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Abstract

Let pn be the nth smallest prime and dn ..= pn+1−pn the gap between pn and pn+1.
For any fixed c ≥ 0, we conjecture that the estimate∣∣{pn ≤ x : dn+1/dn ≥ c

}∣∣ = (c+ 1)−1π(x) +O
(
x(log x)−3/2+ε

)
holds for any ε > 0, and we give a heuristic argument to support this conjecture
which is based on a strong form of the Hardy-Littlewood conjectures.

1. Introduction

Let p1 ..= 2 < p2 ..= 3 < p3 ..= 5 < · · · be the sequence of prime numbers. The

Prime Number Theorem implies that the nth prime gap

dn ..= pn+1 − pn

has length log pn on average; in other words, the nth normalized prime gap

d̂n ..= dn/ log pn

takes the value one on average. For any fixed number c ≥ 0, heuristics based on

Cramér’s probabilistic model of the primes lead to the conjecture that

lim
N→∞

N−1
∣∣{n ≤ N : d̂n ≥ c

}∣∣ = e−c. (1)

Thus, we expect that the normalized prime gaps are distributed according to a

Poisson process. We refer the reader to the expository article [7] of Soundararajan

for an excellent account of these intriguing statistics.

The conjectural relation (1) also leads to a natural conjecture concerning ratios

of consecutive prime gaps. More specifically, it seems likely that for any fixed c ≥ 0

the following relation holds:

lim
N→∞

N−1
∣∣{n ≤ N : dn+1/dn ≥ c

}∣∣ = (c+ 1)−1. (2)
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Indeed, (1) suggests that for any fixed x ≥ 0 the normalized prime gap d̂n lies in the

infinitesimal interval (x, x+dx) with probability e−x dx. The probability that both

events d̂n ∈ (x, x + dx) and d̂n+1 ∈ (y, y + dy) happen simultaneously is therefore

e−x−y dx dy, assuming these two events are independent. Integrating over all pairs

(x, y) with y ≥ cx, we expect that

lim
N→∞

N−1
∣∣{n ≤ N : d̂n+1/d̂n ≥ c

}∣∣ =

∫ ∞
0

∫ ∞
cx

e−x−y dy dx = (c+ 1)−1.

Since log pn+1 = log pn + o(1) as n → ∞, it follows that d̂n+1/d̂n → dn+1/dn, and

in this way we arrive at the conjectural relation (2).

Note that (2) can be reformulated as follows. Let π(x) denote the prime counting

function, and for any fixed c ≥ 0 let πc(x) be the function given by

πc(x) ..=
∣∣{pn ≤ x : dn+1/dn ≥ c

}∣∣.
Then (2) is equivalent to the conjectural relation

πc(x) ∼ (c+ 1)−1π(x) (x→∞). (3)

In this note, we present a heuristic argument, based on a quantitative form of the

Hardy-Littlewood prime k-tuple conjecture, to support the following stronger form

of the conjecture (3).

Conjecture 1. For any c ≥ 0 and ε > 0, one has the estimate

πc(x) = (c+ 1)−1π(x) +O
(
x(log x)−3/2+ε

)
,

where the implied constant depends only on c and ε.

The results of the present paper are inspired by a celebrated work of Lemke Oliver

and Soundararajan [4] that studies the surprisingly erratic distribution of pairs of

consecutive primes among the φ(q)2 permissible reduced residue classes modulo q.

In [4] a conjectural explanation for this phenomenon is offered, which is based on a

strong form of the Hardy-Littlewood conjecture (see [4, Equation (2.4)]).

2. Preliminaries

2.1 Notation

Let P denote the set of primes in N.

For an arbitrary set S, we use 1S to denote its indicator function:

1S(n) ..=

{
1 if n ∈ S,

0 if n 6∈ S.
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Throughout the paper, implied constants in symbols O, � and � may depend

(where obvious) on the parameters c and ε but are independent of other variables

except where indicated. For given functions F and G, the notations F � G, G� F

and F = O(G) are all equivalent to the statement that the inequality |F | ≤ k|G|
holds with some constant k > 0.

2.2 The Modified Singular Series

Gallagher [2] has shown that the relation (1) is a consequence of Hardy and Little-

wood’s [3, p. 61] quantitative version of the prime k-tuple conjecture, which asserts

that for every finite subset H of Z one has∑
n≤x

∏
h∈H

Λ(n+ h) = (S(H) + o(1))x (x→∞). (4)

Here, Λ is the von Mangoldt function, and S(H) is the singular series defined by

S(H) ..=
∏
p

(
1− |(H mod p)|

p

)(
1− 1

p

)−|H|
.

To prove (1), Gallagher showed that for any fixed ` ≥ 1 one has∑
H⊆[0,n]
|H|=`

S(H) ∼
(
n+ 1

`

)
(n→∞). (5)

In other words, the singular series has an average value of one.

In their study of the distribution of primes in longer intervals, Montgomery and

Soundararajan [6] employ a more precise form of the Hardy-Littlewood conjecture

(4), which is supported by results in their earlier paper [5]: If H is any finite set of

integers, then ∑
n≤x

∏
h∈H

1P(n+ h) = S(H)

∫ x

2

du

(log u)|H|
+O(x1/2+ε).

In [6] the authors also introduce the modified singular series

S0(H) ..=
∑
H′⊆H

(−1)|H\H
′|S(H′),

which satisfies

S(H) =
∑
H′⊆H

S0(H′),
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with S(∅) = S0(∅) = 1. The modified singular series arises naturally in the

following formulation of the Hardy-Littlewood conjecture (regarding the elements

of H as being small relative to x): If H is any finite set of integers, then∑
n≤x

∏
h∈H

(
1P(n+ h)− 1

log n

)
= S0(H)

∫ x

2

du

(log u)|H|
+O(x1/2+ε). (6)

Here, the term 1/ log n being subtracted from 1P(n+ h) represents the probability

that the “random number” n+ h is a prime number.

2.3 Essential Estimates

Montgomery and Soundararajan [6, Theorem 2] gave the following refinement of

Gallagher’s estimate (5):∑
H⊆[0,n]
|H|=`

S0(H) =
µ`
`!

(−n log n+An)`/2 +O`
(
n`/2−1/(7`)+ε

)
,

showing that the modified singular series exhibits square-root cancellation in each

variable. Here, µ` is the `th moment of the standard Gaussian:

µ` ..=

{
1 · 3 · · · (`− 1) if ` is even,

0 if ` is odd,

and A is given by

A ..= 2− C0 − log 2π (7)

with C0 the Euler-Mascheroni constant. For small values of `, one can be more

precise; in particular, [6, Equation (16)] implies for the case ` = 2:∑
H⊆[0,n]
|H|=2

S0(H) = − 1
2n log n+ 1

2An+O(n1/2+ε). (8)

Throughout the sequel, we denote (as in [4])

α(u) ..= 1− 1

log u
(u > 1).

Taking into account that |α(u)| < 1
2 for u ∈ [2, 3] and 0 < α(u) < 1 for all u ≥ 3,

the following is a straightforward variant of Banks and Guo [1, Lemma 2.3].

Lemma 1. Let f be an arithmetic function such that

‖f‖∞ ..= sup{|f(n)| : n ≥ 1} <∞.
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Uniformly for 2 ≤ u ≤ x and y ≥ (log x)3 we have∑
n≤y
2|n

f(n)α(u)n =
∑
n≥1
2|n

f(n)α(u)n +O
(
x−1‖f‖∞

)
,

where the implied constant is absolute.

Lemma 2. Let c ≥ 0 be fixed. Uniformly for 2 ≤ u ≤ x and y ≥ (log x)2 we have∑
m,n≤y
2|m, 2|n
n≥cm

α(u)m+n = (4c+ 4)−1
(
(log u)2 +O(log u)

)
,

where the implied constant depends only on c.

Proof. Writing α ..= α(u) we have∑
n≥1

2|n, n≥cm

αn =
α2dcm/2e

1− α2
.

Since

|α|cm ≤ |α|2dcm/2e < |α|cm−2, α−2 = 1 +O((log u)−1),

and

1− α2 = 2(log u)−1 +O((log u)−2),

it follows that ∑
n≥1

2|n, n≥cm

αn = 1
2α

cm(log u+O(1)). (9)

Using Lemma 1 with f ..= 1N we see that

g(m) ..=
∑
n≤y

2|n, n≥cm

αn =
∑
n≥1

2|n, n≥cm

αn +O(x−1) = 1
2α

cm log u+O(αcm + x−1);

in particular, ‖g‖∞ ≤ log u. A second application of Lemma 1 with f ..= g gives∑
m,n≤y
2|m, 2|n
n≥cm

αm+n =
∑
m≤y
2|m

g(m)αm =
∑
m≥1
2|m

g(m)αm +O(x−1 log u)

=
∑
m≥1
2|m

(
1
2α

(c+1)m log u+O(α(c+1)m + αmx−1)
)

+O(x−1 log u)

=
1
2α

2c+2

1− α2c+2
(log u+O(1)) +O(x−1 log u).
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Since

1
2α

2c+2

1− α2c+2
=

1
2 (log u− 1)2c+2

(log u)2c+2 − (log u− 1)2c+2
= (4c+ 4)−1 log u+O(1),

the result follows.

The following statement is a straightforward extension of [1, Lemma 2.4].

Lemma 3. Fix θ ≥ 0, ξ = 0 or 1, and λ > 0. For all u ≥ 2 the sums

F (θ, ξ, λ;u) ..=
∑
n≥1
2|n

nθ(log n)ξα(u)λn

and

G(ξ, λ;u) ..=
∑
n≥1
2|n

S0({0, n})nξα(u)λn

satisfy the estimates

F (θ, 0, λ;u) = 1
2λ
−(1+θ)Γ(1 + θ)(log u)1+θ +O((log u)θ), (10)

F (θ, 1, λ;u) = 1
2λ
−(1+θ)(log 2)Γ(1 + θ)(log u)1+θ +O((log u)θ), (11)

G(0, λ;u) = 1
2λ
−1 log u− 1

2 log log u+O(1), (12)

G(1, λ;u) = 1
2λ
−2(log u)2 +O(log u), (13)

where the implied constants depend only on θ, ξ and λ.

Lemma 4. For any set Z ⊆ [0, n] of cardinality k ..= |Z| we have∑
A⊆Z
|A|=1

∑
B⊆[0,n]\Z
|B|=1

S0(A ∪ B) = Ok(n1/2+ε) (14)

and ∑
B⊆[0,n]\Z
|B|=2

S0(B) = − 1
2n log n+ 1

2An+Ok(n1/2+ε), (15)

where A is defined by (7).

Proof. Let s, u be arbitrary integers such that 0 ≤ s < u ≤ n. Using the translation-

invariance of the singular series and applying [1, Lemma 2.2], we see that∑
s<t<u

S0({s, t}) =
∑

0<t<u−s
S0({0, t})� (u− s)1/2+ε � n1/2+ε,∑

s<t<u

S0({t, u}) =
∑

0<t<u−s
S0({t, u− s})� (u− s)1/2+ε � n1/2+ε.

(16)
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Next, let x, y be arbitrary integers such that 0 ≤ x < y ≤ n. Suppose that a ∈ Z
and a 6∈ (x, y). Then

∑
b∈(x,y)

S0({a, b}) =

{∑
a<t<yS0({a, t})−

∑
a<t<xS0({a, t}) if a ≤ x;∑

x<t<aS0({t, a})−
∑
y<t<aS0({t, a}) if a ≥ y,

hence from (16) it follows that∑
b∈(x,y)

S0({a, b})� n1/2+ε. (17)

Now suppose Z = {z1, . . . , zk} with

z0 ..= −1 < z1 < · · · < zk < zk+1
..= n+ 1.

For j = 1, . . . , k let (xj , yj) be the open interval with xj ..= zj and yj ..= zj+1. Using

(17) we have for each a ∈ Z:

∑
b∈[0,n]\Z

S0({a, b}) =

k∑
j=1

∑
b∈(xj ,yj)

S0({a, b}) = Ok(n1/2+ε).

Summing this bound over all a ∈ Z, we obtain (14).

To prove (15), we observe that∑
B⊆[0,n]\Z
|B|=2

S0(B) =
∑
B⊆[0,n]
|B|=2

S0(B)−
∑
A⊆Z
|A|=1

∑
B⊆[0,n]\Z
|B|=1

S0(A ∪ B)−
∑
A⊆Z
|A|=2

S0(A)

= S1 − S2 − S3 (say).

By (8) we have

S1 = − 1
2n log n+ 1

2An+O(n1/2+ε).

By (14) we also have S2 = Ok(n1/2+ε). Finally, S3 = Ok(log log n) since the trivial

bound S0(H) � log log n holds for any H ⊆ [0, n] with |H| = 2. Combining all of

these estimates, we derive (15).

3. The Heuristic Argument

We denote

gh,k(n) ..= 1P(n)1P(n+ h)1P(n+ h+ k)
∏

0<t<h+k
t 6=h

(
1− 1P(n+ t)

)
,
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so that

gh,k(n) =

{
1 if n = pm ∈ P, dm = h and dm+1 = k;

0 otherwise.

Then

πc(x) =
∑
n≤x

∑
h,k≥1
k≥ch

gh,k(n).

Taking into account the trivial bound∣∣{pn ≤ x : max{δn, δn+1} > (log x)3
}∣∣� x(log x)−3,

it follows that

πc(x) =
∣∣{pn ≤ x : max{δn, δn+1} ≤ (log x)3, δp′ ≥ c δp

}∣∣+O
(
x(log x)−3

)
=

∑
h,k≤(log x)3

2|h, 2|k
k≥ch

Sh,k(x) +O
(
x(log x)−3

)
,

where

Sh,k(x) ..=
∑
n≤x

gh,k(n).

For now, fix two even integers h, k ∈ [1, (log x)3]. Put Z = Zh,k ..= {0, h, h+k} and

write 1̃P(n) ..= 1P(n)− 1/ log n. Then

Sh,k(x) =
∑
n≤x

∏
l∈Z

1P(n+ l)
∏

m∈[0,h+k]\Z

(
1− 1P(n+m)

)
=
∑
n≤x

∏
l∈Z

(
1

log n
+ 1̃P(n+ l)

) ∏
m∈[0,h+k]\Z

(
1− 1

log n
− 1̃P(n+m)

)

=
∑
A⊆Z

∑
B⊆[0,h+k]\Z

(−1)|B|
∑
n≤x

(
1

log n

)3−|A|(
1− 1

log n

)h+k−2−|B| ∏
t∈A∪B

1̃P(n+ t)

(cf. [4, Equations (2.5) and (2.6)]). Using the Hardy-Littlewood conjecture (6) and

partial summation, we expect that the estimate∑
n≤x

(log n)−C
∏
t∈H

1̃P(n+ t) = S0(H)

∫ x

2

(log u)−|H|−C du+O(x1/2+ε)

holds for any fixed C ≥ 0 and any set H of nonnegative integers bounded above by

xo(1) as x→∞; in particular, we expect that Sh,k(x) is approximately∑
A⊆Z

∑
B⊆[0,h+k]\Z

(−1)|B|S0(A ∪ B)

∫ x

2

(log u)−3−|B|α(u)h+k−2−|B| du,
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with an error not exceeding O(x1/2+ε). For every integer L ≥ 0 we now denote

Dh,k,L(u) ..=
∑
A⊆Z

∑
B⊆[0,h+k]\Z

(|A|+|B|=L)

(−1)|B|S0(A ∪ B)(α(u) log u)−|B|α(u)h+k,

so that

Sh,k(x) =

h+k+1∑
L=0

∫ x

2

(log u)−3α(u)−2Dh,k,L(u) du+O(x1/2+ε).

Next, arguing as in [4] (see also [1]) we conjecture that terms with L ≥ 3 con-

tribute no more than O(x(log x)−5/2) to the quantity πc(x). Noting that Dh,k,1 is

identically zero (since S0(H) = 0 for any singleton set H), this leaves only terms

with L = 0 or L = 2. Collecting terms according to the values |A| and |B|, and

summing over the variables h and k, we arrive at the estimate

πc(x) =

4∑
j=1

∫ x

2

(log u)−3α(u)−2Fj(u) du+O(x1/2+ε), (18)

where

F1(u) ..=
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

α(u)h+k,

F2(u) ..=
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

∑
a1,a2∈Zh,k

a1 6=a2

S0({a1, a2})α(u)h+k,

F3(u) ..= −(α(u) log u)−1
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

∑
a∈Zh,k

∑
b∈[0,h+k]\Zh,k

S0({a, b})α(u)h+k,

F4(u) ..= (α(u) log u)−2
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

∑
b1,b2∈[0,h+k]\Zh,k

b1 6=b2

S0({b1, b2})α(u)h+k.

According to Lemma 2 we have

F1(u) = (4c+ 4)−1((log u)2 +O(log u)),

and thus the corresponding contribution to πc(x) is∫ x

2

(log u)−3α(u)−2F1(u) du = (4c+ 4)−1π(x) +O

(
x

(log x)2

)
. (19)
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The second function F2(u) splits naturally as a sum

F2(u) = G1(u) + G2(u) + G3(u),

where

G1(u) ..=
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

S0({0, h})α(u)h+k,

G2(u) ..=
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

S0({0, h+ k})α(u)h+k,

G3(u) ..=
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

S0({h, h+ k})α(u)h+k.

To estimate G1(u) we apply Lemma 1 together with (9) to the inner sum over k,

deriving that

G1(u) =
(
1
2 log u+O(1)

) ∑
h≤(log x)3

2|h

S0({0, h})α(u)(c+1)h.

Using Lemma 1 again followed by (12) (with λ ..= c+ 1), we have

G1(u) = (4c+ 4)−1((log u)2 +O(log u log log u)).

Hence, the corresponding contribution to πc(x) is∫ x

2

(log u)−3α(u)−2G1(u) du = (4c+ 4)−1π(x) +O

(
x log log x

(log x)2

)
. (20)

To estimate G2(u), we write m ..= h+k and use Lemma 1 along with (10), (13) and

the trivial bound S0({0,m})� log logm:

G2(u) =
∑

m≤2(log x)3
2|m

S0({0,m})α(u)m
∑

h≤(log x)3
2|h

m≥(c+1)h

1

= (2c+ 2)−1
∑

m≤2(log x)3
2|m

S0({0,m})α(u)m(m+O(1))

= (4c+ 4)−1(log u)2 +O(log u log log log x).
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The contribution to πc(x) is∫ x

2

(log u)−3α(u)−2G2(u) du = (4c+ 4)−1π(x) +O

(
x log log log x

(log x)2

)
. (21)

By the translation-invariance of the singular series we have

G3(u) =
∑

k≤(log x)3
2|k

S0({0, k})α(u)k
∑

h≤(log x)3
2|h

h≤k/c

α(u)h.

Using Lemma 1 together with (9) (with 1/c in place of c) it follows that∑
h≤(log x)3

2|h
h≤k/c

α(u)h =
∑
h≥1
2|h

α(u)h −
∑
h≥1

2|h, h>k/c

α(u)h +O(x−1)

=
α(u)2

1− α(u)2
− 1

2α(u)k/c(log u+O(1)) +O(x−1)

= 1
2 log u− 1

2α(u)k/c log u+O(1)

uniformly for u in the range 2 ≤ u ≤ x; hence, taking into account the trivial bound

S0({0, k})� log log k and applying Lemma 1 again, we see that G3(u) is equal to

( 1
2 log u)

(∑
k≥1
2|k

S0({0, k})α(u)k −
∑
k≥1
2|k

S0({0, k})α(u)(1+1/c)k

)
+O

(
log log x

x

)
.

Using estimate (12) of Lemma 3 we have

G3(u) = (1
2 log u)

(
G(0, 1;u)−G(0, 1 + 1/c;u)

)
+O

(
log log x

x

)
= (4c+ 4)−1(log u)2 +O(log u),

and thus the corresponding contribution to πc(x) is∫ x

2

(log u)−3α(u)−2G3(u) du = (4c+ 4)−1π(x) +O

(
x

(log x)2

)
. (22)

To bound F3(u) we apply Lemma 4 (using (14) with k ..= |Zh,k| = 3) to deduce

that

F3(u)� (log u)−1
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

(h+ k)1/2+εα(u)h+k.



INTEGERS: 23 (2023) 12

Setting m ..= h+ k and using Lemma 1 and the estimate (10), we have

F3(u)� (log u)−1
∑

m≤2(log x)3
2|m

m1/2+εα(u)m
∑

h≤(log x)3
2|h

(c+1)h≤m

1

� (log u)−1
∑

m≤2(log x)3
2|m

m3/2+εα(u)m � (log u)3/2+ε;

hence the contribution to πc(x) is∫ x

2

(log u)−3α(u)−2F3(u) du� x

(log x)3/2−ε
. (23)

Finally, to bound the quantity F4(u) we apply Lemma 4 (using the estimate (15)

with k ..= |Zh,k| = 3), which gives

F4(u)� (log u)−2
∑

h,k≤(log x)3
2|h, 2|k
k≥ch

(h+ k) log(h+ k)α(u)h+k.

Writing m ..= h + k as before and using Lemma 1 and the estimate (11) it follows

that

F4(u)� (log u)−2
∑

m≤2(log x)3
2|m

m(logm)α(u)m
∑

h≤(log x)3
2|h

(c+1)h≤m

1

� (log u)−2
∑

m≤2(log x)3
2|m

m2(logm)α(u)m � log u.

Hence, the corresponding contribution to πc(x) is∫ x

2

(log u)−3α(u)−2F4(u) du� x

(log x)2
. (24)

Combining all of the estimates (18)–(24) above, we arrive at the statement of

Conjecture 1.
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