THERE IS NO CARMICHAEL NUMBER OF THE FORM $2^{n} p^{2}+1$ WITH p PRIME

Florian Luca
School of Mathematics, University of the Witwatersrand, Wits, South Africa
and
Centro de Ciencias Matemáticas UNAM, Morelia, Mexico
florian.luca@wits.ac.za
Jean Lucien Randrianantenaina
AIMS Cameroon, South West Region, Crystal Gardens, Cameroon
lucien.randrianantenaina@aims-cameroon.org

Received: 5/13/23, Accepted: 7/11/23, Published: 7/21/23

Abstract

In this paper, we prove that there is no Carmichael number of the form $2^{n} p^{2}+1$ with some integer $n \geq 0$ and prime p.

1. Introduction

A Carmichael number N is a composite positive integer such that the congruence $a^{N} \equiv a(\bmod N)$ for all integers a. A criterion due to Korselt [3] states that N is Carmichael if and only if N is squarefree, composite and $p-1 \mid N-1$ for all $p \mid N$. In particular, $\omega(N) \geq 3$, where $\omega(N)$ is the number of distinct prime factors of N.

Some recent papers investigated Carmichael numbers of the form $2^{n} k+1$ for some fixed odd positive integer k. For example, in [2] it is shown that $k \geq 27$ and

$$
n<2^{2 \times 10^{7} \tau(k)^{2}(\log k)^{2} \omega(k)}
$$

where $\tau(k)$ is the number of divisors of k. In [1], it is shown that there is no Carmichael number of the form $2^{n} p+1$ for a prime p.

Here we take this one step further and prove the following theorem.
Theorem 1. There is no Carmichael number of the form $2^{n} p^{2}+1$ with p prime.

[^0]
2. The Proof

2.1. Bounding \boldsymbol{p} and \boldsymbol{n}

We follow [1] where it was shown that there is no Carmichael number of the form $2^{n} p+1$. We may assume that $n \geq 1$; otherwise $N=p^{2}+1$ is odd, therefore $p=2$, which is false. Next, $p \geq 3$ since there there is no Carmichael number of the form $2^{m}+1$ for any positive integer m. Thus $p^{2} \geq 27$, so $p \geq 7$. Since N is Carmichael, it is squarefree and all its prime factors are of the form $q=2^{\lambda} p^{\delta}+1$ for some integer $\lambda \in[1, n]$ and $\delta \in\{0,1,2\}$. When $\delta=0, q$ is a Fermat prime so λ is a power of 2 .

So, we may write N as

$$
2^{n} p^{2}+1=\prod_{j=1}^{r}\left(2^{\ell_{j}}+1\right) \prod_{j=1}^{s}\left(2^{n_{j}} p+1\right) \prod_{j=1}^{t}\left(2^{m_{j}} p^{2}+1\right)
$$

We have $\omega(N) \geq 3$. Thus, $r+s+t=\omega(N) \geq 3$. We write

$$
F_{j}:=2^{\ell_{j}}+1, \quad P_{j}:=2^{n_{j}} p+1, \quad \text { and } \quad Q_{j}:=2^{m_{j}} p^{2}+1
$$

We also let

$$
F:=\prod_{j=1}^{r} F_{j}, \quad P:=\prod_{j=1}^{s} P_{j}, \quad \text { and } \quad Q:=\prod_{j=1}^{t} Q_{j} .
$$

We assume $\ell_{1}<\cdots<\ell_{r}, n_{1}<\cdots<n_{s}$, $m_{1}<\cdots<m_{t}$. We need bounds for F, P, Q. The following is Lemma 2 in [2].

Lemma 1. The inequality $F_{j}<p^{4}$ holds for all $j=1, \ldots, r$.
In particular, writing $\ell_{j}=2^{\alpha_{j}}$ for $j=1, \ldots, r$, with $\ell_{1}<\cdots<\ell_{r}$, we have that

$$
F=\prod_{j=1}^{r}\left(2^{2^{\alpha_{j}}}+1\right) \leq\left(2^{2^{\alpha_{r}}}+1\right)\left(2^{2^{\alpha_{r}}}-1\right)<F_{r}^{2}<p^{8}
$$

Lemma 2. The numbers $P_{j}-1$ and $N-1$ are multiplicatively independent for all $j=1, \ldots, s$. Further, the numbers $Q_{j}-1$ and $N-1$ are multiplicatively independent for all $j=1, \ldots, t$.

Proof. The statement about $Q_{j}-1=2^{m_{j}} p^{2}$ and $N-1=2^{n} p^{2}$ is clear since $m_{j}<n$ for all $j=1, \ldots, t$. As for $P_{j}-1=2^{n_{j}} p$ and $N-1=2^{n} p^{2}$, the only chance of them being multiplicatively dependent is when $2 \mid n$ and $n_{j}=n / 2$. But then

$$
P_{j}=2^{n / 2} p+1 \mid\left(2^{n / 2} p+1\right)\left(2^{n / 2} p-1\right)=2^{n} p^{2}-1=N-2
$$

implies that P_{j} divides both N and $N-2$, so it divides 2 , a contradiction.

Lemma 3. The inequality $n_{j}<7 \sqrt{2 n \log p}$ holds for $j=1, \ldots, s$. Also the inequality $m_{j}<7 \sqrt{2 n \log p}$ holds for $j=1, \ldots, t$.

Proof. Both inequalities follow from Lemma 4 in [2] except that in that lemma, one needed $n>6 \log p$. So, assume that $m_{j} \geq 7 \sqrt{2 n \log p}$ holds for some $j=1, \ldots, s$. This entails $n<6 \log p$. Since

$$
2^{m_{j}} p^{2}+1 \mid 2^{n} p^{2}+1
$$

entails $n>m_{j}$, we get

$$
n>m_{j} \geq 7 \sqrt{2 n \log p} \quad \text { so } \quad n>98 \log p
$$

contradicting $n<6 \log p$. A similar argument takes care of $n_{j}<7 \sqrt{2 n \log p}$ for $j=1, \ldots, s$. Indeed, assume that $n_{j} \geq 7 \sqrt{2 n \log p}$ for some $j=1, \ldots, s$. In particular, $n<6 \log p$. If $t \geq 1$, then

$$
2^{n} p^{2}+1>\left(2^{n_{j}} p+1\right)\left(2 p^{2}+1\right)>2^{n_{j}+1} p^{3}
$$

so

$$
n>n_{j} \geq 7 \sqrt{2 n \log p} \quad \text { so } \quad n>98 \log p
$$

contradicting $n<6 \log p$. So, we may assume that $t=0$ so $Q=1$. If $s \geq 2$, then

$$
2^{n} p^{2}+1 \geq\left(2^{n_{j}} p+1\right)(2 p+1)>2^{n_{j}} p^{2}+1
$$

showing that $n>n_{j}$. Thus, $n>n_{j} \geq 7 \sqrt{2 n \log p}$, so again $n>98 \log p$, contradicting the fact that $n<6 \log p$. So, it remains to consider the case when $s=1$ so $P=P_{1}=2^{n_{1}} p+1$. It then follows that $\ell_{1}=n_{1} \geq 7 \sqrt{2 n \log p}$. Further,

$$
2^{n} p^{2}+1=\left(2^{\ell_{1}}+1\right) \cdots\left(2^{\ell_{r}}+1\right)\left(2^{\ell_{1}} p+1\right)
$$

Expanding we get that $2^{\min \left\{\ell_{1}, \ell_{2}-\ell_{1}\right\}} \mid p+1$. In addition, $\lambda(N)=2^{\ell_{r}} p$. Here, $\lambda(N)$ is the Carmichael λ-function of N. Recall that for a squarefree positive integer M we have $\lambda(M)=\operatorname{lcm}[p-1: p \mid M]$. By Wright's result [4], $p \in\{3,5,7,127\}$ or p is an unknown Fermat prime. In all these cases, $\min \left\{\ell_{1}, \ell_{2}-\ell_{1}\right\} \leq 7$. But $\ell_{1}=n_{1} \geq 7 \sqrt{2 n \log p} \geq 7 \sqrt{2 \log 7}>13$ is a power of 2 and then ℓ_{2} is at least the next power of 2 , so $\ell_{2}-\ell_{1} \geq \ell_{1} \geq 13$, a contradiction.

The next lemmas deal with spacings between the $n_{j} \mathrm{~s}$ and $m_{j} \mathrm{~s}$. For an odd prime P let $O_{P}:=\operatorname{ord}_{P}(2)$ be the multiplicative order of 2 modulo P.

Lemma 4. We have $n-2 n_{j} \equiv 0\left(\bmod o_{j}\right)$, with

$$
o_{j}:=\operatorname{ord}_{P_{j}}(2) / \operatorname{gcd}\left(2, \operatorname{ord}_{P_{j}}(2)\right) .
$$

Proof. Well, we have $2^{n_{j}} p \equiv-1\left(\bmod P_{j}\right)$ and $2^{n} p^{2} \equiv-1\left(\bmod P_{j}\right)$. Thus, $2^{n-2 n_{j}} \equiv-1\left(\bmod P_{j}\right)$. This implies that $O_{P_{j}} \mid 2\left(n-2 n_{j}\right)$, which in turn implies $n-2 n_{j} \equiv 0\left(\bmod o_{j}\right)$.

Lemma 5. We have $n-m_{j} \equiv 0\left(\bmod O_{j}\right)$, where $O_{j}:=\operatorname{ord}_{Q_{j}}(2)$.
Proof. Well, we have $2^{n_{j}} p^{2} \equiv-1\left(\bmod Q_{j}\right)$ and $2^{n} p^{2} \equiv-1\left(\bmod Q_{j}\right)$. Thus, $2^{n-m_{j}} \equiv 1\left(\bmod P_{j}\right)$. This implies that $n-m_{j} \equiv 0\left(\bmod O_{j}\right)$.

We next bound o_{j} and O_{j} from below.
Lemma 6. We have $o_{j}>3 n_{j}$ for $1 \leq j \leq s$ and $O_{j}>3 m_{j}$ for $1 \leq j \leq t$.
Proof. We start with o_{j}. Since $o_{j}=\operatorname{ord}_{P_{j}}(2) / \operatorname{gcd}\left(2, \operatorname{ord}_{P_{j}}(2)\right)$, we have that there is $\varepsilon \in\{ \pm 1\}$ such that

$$
2^{o_{j}} \equiv \varepsilon \quad\left(\bmod P_{j}\right)
$$

Thus,

$$
\begin{equation*}
2^{o_{j}}-\varepsilon=\left(2^{n_{j}} p+1\right)\left(2^{n_{j}^{\prime}} \lambda_{j}-\varepsilon\right) \tag{1}
\end{equation*}
$$

Here, $n_{j}^{\prime} \geq 1$ and λ_{j} is odd. We treat the case $\varepsilon=1$, and $\left(n_{j}^{\prime}, \lambda_{j}\right)=(1,1)$. In this peculiar case we get

$$
2^{o_{j}}-1=2^{n_{j}} p+1, \quad \text { so } \quad 2^{o_{j}}=2\left(2^{n_{j}-1} p+1\right)
$$

which gives $2^{o_{j}-1}=2^{n_{j}-1} p+1$. This implies $n_{j}=1$, and $2^{o_{j}-1}=p+1 \geq 8$, so $o_{j} \geq 4>3 n_{j}=3$.

From now on, we assume that $\left(n_{j}^{\prime}, \lambda_{j}\right) \neq(1,1)$ when $\varepsilon=1$. Expanding in (1), we get

$$
2^{o_{j}}=2^{n_{j}+n_{j}^{\prime}} p \lambda_{j}+2^{n_{j}^{\prime}} \lambda_{j}-\varepsilon 2^{n_{j}} p
$$

and we see that $n_{j}=n_{j}^{\prime}$. Thus,

$$
2^{o_{j}-n_{j}}=2^{n_{j}} p \lambda_{j}+\left(\lambda_{j}-\varepsilon p\right)
$$

Hence, $2^{n_{j}} \mid \lambda_{j}-\varepsilon p$. Note that $\lambda_{j}-\varepsilon p \neq 0$, otherwise $\varepsilon=1, \lambda_{j}=p$ and $2^{o_{j}}=2^{2 n_{j}} p^{2}$, which is false. In particular, $p+\lambda_{j} \geq 2^{n_{j}}$. If $\lambda_{j} \geq 3$, then $p \lambda_{j} \geq p+\lambda_{j} \geq 2^{n_{j}}$. If $\lambda_{j}=1$, then $p \lambda_{j}=p \geq 2^{n_{j}}-1>2^{n_{j}-0.5}$. The above inequality is true for $n_{j} \geq 2$. For $n_{j}=1$, the inequality $p \lambda_{j}=p>2^{n_{j}-0.5}$ is also true. Hence,

$$
2^{o_{j}}=\left(2^{n_{j}} p+1\right)\left(2^{n_{j}} \lambda_{j}-\varepsilon\right)+\varepsilon>\left(2^{n_{j}} p\right)\left(2^{n_{j}-0.5} \lambda_{j}\right)=2^{2 n_{j}-0.5} p \lambda_{j}>2^{3 n_{j}-1}
$$

To see the above inequality, note that it is clear when $\varepsilon=-1$, while for $\varepsilon=1$ we used $2^{n_{j}} \lambda_{j}-1>2^{n_{j}-0.5} \lambda_{j}$, which holds since $\left(n_{j}, \lambda_{j}\right) \neq(1,1)$. We thus get that $o_{j}>3 n_{j}-1$, so $o_{j} \geq 3 n_{j}$. Since $o_{j}\left|P_{j}-1\right| 2^{n} p^{2}$ is coprime to 3 , we get that $o_{j}>3 n_{j}$.

A similar argument works with O_{j}. In this case, $n \equiv m_{j}\left(\bmod O_{j}\right)$. Further $2^{O_{j}} \equiv 1\left(\bmod 2^{m_{j}} p^{2}+1\right)$. We write

$$
2^{O_{j}}-1=\left(2^{m_{j}} p^{2}+1\right)\left(2^{m_{j}^{\prime}} \lambda_{j}-1\right)
$$

with an odd value of λ_{j}. Expanding, we get

$$
2^{O_{j}}=2^{m_{j}+m_{j}^{\prime}} p^{2} \lambda_{j}-2^{m_{j}} p^{2}+2^{m_{j}^{\prime}} \lambda_{j}
$$

Identifying powers of 2 we get $m_{j}=m_{j}^{\prime}$ and further that $2^{m_{j}} \mid p^{2}-\lambda_{j}$. Note that this last number is nonzero otherwise we have $2^{O_{j}}=2^{2 m_{j}} p^{4}$, which is impossible. Thus, either $p^{2}>2^{m_{j}}$ or $\lambda_{j}>2^{m_{j}}$. Hence, we get

$$
2^{O_{j}}=\left(2^{m_{j}} p^{2}+1\right)\left(2^{m_{j}} \lambda_{j}-1\right) \geq 2^{2 m_{j}-1} p^{2} \lambda_{j}>2^{3 m_{j}-1}
$$

In the above, we used that $2^{m_{j}} p^{2}+1>2^{m_{j}} p^{2}$ and $2^{m_{j}} \lambda_{j}-1 \geq 2^{m_{j}-1} \lambda_{j}$. Thus, $O_{j} \geq 3 m_{j}$, and since O_{j} is coprime to 3 (as a divisor of $2^{n} p^{2}$), the inequality is in fact strict. Hence, $O_{j}>3 m_{j}$.

Lemma 7. We have $n>2 n_{j}$ for $j=1 \ldots, s$ and $n>m_{j}$ for $j=1, \ldots, t$.
Proof. The second one is clear since $2^{m_{j}} p^{2}+1 \mid 2^{n} p^{2}+1$. For the first one, note that $n-2 n_{j}$ is nonzero, otherwise

$$
2^{n_{j}} p+1 \mid 2^{2 n_{j}} p^{2}+1
$$

which is not possible. If $2 n_{j}-n>0$, then since $2 n_{j}-n \equiv 0\left(\bmod o_{j}\right)$, we get that o_{j} is a divisor of $2 n_{j}-n$. In particular, $o_{j}<2 n_{j}$ contradicting the fact that $o_{j}>3 n_{j}$. Thus, it must be the case that $n>2 n_{j}$.

We next bound s, t.
Lemma 8. We have

$$
s<3\left(1+\frac{\log (7 \sqrt{2 n \log p})}{\log 2.5}\right) \quad \text { and } \quad t<3\left(1+\frac{\log (7 \sqrt{2 n \log p})}{\log 2.5}\right) .
$$

Proof. We show that if X is any number smaller than or equal to $7 \sqrt{2 n \log p}$, then the interval $[2 X / 5, X)$ contains at most three numbers of the form n_{j} for some $j=1, \ldots, s$. Indeed, assume there are four such. Their o_{j} 's are of the form $2^{u_{j}} p^{\delta_{j}}$, where $\delta_{j} \in\{0,1,2\}$. Since we have four numbers, there are two of them say o_{j} and o_{j}^{\prime} having $\delta_{j}=\delta_{j^{\prime}}$. In particular, one of $o_{j}, o_{j^{\prime}}$ divides the other and therefore $o:=\min \left\{o_{j}, o_{j^{\prime}}\right\}=\operatorname{gcd}\left(o_{j}, o_{j^{\prime}}\right)$ is one of o_{j} or $o_{j^{\prime}}$. Since $n_{j}, n_{j}^{\prime} \in[2 X / 5, X)$, we get that $o>3 \min \left\{n_{j}, n_{j^{\prime}}\right\} \geq 6 X / 5$. Now

$$
n \equiv 2 n_{j} \equiv 2 n_{j^{\prime}} \quad(\bmod o)
$$

so that $n_{j}-n_{j^{\prime}} \equiv 0\left(\bmod o^{\prime}\right)$, where $o^{\prime}:=o / \operatorname{gcd}(o, 2)$. But

$$
\left|n_{j}-n_{j^{\prime}}\right|<3 X / 5 \leq o / 2 \leq o^{\prime}
$$

which shows that $n_{j}=n_{j^{\prime}}$, a contradiction.
A similar argument shows that for any positive real number X the interval $[2 X / 5, X)$ contains at most three of the numbers m_{j} for $j=1, \ldots, t$.

Staring with $X:=7 \sqrt{2 n \log p}$, then each of the intervals

$$
[X / 2.5, X),\left[X /(2.5)^{2}, X / 2.5\right), \cdots,\left[X /(2.5)^{k+1}, X /(2.5)^{k}\right)
$$

contains at most three values of n_{j}. Also, each of the above intervals contains at most three values of m_{j}. If

$$
k \geq 1+\left\lfloor\frac{\log X}{\log 2.5}\right\rfloor>\frac{\log X}{\log 2.5}
$$

then $X /(2.5)^{k}<1$, so the last interval is contained in $(0,1)$ so it cannot contain any n_{j} or m_{j}. This shows that

$$
k \leq\left\lfloor\frac{\log X}{\log 2.5}\right\rfloor
$$

Thus,

$$
s \leq 3(k+1) \leq 3\left(\left\lfloor\frac{\log (7 \sqrt{2 n \log p})}{\log 2.5}\right\rfloor+1\right)<3\left(1+\frac{\log (7 \sqrt{2 n \log p})}{\log 2.5}\right)
$$

and also

$$
t<3\left(1+\frac{\log (7 \sqrt{2 n \log p})}{\log 2.5}\right)
$$

Now

$$
\begin{aligned}
P & =\prod_{j=1}^{s}\left(2^{n_{j}} p+1\right) \\
& <2^{3 X \sum_{j \geq 1}(2 / 5)^{-j}} p^{s} \prod_{j \geq 1}\left(1+\frac{1}{2^{j} p}\right)^{3} \\
& <1.3^{3} \cdot 2^{35 \sqrt{2 n \log p}+3(1+\log (7 \sqrt{2 n \log p}) / \log 2.5)(\log p / \log 2)}
\end{aligned}
$$

In the above we used that

$$
3 X \sum_{j \geq 0}(2.5)^{-j}=\frac{3 X}{1-1 / 2.5}=5 X=35 \sqrt{2 n \log p}
$$

as well as

$$
\prod_{j \geq 1}\left(1+\frac{1}{2^{j} p}\right)<\exp \left(\sum_{j \geq 1} \frac{1}{2^{j} p}\right)<\exp (1 / p)<\exp (1 / 5)<1.3
$$

Similarly,

$$
Q=\prod_{j=1}^{t}\left(2^{m_{j}} p^{2}+1\right)<1.3^{3} \cdot 2^{35 \sqrt{2 n \log p}+3(1+\log (7 \sqrt{2 n \log p}) / \log 2.5)(2 \log p / \log 2)}
$$

We record this as the following lemma.

Lemma 9. We have

$$
\begin{aligned}
& P<1.3^{3} \cdot 2^{35 \sqrt{2 n \log p}+3(1+\log (7 \sqrt{2 n \log p}) / \log 2.5)(\log p) /(\log 2)} \\
& Q<1.3^{3} \cdot 2^{35 \sqrt{2 n \log p}+3(1+\log (7 \sqrt{2 n \log p}) / \log 2.5)(2 \log p) /(\log 2)}
\end{aligned}
$$

Now we put everything together and use that

$$
n \log 2=\log \left(2^{n}\right)<\log N<\log F+\log P+\log Q
$$

to get the following result.
Lemma 10. The inequality

$$
\begin{align*}
n \log 2 & <8 \log p+6 \log (1.3)+(70 \log 2) \sqrt{2 n \log p} \tag{2}\\
& +\left(1+\frac{\log (7 \sqrt{2 n \log p})}{\log 2.5}\right)(9 \log p)
\end{align*}
$$

holds.
Lemma 11. It is not possible that all $o_{j}($ for $1 \leq j \leq s)$ and $O_{j}($ for $1 \leq j \leq t)$ are coprime to p.

Proof. Assume all $o_{j}(1 \leq j \leq s)$ and $O_{j}(1 \leq j \leq t)$ are powers of 2 . Let b be maximal such that $2^{b} \leq n / 2$. We show:
(i) $O_{j} / 2 \leq 2^{b}$ for $j=1, \ldots, t$;
(ii) $\ell_{r} \leq 2^{b}$ for $j=1, \ldots, r$;
(iii) $o_{j} \leq 2^{b}$ for $j=1, \ldots, s$ with at most one exception j which then is unique, has $o_{j}=2^{b+1}$ and $n=2 n_{j}+o_{j}$.

We start with (i). We have

$$
n-m_{j} \equiv 0 \quad\left(\bmod O_{j}\right)
$$

Clearly, $2^{n} p^{2}+1>2^{m_{j}} p^{2}+1$ so $n>m_{j}$. Thus, $O_{j}<n$, and so $O_{j} / 2<n / 2 \leq 2^{b}$.
We next deal with (ii). We have $2^{\ell_{r}}+1 \mid N$, so $2^{\ell_{r}}=F_{r}-1 \mid N-1=2^{n} p^{2}$ showing that $\ell_{r} \leq n$. We need to show that $\ell_{r} \leq n / 2$. Assume $\ell_{r}>n / 2$. Write

$$
2^{n} p^{2}+1=\left(2^{\ell_{r}}+1\right)\left(2^{a} \lambda+1\right)
$$

for some integers $a \geq 1$ and λ odd. Thus,

$$
2^{n} p^{2}=2^{\ell_{r}+a} \lambda+2^{\ell_{r}}+2^{a} \lambda
$$

and by inspecting the power of 2 we get $a=\ell_{r}$. Thus,

$$
2^{n} p^{2}=2^{2 \ell_{r}} \lambda+2^{\ell_{r}}(\lambda+1)
$$

Since $2 \ell_{r}>n$, we get that $\ell_{r}=n$. Next, if $t \geq 1$, then

$$
\left(2^{n} p^{2}+1\right)>\left(2^{\ell_{r}}+1\right)\left(2 p^{2}+1\right)=\left(2^{n}+1\right)\left(2 p^{2}+1\right)>2^{n} p^{2}+1
$$

a contradiction. Thus, $t=0$ so $Q=1$. It follows that $s \geq 1$. If $s \geq 2$, then

$$
2^{n} p^{2}+1 \geq\left(2^{\ell_{r}}+1\right)(2 p+1)(4 p+1)=\left(2^{n}+1\right)(2 p+1)(4 p+1)>2^{n} p^{2}+1
$$

a contradiction. Thus, $s=1$ and

$$
2^{n} p^{2}+1=\left(2^{\ell_{1}}+1\right) \cdots\left(2^{n}+1\right)\left(2^{n_{1}} p+1\right)
$$

We get $2^{n-2 n_{1}} \equiv-1\left(\bmod 2^{n_{1}} p+1\right)$. So, $n-2 n_{1} \equiv o_{1}\left(\bmod 2 o_{1}\right)$, and $o_{1} \leq n$ is a power of 2 . Since n is a power of 2 which is at least o_{1}, we get that $o_{1} \mid n$ and since $o_{1} \mid n-2 n_{1}$, we get that $o_{1} \mid 2 n_{1}$, contradicting the fact that $o_{1}>3 n_{1}$. This shows that $\ell_{r} \leq n / 2$.

We now deal with (iii). We have $n-2 n_{j} \equiv 0\left(\bmod o_{j}\right)$. If $o_{j} \leq n / 2$, we have what we want. Assume $o_{j}>n / 2$. Then $n-2 n_{j}=m o_{j}$ with some positive integer m together with the fact that $o_{j}>n / 2$ implies that $m=1$. Thus, $o_{j}=2^{b+1}$ is the only power of 2 in $[n / 2, n)$ and $n_{j}=\left(n-o_{j}\right) / 2$. Hence, o_{j} and j are unique.

To finish, assume first that $O_{j} / 2(1 \leq j \leq t), \ell_{r}$ and $o_{j}(1 \leq j \leq s)$ are all powers of 2 of exponent at most b. Then since

$$
2^{o_{j}}+1 \equiv 0 \quad\left(\bmod P_{j}\right) \quad(1 \leq j \leq s) \quad 2^{O_{j} / 2}+1 \equiv 0 \quad\left(\bmod Q_{j}\right) \quad(1 \leq j \leq t)
$$

we get

$$
2^{n} p^{2}+1 \mid \prod_{0 \leq a \leq b}\left(2^{2^{a}}+1\right)=2^{2^{b+1}}-1<2^{n}
$$

a contradiction. Assume next that there is one j in $\{1, \ldots, s\}$ such that $o_{j}=2^{b+1}$ and $n=2 n_{j}+o_{j}$. Then

$$
\begin{aligned}
2^{2 n_{j}+o_{j}} p^{2}+1 & =2^{n} p^{2}+1 \mid\left(2^{n_{j}} p+1\right) \prod_{0 \leq a \leq b}\left(2^{2^{a}}+1\right) \\
& =\left(2^{n_{j}} p+1\right)\left(2^{2^{b+1}}-1\right)<\left(2^{n_{j}} p+1\right) 2^{o_{j}}
\end{aligned}
$$

which gives

$$
2^{2 n_{j}} p^{2} \leq 2^{n_{j}} p
$$

a contradiction. This finishes the proof of this lemma.
Lemma 11 is good news since it shows that one of o_{j}, O_{j} is a multiple of p and since $n-2 n_{j}$ and $n-m_{j}$ are positive integers which are multiples of o_{j} (for $1 \leq j \leq s$) and O_{j} respectively (for $1 \leq j \leq t$), we conclude that $n>p$. Inequality (2) now gives

$$
\begin{aligned}
\log 2 & <\frac{8 \log p}{p}+\frac{6 \log (1.3)}{p}+(70 \log 2) \sqrt{\frac{2 \log p}{p}} \\
& +\left(\frac{1}{\sqrt{p}}+\frac{\log (7 \sqrt{2 p \log p})}{\sqrt{p} \log 2.5}\right)\left(\frac{9 \log p}{\sqrt{p}}\right)
\end{aligned}
$$

The above gives $p<120000$. But we can do a bit better. That is, assume first that $n \geq p^{2}$. Then inequality (2) gives

$$
\begin{aligned}
\log 2 & <\frac{8 \log p}{p^{2}}+\frac{6 \log (1.3)}{p^{2}}+(70 \log 2) \sqrt{\frac{2 \log p}{p^{2}}} \\
& +\left(\frac{1}{p}+\frac{\log \left(7 \sqrt{2 p^{2} \log p}\right)}{p \log 2.5}\right)\left(\frac{9 \log p}{p}\right)
\end{aligned}
$$

which implies $p \leq 233$. With this value of p, inequality (2) gives

$$
n<55010
$$

Assume next that $n<p^{2}$. We now revisit Lemma 8 but keep in mind that since $n<p^{2}$, we must have that o_{j}, O_{j} are of the form $2^{\lambda_{j}} p^{\delta_{j}}$, where $\delta_{j} \in\{0,1\}$. That argument shows that in fact the inequalities of Lemma 8 hold with the factor of 2 on the right-hand side instead of 3 and in fact even (2) holds with the right-hand side scaled by a factor of $2 / 3$. This can be rewritten as

$$
\begin{align*}
\frac{3 n \log 2}{2} & <8 \log p+6 \log (1.3)+(70 \log 2) \sqrt{2 n \log p} \tag{3}\\
& +\left(1+\frac{\log (7 \sqrt{2 n \log p})}{\log 2.5}\right)(9 \log p)
\end{align*}
$$

Since $n>p$, we get

$$
\begin{aligned}
\frac{3 \log 2}{2} & <\frac{8 \log p}{p}+\frac{6 \log (1.3)}{p}+(70 \log 2) \sqrt{\frac{2 \log p}{p}} \\
& +\left(\frac{1}{\sqrt{p}}+\frac{\log (7 \sqrt{2 p \log p})}{\sqrt{p} \log 2.5}\right)\left(\frac{9 \log p}{\sqrt{p}}\right)
\end{aligned}
$$

which gives $p<50000$. With this value of p, inequality (3) gives

$$
n<50000
$$

Let us summarize our numerical conclusions.
Lemma 12. We have $p<50000$ and $n<55010$.
It remains to do the numerics. Since $p<50000$, we get that

$$
F_{j}<p^{2}<10^{10}
$$

so $F_{j} \in\{3,5,17,257,65537\}$.

2.2. The Case $F>1$

Assume $F>1$. Then $p \mid F-1$. Since $p<50000$, the only possibilities are

$$
\begin{gathered}
p \in\{7,11,13,19,29,31,41,43,47,83,107,113,127,131,151 \\
241,331,467,2579,6553,10631,13159,19661,45083\}
\end{gathered}
$$

We start with the large primes.
The case $p=45083$. The only possibility is $F=F_{1} F_{3} F_{4}=5 \cdot 257 \cdot 65537$. This is not convenient since none of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1$ is prime.

The case $p=19661$. The only possibility is $F=F_{0} \cdot F_{4}=3 \cdot 65537$. Since $2 p^{2}+1$ is not prime, it follows that $P_{1}=2 p+1, F_{1}=3$. Then $2^{n} p^{2}+1 \equiv 0(\bmod 65537)$. The order of 2 modulo 65537 is 32 and a short calculation shows that $2^{i} p^{2}+1 \not \equiv 0$ $(\bmod 65537)$ for all $i=0, \ldots, 31$.

The case $p=13159$. The only possibility is $F=F_{0} F_{2} F_{4}=3 \cdot 17 \cdot 65537$. This is not convenient since neither $2 p+1$ nor $2 p^{2}+1$ is prime.

The case $p=10631$. The only possibility is $F=F_{1} F_{2} F_{4}=5 \cdot 17 \cdot 65537$. This is not convenient since neither of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1$ is prime.

The case $p=6553$. In this case $F=F_{0} F_{2} F_{3}=3 \cdot 17 \cdot 257$. This is not convenient since both $2 p+1,2 p^{2}+1$ are composite.

The case $p=2579$. In this case $F=F_{2} F_{4}=17 \cdot 65537$. This is not convenient since neither one of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1,8 p+1,8 p^{2}+1,16 p+1,16 p^{2}+1$ is prime.

The case $p=467$. In this case, $F=F_{1} F_{3} F_{4}=5 \cdot 257 \cdot 65537$. This is not convenient since neither of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1$ is prime.

The case $p=331$. In this case $F=F_{1} F_{2} F_{3} F_{4}=5 \cdot 17 \cdot 257 \cdot 65537$. This is not convenient since neither of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1$ is prime.
The case $p=241$. In this case $F=F_{3} F_{4}=257 \cdot 65537$. This is not convenient since neither of

$$
\begin{gathered}
2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1,8 p+1,8 p^{2}+1,16 p+1,16 p^{2}+1 \\
32 p+1,32 p^{2}+1,64 p+1,64 p^{2}+1,128 p+1,128 p^{2}+1,256 p+1,256 p^{2}+1
\end{gathered}
$$

is prime.
The case $p=151$. Here, $F=F_{0} F_{1} F_{2} F_{3}=3 \cdot 5 \cdot 17 \cdot 257$ or $F=F_{1} F_{2} F_{3} F_{4}=5 \cdot 17$. 257•65537. However, this is not convenient since none of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1$ is prime.

The case $p=131$. In this case, $F=F_{1} F_{2} F_{4}=5 \cdot 17 \cdot 65537$. Now $2 p+1$ is prime but $2 p^{2}+1$ is not. So, n_{1} cannot be 1 . Also, neither of $4 p+1,4 p^{2}+1$ is prime so n_{1} cannot be 2 , which is a contradiction since $\ell_{1}=2$.

The case $p=127$. In this case, we have $F=F_{0} F_{1} F_{2}=3 \cdot 5 \cdot 17$ or $F=F_{0} F_{2} F_{4}=$ $3 \cdot 17 \cdot 65537$ or $F=F_{1} F_{2} F_{3}=5 \cdot 17 \cdot 257$ or $F=F_{2} F_{3} F_{4}=17 \cdot 257 \cdot 65537$. Neither of $2 p+1,2 p^{2}+1$ is prime, so the Fermat prime 3 cannot be involved. Also, $8 p+1,8 p^{2}+1,16 p+1,16 p^{2}+1$ are all composite so we cannot have $n_{1} \in\{3,4\}$. However, $4 p+1$ is prime and $4 p^{2}+1$ is composite. So the only possibility is $P_{1}=4 p+1$ and $F_{1}=5$ are both involved in N and 5 is the smallest Fermat prime in N. Then $257 \mid 2^{n} p^{2}+1$. Since the order of 2 modulo 257 is 16 , we check whether $2^{i} p^{2}+1$ is a multiple of 257 for $i=0, \ldots, 15$ and find no solution.
The case $p=113$. The only possibility is $F=F_{2} F_{3} F_{4}=17 \cdot 257 \cdot 65537$. We have that $2 p+1$ is prime but $2 p^{2}+1$ is not, so $n_{1}>1$. Since also none of

$$
4 p+1,4 p^{2}+1,8 p+1,8 p^{2}+1,16 p+1,16 p^{2}+1
$$

is prime, we get a contradiction.
The case $p=107$. We then have $F=F_{1} F_{3}=5 \cdot 257$. This is not convenient since none of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1$ is prime.

The case $p=83$. We have $F=F_{1} F_{4}=5 \cdot 65537$. We have $2 p+1$ is prime but $2 p^{2}+1$ is not. Further, none of $4 p+1,4 p^{2}+1$ is prime, which is a contradiction.

The case $p=47$. In this case, we have $F=F_{1} F_{4}=5 \cdot 65537$, or $F=F_{0} F_{1} F_{3}=$ $3 \cdot 5 \cdot 257$. We have $2 p+1,2 p^{2}+1,4 p+1$ are all composite but $4 p^{2}+1$ is prime. Thus, the only possibility is $n_{1}=2$ and $F=F_{1} F_{4}$ is involved in N. Thus, $65537 \mid 2^{n} p^{2}+1$. The order of 2 modulo 65537 is 32 and we check that $2^{i} p^{2}+1 \not \equiv 0(\bmod 65537)$ for any $i=0, \ldots, 31$.

The case $p=43$. In this case $F=F_{1} F_{2} F_{3}=5 \cdot 17 \cdot 257$, or $F=F_{2} F_{3} F_{4}=$ $17 \cdot 257 \cdot 65537$. None of $2 p+1,2 p^{2}+1$ is prime so $n_{1}>1$. None of

$$
8 p+1,8 p^{2}+1,16 p+1,16 p^{2}+1
$$

is prime so we cannot have $n_{2} \in\{3,4\}$. However, $4 p+1$ is prime (and $4 p^{2}+1$ is not), so $n_{1}=2, P_{1}=4 p+1$ and $F=5 \cdot 17 \cdot 257$. Thus, $257 \mid 2^{n} \cdot p^{2}+1$. This is false as it can be checked that $2^{i} p^{2}+1$ is not a multiple of 257 for any $i=0,1, \ldots, 15$.

The case $p=41$. In this case $F=F_{0} F_{1} F_{3}=3 \cdot 5 \cdot 257$. We have $2 p+1$ is prime but $2 p^{2}+1$ is not. So, $n_{1}=1$ and $257 \mid 2^{n} p^{2}+1$. Again we check that this is false by checking that $2^{i} p^{2}+1$ is not a multiple of 257 for any $i=0, \ldots, 15$.

The case $p=31$. Here, $F=F_{0} F_{1} F_{2} F_{3}=3 \cdot 5 \cdot 17 \cdot 257$ or $F=F_{1} F_{2} F_{3} F_{4}=$ $5 \cdot 17 \cdot 257 \cdot 65537$, but none of $2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1$ is prime.

The case $p=29$. In this case $F=F_{2} F_{3} F_{4}=17 \cdot 257 \cdot 65537$. None of

$$
2 p+1,2 p^{2}+1,4 p+1,4 p^{2}+1
$$

is prime so $n_{1} \geq 3$. We have that $8 p+1$ is prime but $8 p^{2}+1$ is not so $n_{1}>3$. Finally, $16 p+1$ is not prime but $16 p^{2}+1$ is, so $n_{1}=4$ and $F=17 \cdot 257 \cdot 65537$. We check that $65537 \mid 2^{n} p^{2}+1$ is impossible by checking that $2^{i} p^{2}+1$ is not a multiple of 65537 for any $i=0, \ldots, 31$.

The case $p=19$. In this case $F=F_{0} F_{2} F_{3} F_{4}=3 \cdot 17 \cdot 257 \cdot 65537$. However, this is not possible as none of $2 p+1,2 p^{2}+1$ is prime.

The case $p=13$. In this case $F=F_{2} F_{3}=17 \cdot 257$, or $F=F_{3} F_{4}=257 \cdot 65537$. We have $2 p+1$ and $2 p^{2}+1$ are composite. However, both $4 p+1,4 p^{2}+1$ are primes. If $n_{1}=2$, then $P_{1}=4 p+1, Q_{1}=4 p^{2}+1$. Then $P_{1} Q_{1}=\left(1+4 p(p+1)+16 p^{2}\right)$ and $2 \| p+1$. So, we must have that one of $8 p+1,8 p^{2}+1$ is involved in N, but none is a prime. Hence, $n_{1}>2$. None of

$$
16 p+1,16 p^{2}+1,32 p+1,32 p^{2}+1,64 p+1,64 p^{2}+1,128 p+1,128 p^{2}+1
$$

is prime. Also, $256 p^{2}+1$ is not prime but $256 p+1$ is prime. So, we may have $n_{1}=8, P_{1}=256 p+1$ and $F=257 \cdot 65537$ is involved in N. Again we check that $65537 \nmid 2^{n} p^{2}+1$ by checking that $2^{i} p^{2}+1$ is never a multiple of 65537 for $i=0, \ldots, 31$.

The case $p=11$. Then $F=F_{0} F_{3}=3 \cdot 257$, or $F=F_{1} F_{2} F_{3} F_{4}=5 \cdot 17 \cdot 257 \cdot 65537$. We have that $2 p+1$ is prime but $2 p^{2}+1$ is not. So, we may have $n_{1}=1$ and then $3 \cdot 257$ is involved in N. In this case, $F=3 \cdot 257$ is involved in N. Further, it follows that $F_{1} P_{1}=(2+1)(2 p+1)=(1+4 p+2(p+1))$. Since $8 \mid 2(p+1)$, it follows that one of $4 p+1$ or $4 p^{2}+1$ must be a prime involved in N, but none of these is prime. Thus, $n_{1}>1$ and since none of $4 p+1,4 p^{2}+1$ is prime, the number 5 cannot be involved in N, a contradiction.

The case $p=7$. In this case $F=F_{0} F_{1}=3 \cdot 5$, or $F=F_{0} F_{3}=3 \cdot 257$, or $F=F_{1} F_{2}=5 \cdot 17$, or $F=F_{1} F_{4}=5 \cdot 65537$, or $F=F_{2} F_{3}=17 \cdot 257$, or $F=F_{3} F_{4}=$ $257 \cdot 65537$, or $F=F_{0} F_{1} F_{2} F_{3}=3 \cdot 5 \cdot 17 \cdot 257$, or $F=F_{0} F_{1} F_{3} F_{4}=3 \cdot 5 \cdot 257 \cdot 65537$, or $F=F_{1} F_{2} F_{3} F_{4}=5 \cdot 17 \cdot 257 \cdot 65537$. At any rate, none of $2 p+1,2 p^{2}+1$ is prime so 3 is not involved in N. Now 65537 does not divide $2^{n} p^{2}+1$ for any n as it can be checked that $2^{i} p^{2}+1$ is not a multiple of 65537 for $i=0, \ldots, 31$. Thus, 65537 is not involved in N. Similarly, 257 is not involved in N. So, the only Fermat numbers that can be involved in N are 5 and 17 and there must be at least two of them so $F=5 \cdot 17$. It thus follows that one of $4 p+1,4 p^{2}+1$ is involved in N but not both (they are both prime). Assume the one involved is $4 p^{2}+1$. Then $(4+1) \cdot\left(4 p^{2}+1\right)=\left(16 p^{2}+4\left(p^{2}+1\right)\right)$ and $2 \| p^{2}+1$. So, we need one of $8 p+1,8 p^{2}+1$ to be involved in N but none is prime. Assume next that the one involved is $4 p+1$. Then $(4+1)(4 p+1)=(16 p+4(p+1))$ and $2^{7} \| 4(p+1)$. Since 17 is already involved in N, it follows that either both $16 p+1,16 p^{2}+1$ is involved in N (false since $16 p^{2}+1$ is not prime), or none of them is. So, none of them is. Then $5 \cdot 17 \cdot(4 p+1)=\left(1+2^{5} m\right)$ for some odd m, so one of $32 p+1,32 p^{2}+1$ is involved in N and this is false since they are both composite.

2.3. The Case $F=1$

Here, $n_{1}=m_{1}$. Let $P_{1}=2^{a} p+1, Q_{1}=2^{a} p^{2}+1$. Note that $2^{m} p^{2}+1$ is a multiple of 3 if m is odd, so all m_{j} are even. In particular, a is even, so $p \equiv 1(\bmod 3)$. This shows that all n_{j} are even otherwise $2^{n_{j}} p+1$ is a multiple of 3 for n_{j} odd. We can even do a bit better. Note that $p^{2}(\bmod 5) \in\{1,4\}$ and $a=2 a_{1}$ is even. So, if $p^{2} \equiv 1(\bmod 4)$, we cannot have a_{1} odd since then $2^{a} \equiv 2^{2 a_{1}} \equiv 4(\bmod 5)$ so $5 \mid 2^{a} p^{2}+1$. Thus, if $p^{2} \equiv 1(\bmod 5)$, then $a_{1} \equiv 0(\bmod 2)$ and if $p^{2} \equiv 4(\bmod 5)$, then $a_{1} \equiv 1(\bmod 2)$. This also shows that $p \not \equiv 4(\bmod 5)$.

Then

$$
P_{1} Q_{1}=2^{2 a} p^{3}+2^{a} p(p+1)+1
$$

Assume that $\min \left\{n_{2}, m_{2}\right\}>a+\nu_{2}(p+1)$. Recall that $\nu_{2}(p+1)$ is the exponent of 2 in the factorization of $p+1$. It then follows that $a=\nu_{2}(p+1)$ and for this value of a both $2^{a} p+1,2^{a} p^{2}+1$ are primes. Mathematica revealed that there are only 24 such primes p in [7,50000], namely
$\{67,163,883,3067,3307,6991,7951,13267,14683,16603,17551,18523,22147$,
$23563,24763,27631,28867,37747,38923,40591,43963,49363,49603,49843\}$.
Now we follow the proof. We need $2^{n} p^{2}+1$ to be a multiple of both $2^{a} p+1$ and $2^{a} p^{2}+1$. Thus,

$$
n-2 a \equiv 0 \quad\left(\bmod o_{1}\right) \quad \text { and } \quad n-a \equiv 0 \quad\left(\bmod O_{1}\right),
$$

where $o_{1}=\operatorname{ord}_{P_{1}}(2) / \operatorname{gcd}\left(2, \operatorname{ord}_{P_{1}}(2)\right)$, and $O_{1}=\operatorname{ord}_{Q_{1}}(2)$. Thus, we want that $n-2 a \equiv n-a(\bmod d)$, where $d:=\operatorname{gcd}\left(o_{1}, O_{1}\right)$. This means $d \mid a$. A computer program ran for a few seconds and found no instance for which $d \mid a$.

Next we assume that $b=\min \left\{n_{2}, m_{2}\right\} \leq a+\nu_{2}(p+1)$. Since $b>a$ must be even, it follows that $p \equiv 3(\bmod 4)$, so $p \equiv 7(\bmod 12)$. There are 969 primes $p \in[7,50000]$ such that $p \equiv 7(\bmod 12)$ and $p \not \equiv 4(\bmod 5)$. For each one of them, we have

$$
n-2 a \equiv 0 \quad\left(\bmod o_{1}\right) \quad \text { and } \quad n-a \equiv 0 \quad\left(\bmod o_{2}\right)
$$

Since $o_{1}>3 a$, we get that $5 a<n<55010$ and since $a=2 a_{1}$, we get

$$
a_{1}<n / 10 \quad \text { so } \quad a_{1} \leq 5000
$$

Further, $a_{1}=2 a_{2}+w_{p}$, where $w_{p}=0$ if $p^{2} \equiv 1(\bmod 5)$ and $w_{p}=1$ if $p^{2} \equiv 4$ $(\bmod 5)$.

So, we wrote a code which goes through the 969 primes $p \in[7,50000]$ satisfying $p \equiv 7(\bmod 12)$ and $p \not \equiv 4(\bmod 5)$, and through all integers

$$
0 \leq a_{2} \leq 2500
$$

and calculates whether with $a_{1}=2 a_{2}+w_{p}$, both numbers

$$
P_{1}=2^{2 a_{1}} p+1 \quad \text { and } \quad 2^{2 a_{1}} p^{2}+1
$$

are primes. If they are, the code computes $o_{1}=\operatorname{ord}_{P_{1}}(2) / \operatorname{gcd}\left(2, \operatorname{ord}_{P_{1}}(2)\right)$ and $O_{1}=\operatorname{ord}_{Q_{1}}(2)$, and checks whether $d=\operatorname{gcd}\left(o_{1}, O_{1}\right)$ divides $a=2 a_{1}$.

The Mathematica code ran for less than 24 hours and produced no examples. This finishes the proof.

Acknowledgement. We thank the anonymous referee for a careful reading of our paper and for suggestions that helped improve the final version of this manuscript.

References

[1] A. Alahmadi and F. Luca, There are no Carmichael numbers of the form $2^{n} p+1$ with p prime, C. R. Math. 360 (2022), 1177-1181.
[2] J. Cilleruelo, F. Luca and A. Pizarro-Madariaga, Carmichael numbers in the sequence $\left(2^{n} k+\right.$ $1)_{n \geq 1}$, Math. Comp. 85 (2016), 357-377.
[3] A. R. Korselt, Problème chinois, L'intermédiaire des mathématiciens 6 (1899), 142-143.
[4] T. Wright, The impossibility of certain types of Carmichael numbers, Integers 12 (2012), 951-964.

[^0]: DOI: $10.5281 /$ zenodo. 8174516

