
\sum_{\substack{\mathcal{B} \subseteq[0, n] \backslash \mathcal{Z} \\
|\mathcal{B}|=2}} \mathfrak{S}_{0}(\mathcal{B}) & =\sum_{\substack{\mathcal{B} \subseteq[0, n] \\
|\overline{\mathcal{B}}|=2}} \mathfrak{S}_{0}(\mathcal{B})-\sum_{\substack{\mathcal{A} \subseteq \mathcal{Z} \\
|\mathcal{A}|=1}} \sum_{\substack{\mathcal{B} \subseteq[0, n] \backslash \mathcal{Z} \\
|\mathcal{B}|=1}} \mathfrak{S}_{0}(\mathcal{A} \cup \mathcal{B})-\sum_{\substack{\mathcal{A} \subseteq \mathcal{Z} \\
|\mathcal{A}|=2}} \mathfrak{S}_{0}(\mathcal{A}) \\
& =S_{1}-S_{2}-S_{3} \quad \text { (say). }
\end{aligned}
$$

By (8) we have

$$
S_{1}=-\frac{1}{2} n \log n+\frac{1}{2} A n+O\left(n^{1 / 2+\varepsilon}\right)
$$

By (14) we also have $S_{2}=O_{k}\left(n^{1 / 2+\varepsilon}\right)$. Finally, $S_{3}=O_{k}(\log \log n)$ since the trivial bound $\mathfrak{S}_{0}(\mathcal{H}) \ll \log \log n$ holds for any $\mathcal{H} \subseteq[0, n]$ with $|\mathcal{H}|=2$. Combining all of these estimates, we derive (15).

## 3. The Heuristic Argument

We denote

$$
g_{h, k}(n):=\mathbf{1}_{\mathbb{P}}(n) \mathbf{1}_{\mathbb{P}}(n+h) \mathbf{1}_{\mathbb{P}}(n+h+k) \prod_{\substack{0<t<h+k \\ t \neq h}}\left(1-\mathbf{1}_{\mathbb{P}}(n+t)\right)
$$

so that

$$
g_{h, k}(n)= \begin{cases}1 & \text { if } n=p_{m} \in \mathbb{P}, d_{m}=h \text { and } d_{m+1}=k \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\pi_{c}(x)=\sum_{n \leq x} \sum_{\substack{h, k \geq 1 \\ k \geq c h}} g_{h, k}(n)
$$

Taking into account the trivial bound

$$
\left|\left\{p_{n} \leq x: \max \left\{\delta_{n}, \delta_{n+1}\right\}>(\log x)^{3}\right\}\right| \ll x(\log x)^{-3}
$$

it follows that

$$
\begin{aligned}
\pi_{c}(x) & =\left|\left\{p_{n} \leq x: \max \left\{\delta_{n}, \delta_{n+1}\right\} \leq(\log x)^{3}, \delta_{p^{\prime}} \geq c \delta_{p}\right\}\right|+O\left(x(\log x)^{-3}\right) \\
& =\sum_{\substack{h, k \leq(\log x)^{3} \\
2|h, 2| k \\
k \geq c h}} S_{h, k}(x)+O\left(x(\log x)^{-3}\right),
\end{aligned}
$$

where

$$
S_{h, k}(x):=\sum_{n \leq x} g_{h, k}(n)
$$

For now, fix two even integers $h, k \in\left[1,(\log x)^{3}\right]$. Put $\mathcal{Z}=\mathcal{Z}_{h, k}:=\{0, h, h+k\}$ and write $\widetilde{\mathbf{1}}_{\mathbb{P}}(n):=\mathbf{1}_{\mathbb{P}}(n)-1 / \log n$. Then

$$
\begin{aligned}
& S_{h, k}(x)=\sum_{n \leq x} \prod_{l \in \mathcal{Z}} \mathbf{1}_{\mathbb{P}}(n+l) \prod_{m \in[0, h+k] \backslash \mathcal{Z}}\left(1-\mathbf{1}_{\mathbb{P}}(n+m)\right) \\
& =\sum_{n \leq x} \prod_{l \in \mathcal{Z}}\left(\frac{1}{\log n}+\widetilde{\mathbf{1}}_{\mathbb{P}}(n+l)\right)_{m \in[0, h+k] \backslash \mathcal{Z}}\left(1-\frac{1}{\log n}-\widetilde{\mathbf{1}}_{\mathbb{P}}(n+m)\right) \\
& =\sum_{\mathcal{A} \subseteq \mathcal{Z}} \sum_{\mathcal{B} \subseteq[0, h+k] \backslash \mathcal{Z}}(-1)^{|\mathcal{B}|} \sum_{n \leq x}\left(\frac{1}{\log n}\right)^{3-|\mathcal{A}|}\left(1-\frac{1}{\log n}\right)^{h+k-2-|\mathcal{B}|} \prod_{t \in \mathcal{A} \cup \mathcal{B}} \widetilde{\mathbf{1}}_{\mathbb{P}}(n+t)
\end{aligned}
$$

(cf. [4, Equations (2.5) and (2.6)]). Using the Hardy-Littlewood conjecture (6) and partial summation, we expect that the estimate

$$
\sum_{n \leq x}(\log n)^{-C} \prod_{t \in \mathcal{H}} \widetilde{\mathbf{1}}_{\mathbb{P}}(n+t)=\mathfrak{S}_{0}(\mathcal{H}) \int_{2}^{x}(\log u)^{-|\mathcal{H}|-C} d u+O\left(x^{1 / 2+\varepsilon}\right)
$$

holds for any fixed $C \geq 0$ and any set $\mathcal{H}$ of nonnegative integers bounded above by $x^{o(1)}$ as $x \rightarrow \infty$; in particular, we expect that $S_{h, k}(x)$ is approximately

$$
\sum_{\mathcal{A} \subseteq \mathcal{Z}} \sum_{\mathcal{B} \subseteq[0, h+k] \backslash \mathcal{Z}}(-1)^{|\mathcal{B}|} \mathfrak{S}_{0}(\mathcal{A} \cup \mathcal{B}) \int_{2}^{x}(\log u)^{-3-|\mathcal{B}|} \alpha(u)^{h+k-2-|\mathcal{B}|} d u
$$

with an error not exceeding $O\left(x^{1 / 2+\varepsilon}\right)$. For every integer $L \geq 0$ we now denote

$$
\mathcal{D}_{h, k, L}(u):=\sum_{\substack{\mathcal{A} \subseteq \mathcal{Z} \\(\mid \mathcal{B} \subseteq[0, h+k] \backslash \mathcal{Z}}}(-1)^{|\mathcal{B}|=L)} \mathfrak{S _ { 0 }}(\mathcal{A} \cup \mathcal{B})(\alpha(u) \log u)^{-|\mathcal{B}|} \alpha(u)^{h+k},
$$

so that

$$
S_{h, k}(x)=\sum_{L=0}^{h+k+1} \int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{D}_{h, k, L}(u) d u+O\left(x^{1 / 2+\varepsilon}\right)
$$

Next, arguing as in [4] (see also [1]) we conjecture that terms with $L \geq 3$ contribute no more than $O\left(x(\log x)^{-5 / 2}\right)$ to the quantity $\pi_{c}(x)$. Noting that $\mathcal{D}_{h, k, 1}$ is identically zero (since $\mathfrak{S}_{0}(\mathcal{H})=0$ for any singleton set $\mathcal{H}$ ), this leaves only terms with $L=0$ or $L=2$. Collecting terms according to the values $|\mathcal{A}|$ and $|\mathcal{B}|$, and summing over the variables $h$ and $k$, we arrive at the estimate

$$
\begin{equation*}
\pi_{c}(x)=\sum_{j=1}^{4} \int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{F}_{j}(u) d u+O\left(x^{1 / 2+\varepsilon}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{F}_{1}(u):=\sum_{\substack{h, k \leq(\log x)^{3} \\
2|h, 2| k \\
k \geq c h}} \alpha(u)^{h+k}, \\
& \mathcal{F}_{2}(u):=\sum_{\substack{h, k \leq(\log x)^{3} \\
2|h, 2| k \\
k \geq c h}} \sum_{\substack{a_{1}, a_{2} \in \mathcal{Z}_{h, k} \\
a_{1} \neq a_{2}}} \mathfrak{S}_{0}\left(\left\{a_{1}, a_{2}\right\}\right) \alpha(u)^{h+k}, \\
& \mathcal{F}_{3}(u):=-(\alpha(u) \log u)^{-1} \sum_{\substack{h, k \leq(\log x)^{3} \\
2|h, 2| k \\
k \geq c h}} \sum_{\substack{a \in \mathcal{Z}_{h, k}}} \sum_{b \in[0, h+k] \backslash \mathcal{Z}_{h, k}} \mathfrak{S}_{0}(\{a, b\}) \alpha(u)^{h+k}, \\
& \mathcal{F}_{4}(u):=(\alpha(u) \log u)^{-2} \sum_{\substack {h, k \leq \log x)^{3} \\
\begin{subarray}{c}{2|h,|l| \\
k \geq c h{ h , k \leq \operatorname { l o g } x ) ^ { 3 } \\
\begin{subarray} { c } { 2 | h , | l | \\
k \geq c h } }\end{subarray}} \sum_{\substack{b_{1}, b_{2} \in[0, h+k] \backslash \mathcal{Z}_{h, k} \\
b_{1} \neq b_{2}}} \mathfrak{S}_{0}\left(\left\{b_{1}, b_{2}\right\}\right) \alpha(u)^{h+k} .
\end{aligned}
$$

According to Lemma 2 we have

$$
\mathcal{F}_{1}(u)=(4 c+4)^{-1}\left((\log u)^{2}+O(\log u)\right)
$$

and thus the corresponding contribution to $\pi_{c}(x)$ is

$$
\begin{equation*}
\int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{F}_{1}(u) d u=(4 c+4)^{-1} \pi(x)+O\left(\frac{x}{(\log x)^{2}}\right) \tag{19}
\end{equation*}
$$

The second function $\mathcal{F}_{2}(u)$ splits naturally as a sum

$$
\mathcal{F}_{2}(u)=\mathcal{G}_{1}(u)+\mathcal{G}_{2}(u)+\mathcal{G}_{3}(u)
$$

where

$$
\begin{aligned}
& \mathcal{G}_{1}(u):= \sum_{\substack{h, k \leq(\log x)^{3} \\
2|h, 2| k \\
k \geq c h}} \mathfrak{S}_{0}(\{0, h\}) \alpha(u)^{h+k}, \\
& \mathcal{G}_{2}(u):= \sum_{\substack{h, k \leq(\log x)^{3} \\
2|h, 2| k \\
k \geq c h}} \mathfrak{S}_{0}(\{0, h+k\}) \alpha(u)^{h+k}, \\
& \mathcal{G}_{3}(u):=\sum_{\substack{h, k \leq(\log x)^{3} \\
2|h, 2| k \\
k \geq c h}} \mathfrak{S}_{0}(\{h, h+k\}) \alpha(u)^{h+k}
\end{aligned}
$$

To estimate $\mathcal{G}_{1}(u)$ we apply Lemma 1 together with (9) to the inner sum over $k$, deriving that

$$
\mathcal{G}_{1}(u)=\left(\frac{1}{2} \log u+O(1)\right) \sum_{\substack{h \leq(\log x)^{3} \\ 2 \mid h}} \mathfrak{S}_{0}(\{0, h\}) \alpha(u)^{(c+1) h}
$$

Using Lemma 1 again followed by (12) (with $\lambda:=c+1$ ), we have

$$
\mathcal{G}_{1}(u)=(4 c+4)^{-1}\left((\log u)^{2}+O(\log u \log \log u)\right)
$$

Hence, the corresponding contribution to $\pi_{c}(x)$ is

$$
\begin{equation*}
\int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{G}_{1}(u) d u=(4 c+4)^{-1} \pi(x)+O\left(\frac{x \log \log x}{(\log x)^{2}}\right) \tag{20}
\end{equation*}
$$

To estimate $\mathcal{G}_{2}(u)$, we write $m:=h+k$ and use Lemma 1 along with (10), (13) and the trivial bound $\mathfrak{S}_{0}(\{0, m\}) \ll \log \log m$ :

$$
\begin{aligned}
\mathcal{G}_{2}(u) & =\sum_{\substack{m \leq 2(\log x)^{3} \\
2 \mid m}} \mathfrak{S}_{0}(\{0, m\}) \alpha(u)^{m} \sum_{\substack{h \leq(\log x)^{3} \\
2 \mid h \\
m \geq(c+1) h}} 1 \\
& =(2 c+2)^{-1} \sum_{\substack{m \leq 2(\log x)^{3} \\
2 \mid m}} \mathfrak{S}_{0}(\{0, m\}) \alpha(u)^{m}(m+O(1)) \\
& =(4 c+4)^{-1}(\log u)^{2}+O(\log u \log \log \log x)
\end{aligned}
$$

The contribution to $\pi_{c}(x)$ is

$$
\begin{equation*}
\int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{G}_{2}(u) d u=(4 c+4)^{-1} \pi(x)+O\left(\frac{x \log \log \log x}{(\log x)^{2}}\right) \tag{21}
\end{equation*}
$$

By the translation-invariance of the singular series we have

$$
\mathcal{G}_{3}(u)=\sum_{\substack{k \leq(\log x)^{3} \\ 2 \mid k}} \mathfrak{S}_{0}(\{0, k\}) \alpha(u)^{k} \sum_{\substack{h \leq(\log x)^{2} \\ 2 \mid h \\ h \leq k / c}} \alpha(u)^{h}
$$

Using Lemma 1 together with (9) (with $1 / c$ in place of $c$ ) it follows that

$$
\begin{aligned}
\sum_{\substack{h \leq(\log x)^{3} \\
2 \mid h \\
h \leq k / c}} \alpha(u)^{h} & =\sum_{\substack{h \geq 1 \\
2 \mid h}} \alpha(u)^{h}-\sum_{\substack{h \geq 1 \\
2 \mid h, h>k / c}} \alpha(u)^{h}+O\left(x^{-1}\right) \\
& =\frac{\alpha(u)^{2}}{1-\alpha(u)^{2}}-\frac{1}{2} \alpha(u)^{k / c}(\log u+O(1))+O\left(x^{-1}\right) \\
& =\frac{1}{2} \log u-\frac{1}{2} \alpha(u)^{k / c} \log u+O(1)
\end{aligned}
$$

uniformly for $u$ in the range $2 \leq u \leq x$; hence, taking into account the trivial bound $\mathfrak{S}_{0}(\{0, k\}) \ll \log \log k$ and applying Lemma 1 again, we see that $\mathcal{G}_{3}(u)$ is equal to

$$
\left(\frac{1}{2} \log u\right)\left(\sum_{\substack{k \geq 1 \\ 2 \backslash k}} \mathfrak{S}_{0}(\{0, k\}) \alpha(u)^{k}-\sum_{\substack{k \geq 1 \\ 2 \mid k}} \mathfrak{S}_{0}(\{0, k\}) \alpha(u)^{(1+1 / c) k}\right)+O\left(\frac{\log \log x}{x}\right)
$$

Using estimate (12) of Lemma 3 we have

$$
\begin{aligned}
\mathcal{G}_{3}(u) & =\left(\frac{1}{2} \log u\right)(G(0,1 ; u)-G(0,1+1 / c ; u))+O\left(\frac{\log \log x}{x}\right) \\
& =(4 c+4)^{-1}(\log u)^{2}+O(\log u)
\end{aligned}
$$

and thus the corresponding contribution to $\pi_{c}(x)$ is

$$
\begin{equation*}
\int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{G}_{3}(u) d u=(4 c+4)^{-1} \pi(x)+O\left(\frac{x}{(\log x)^{2}}\right) \tag{22}
\end{equation*}
$$

To bound $\mathcal{F}_{3}(u)$ we apply Lemma 4 (using (14) with $k:=\left|\mathcal{Z}_{h, k}\right|=3$ ) to deduce that

$$
\mathcal{F}_{3}(u) \ll(\log u)^{-1} \sum_{\substack{h, k \leq(\log x)^{3} \\ 2|h, 2| k \\ k \geq c h}}(h+k)^{1 / 2+\varepsilon} \alpha(u)^{h+k} .
$$

Setting $m:=h+k$ and using Lemma 1 and the estimate (10), we have

$$
\begin{aligned}
\mathcal{F}_{3}(u) & \ll(\log u)^{-1} \sum_{\substack{m \leq 2(\log x)^{3} \\
2 \mid m}} m^{1 / 2+\varepsilon} \alpha(u)^{m} \sum_{\substack{h \leq(\log x)^{3} \\
2 \mid h \\
(c+1) h \leq m}} 1 \\
& \ll(\log u)^{-1} \sum_{\substack{m \leq 2(\log x)^{3} \\
2 \mid m}} m^{3 / 2+\varepsilon} \alpha(u)^{m} \ll(\log u)^{3 / 2+\varepsilon} ;
\end{aligned}
$$

hence the contribution to $\pi_{c}(x)$ is

$$
\begin{equation*}
\int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{F}_{3}(u) d u \ll \frac{x}{(\log x)^{3 / 2-\varepsilon}} \tag{23}
\end{equation*}
$$

Finally, to bound the quantity $\mathcal{F}_{4}(u)$ we apply Lemma 4 (using the estimate (15) with $k:=\left|\mathcal{Z}_{h, k}\right|=3$ ), which gives

$$
\mathcal{F}_{4}(u) \ll(\log u)^{-2} \sum_{\substack{h, k \leq(\log x)^{3} \\ 2|h, 2| k \\ k \geq c h}}(h+k) \log (h+k) \alpha(u)^{h+k}
$$

Writing $m:=h+k$ as before and using Lemma 1 and the estimate (11) it follows that

$$
\begin{aligned}
\mathcal{F}_{4}(u) & \ll(\log u)^{-2} \sum_{\substack{m \leq 2(\log x)^{3} \\
2 \mid m}} m(\log m) \alpha(u)^{m} \sum_{\substack{h \leq(\log x)^{3} \\
2 \mid h \\
(c+1) h \leq m}} 1 \\
& \ll(\log u)^{-2} \sum_{\substack{m \leq 2(\log x)^{3} \\
2 \mid m}} m^{2}(\log m) \alpha(u)^{m} \ll \log u .
\end{aligned}
$$

Hence, the corresponding contribution to $\pi_{c}(x)$ is

$$
\begin{equation*}
\int_{2}^{x}(\log u)^{-3} \alpha(u)^{-2} \mathcal{F}_{4}(u) d u \ll \frac{x}{(\log x)^{2}} \tag{24}
\end{equation*}
$$

Combining all of the estimates (18)-(24) above, we arrive at the statement of Conjecture 1.

Acknowledgements. The author thanks the anonymous referee for numerous helpful comments, corrections, and suggestions. Some of this work was done during a pleasant visit by the author to Duke University; the author thanks that institution for its kind hospitality. This research was supported in part by a grant from the University of Missouri Research Board.

## References

[1] W. D. Banks and V. Z. Guo, Consecutive primes and Beatty sequences. J. Number Theory 191 (2018), 158-174.
[2] P. X. Gallagher, On the distribution of primes in short intervals. Mathematika 23(1) (1976), 4-9.
[3] G. H. Hardy and J. E. Littlewood, Some problems of Partitio Numerorum (III): On the expression of a number as a sum of primes. Acta Math. 44 (1923), no. 1, 1-70.
[4] R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes. Proc. Natl. Acad. Sci. USA 113 (2016), no. 31, E4446-E4454.
[5] H. L. Montgomery and K. Soundararajan, Beyond pair correlation. pp. 507-514 in Paul Erdös and his mathematics, I (Budapest, 1999). Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.
[6] H. L. Montgomery and K. Soundararajan, Primes in short intervals. Comm. Math. Phys. 252 (2004), no. 1-3, 589-617.
[7] K. Soundararajan, The distribution of prime numbers, pp. 59-83 in Equidistribution in number theory, an introduction. NATO Sci. Ser. II Math. Phys. Chem. 237. Springer, Dordrech, 2007.

