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Abstract
In this paper, we prove that there is no Carmichael number of the form 27p? + 1
with some integer n > 0 and prime p.

1. Introduction

A Carmichael number N is a composite positive integer such that the congruence
aV =a (mod N) for all integers a. A criterion due to Korselt [3] states that N is
Carmichael if and only if N is squarefree, composite and p—1| N —1 for all p | N.
In particular, w(N) > 3, where w(N) is the number of distinct prime factors of N.

Some recent papers investigated Carmichael numbers of the form 2"k + 1 for
some fixed odd positive integer k. For example, in [2] it is shown that k > 27 and

n< 22><107T(k)2(10gk)2w(k)
where 7(k) is the number of divisors of k. In [1], it is shown that there is no

Carmichael number of the form 2"p 4 1 for a prime p.
Here we take this one step further and prove the following theorem.

Theorem 1. There is no Carmichael number of the form 2"p? + 1 with p prime.
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2. The Proof

2.1. Bounding p and n

We follow [1] where it was shown that there is no Carmichael number of the form

2"p + 1. We may assume that n > 1; otherwise N = p? + 1 is odd, therefore p = 2,

which is false. Next, p > 3 since there there is no Carmichael number of the form

2™ 4-1 for any positive integer m. Thus p? > 27, so p > 7. Since N is Carmichael, it

is squarefree and all its prime factors are of the form ¢ = 2*p® + 1 for some integer

A€ [l,n] and § € {0,1,2}. When § =0, ¢ is a Fermat prime so A is a power of 2.
So, we may write IV as

T s t
2p? +1=]@% + ) J[@¥p+1) H 2mip? 4 1
i=1 =1 =1
We have w(N) > 3. Thus, r + s+t =w(N) > 3. We write
Fj:=2%+1, Pj:=2%p+1, and Q;:=2"p*+1.

We also let

t
F=]]F, P=][P ad Q:=]]Q
, . i1
We assume £ < - < by, ng < -+~ < ng, my < --- < my. We need bounds for
F, P, Q. The following is Lemma 2 in [2].
Lemma 1. The inequality F; < p* holds for all j=1,...,r

In particular, writing £; = 2% for j =1,...,r, with ¢; <--- < {,, we have that

F = H22’ 1) < (2% +1)(227 —1) < F? < pb.

Lemma 2. The numbers P; —1 and N — 1 are multiplicatively independent for all
j=1,...,s. Further, the numbers Q;—1 and N —1 are multiplicatively independent
forallj=1,...t

Proof. The statement about Q; —1 = 2™p* and N —1 = 2"p? is clear since m; < n
forall j =1,...,t. Asfor Pj—1=2"pand N —1=2"p? the only chance of them
being multiplicatively dependent is when 2 | n and n; = n/2. But then

Py =2"2p 41 (2"%p+1)(2"%p—1)=2"p* —1=N -2

implies that P; divides both N and N — 2, so it divides 2, a contradiction. O
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Lemma 3. The inequality n; < 7\/2nlogp holds for j =1,...,s. Also the inequal-
ity mj < 7+/2nlogp holds for j =1,...,t.

Proof. Both inequalities follow from Lemma 4 in [2] except that in that lemma, one
needed n > 6logp. So, assume that m; > 7v/2nlogp holds for some j =1,...,s.
This entails n < 6logp. Since

2mip? +1|2"p* 41
entails n > m;, we get

n>m; > 7y/2nlogp SO n > 98logp,

contradicting n < 6logp. A similar argument takes care of n; < 7v/2nlogp for
j =1,...,s. Indeed, assume that n; > 7/2nlogp for some j = 1,...,s. In
particular, n < 6logp. If t > 1, then

2"p? + 1> (2Mp+1)(2p% + 1) > 2" 1p?,

SO
n>mn; > 7v/2nlogp SO n > 98logp,

contradicting n < 6logp. So, we may assume that ¢t =0so @ = 1. If s > 2, then
22 +1> (2hip+1)(2p+1) > 2% p? + 1,

showing that n > n;. Thus, n > n; > 7y/2nlogp, so again n > 98logp, contra-
dicting the fact that n < 6logp. So, it remains to consider the case when s =1 so
P =P, =2"p+ 1. It then follows that ¢/; = n; > 7v/2nlog p. Further,

2"p? +1= (2% +1)--- (2 + 1)(2%p + 1).

Expanding we get that 2@in{¢1.2=61} | p 1 1. In addition, A(N) = 2¢p. Here, A\(N)
is the Carmichael A-function of N. Recall that for a squarefree positive integer
M we have A(M) = lem[p — 1 : p | M]. By Wright’s result [4], p € {3,5,7,127}
or p is an unknown Fermat prime. In all these cases, min{¢;, ¢y — ¢} < 7. But
1 =n1 > 72nlogp > 7v/2log7 > 13 is a power of 2 and then /5 is at least the
next power of 2, so o — {1 > £1 > 13, a contradiction. O

The next lemmas deal with spacings between the n;s and m;s. For an odd prime
P let Op := ordp(2) be the multiplicative order of 2 modulo P.

Lemma 4. We have n —2n; =0 (mod o;), with

0j = ordp, (2)/gcd(2,ordp, (2)).
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Proof. Well, we have 2"p = —1 (mod P;) and 2"p?> = —1 (mod P;). Thus,
2"72% = —1 (mod P;). This implies that Op, | 2(n — 2n;), which in turn im-
plies n — 2n; =0 (mod o). O

Lemma 5. We have n —m; =0 (mod Oy), where O; := ordg,(2).

Proof. Well, we have 2"%ip? = —1 (mod @;) and 2"p? = —1 (mod Q;). Thus,
2"~ =1 (mod P;). This implies that n —m,; =0 (mod O;). O

We next bound o; and O; from below.
Lemma 6. We have 0; > 3n; for 1 < j <s and O; > 3m; for1 <j <t.

Proof. We start with o;. Since o; = ordp,(2)/ged(2,ordp,(2)), we have that there
is € € {£1} such that
2% =¢ (mod P;).

Thus,

29 —e=(2%p+1)(2" N —e). (1)
Here, n; > 1 and A; is odd. We treat the case ¢ = 1, and (n}, \;) = (1,1). In this
peculiar case we get

20 —1=2%p+1, so 2% =2(2% lp41),

which gives 2971 = 2% ~1p 4 1. This implies n; = 1, and 20571 =p4+1>8 so
0; >4 > 3’flj =3.
From now on, we assume that (n’, ;) # (1,1) when ¢ = 1. Expanding in (1),
we get
205 — 2nj+n;-p>\j + 2n;- Aj — £2"ip,

and we see that n; = n/. Thus,
20i7M = 2”J'p)\j —+ ()\j - €p).

Hence, 2% | A\;—ep. Note that A\;—ep # 0, otherwise e = 1, A\; = p and 2% = 22"ip?,
which is false. In particular, p+ A; > 2™, If A\; > 3, then pA; > p+ X; > 2™, If
Aj =1, then pA\; =p>2" —1> 275705 The above inequality is true for n; > 2.
For n; = 1, the inequality pA; = p > 270 is also true. Hence,

29 = (2Mp+1)(2M\; —e) + & > (2%p)(270PN) = 227 00p); > 2% L,

To see the above inequality, note that it is clear when € = —1, while for € = 1 we
used 2™ \; — 1 > 27705\ which holds since (n;, ;) # (1,1). We thus get that
0; > 3nj; — 1, 80 0; > 3n;. Since o; | P; — 1 | 2"p? is coprime to 3, we get that
0; > 3n;.
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A similar argument works with O;. In this case, n = m; (mod O;). Further
295 =1 (mod 2™ip? + 1). We write
205 —1 = (2Mip® +1)(2Mi N, — 1),
with an odd value of A;. Expanding, we get
205 — gmitmip2y . 9mip? 4 omi )

Identifying powers of 2 we get m; = m; and further that 2™ | p? — \;. Note that
this last number is nonzero otherwise we have 29/ = 22" p*  which is impossible.
Thus, either p? > 2™ or A; > 2™, Hence, we get

2Oj — (2mjp2 _|_ 1)(2mj)\] _ 1) Z 22mj—1p2)\j > 23m_7'—1.

In the above, we used that 2™ip? + 1 > 2™ip? and 2™i\; — 1 > 2™i~1);. Thus,
O; > 3m;, and since O; is coprime to 3 (as a divisor of 2"p?), the inequality is in
fact strict. Hence, O; > 3m;. O

Lemma 7. We haven >2n; for j=1....,s andn >m; forj=1,...,t.

Proof. The second one is clear since 2™ip? + 1 | 2"p? + 1. For the first one, note
that n — 2n; is nonzero, otherwise

2Mip 41| 2%ip? 41,

which is not possible. If 2n; — n > 0, then since 2n; —n = 0 (mod o;), we get
that o; is a divisor of 2n; — n. In particular, o; < 2n; contradicting the fact that
0; > 3n;. Thus, it must be the case that n > 2n;. O

We next bound s, t.

Lemma 8. We have

1 2n 1 1 2n1
s <314 o8(Tv2nlogp) and  t <3 (14 os(v2nlogp)y
log 2.5 log2.5

Proof. We show that if X is any number smaller than or equal to 7v/2nlog p, then
the interval [2X/5,X) contains at most three numbers of the form n; for some
j=1,...,s. Indeed, assume there are four such. Their o;’s are of the form 2ui pi |
where 6; € {0,1,2}. Since we have four numbers, there are two of them say o; and
o} having 0; = 6;. In particular, one of 0;, o, divides the other and therefore
0 := min{oj;, 0} = ged(oj,05:) is one of o; or 0jr. Since nj,n} € [2X/5, X), we get
that o > 3min{n;,n; } > 6X/5. Now

n=2n; =2n; (mod o),
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so that n; —nj =0 (mod o'), where o’ := o/ ged(o,2). But
In; —njy| <3X/5<0/2<d,

which shows that n; = n;/, a contradiction.

A similar argument shows that for any positive real number X the interval
[2X/5,X) contains at most three of the numbers m; for j =1,...,¢t.

Staring with X := 7\/2nlog p, then each of the intervals

(X/2.5,X), [X/(2.5)% X/2.5),- -+, [X/(2.5)"F!, X/ (2.5)F),

contains at most three values of n;. Also, each of the above intervals contains at
most three values of m;. If

k21+{logXJ log X

log 2.5 log 2.5’

then X/(2.5)F < 1, so the last interval is contained in (0,1) so it cannot contain

any n; or m;. This shows that
g< |JosX |
~ |log2.5

Thus,
1 2n1 1 ol
s<3k+1) <3 |lo8v2nlogn) | N o loa(Tv2nlogp))
log 2.5 log 2.5
and also
1 2n1
¢ <3 (14 oslTv2nlogp))
log 2.5
O
Now

S

P o= [Ie"p+1)

=1
3
- . 1
< 93X 20;5.(2/5) Jpa H (1 + 2]p>
j>1

< 1.33 . 235\/27110gp+3(1+10g(7\/2n log p)/log 2.5)(log p/ log 2).

In the above we used that

; 3X
3X 25)77 = ————— =5X =35y/2nl
N o,
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as well as

1

I I 1+ — | <exp — | <exp(1/p) < exp(1/5) < 1.3.
. 27p p

j=1

Similarly,

t
Q _ H(2mjp2 + 1) < 1.33 . 235\/27110gp+3(1+10g(7\/2n log p)/log 2.5)(2log p/ log 2).
j=1

We record this as the following lemma.

Lemma 9. We have

P < 1'33 . 235\/271 log p+3(1+log(7+/2nlog p)/ log 2.5)(log p) / (log 2);
Q < 1_33 . 235\/2nlogp+3(1+log(7\/2n log p)/ log 2.5)(210gp)/(log2)-

Now we put everything together and use that
nlog2 = log(2") < log N < log F' + log P + log Q

to get the following result.

Lemma 10. The inequality

nlog2 < 8logp+ 6log(1.3) + (70log2)+/2nlogp (2)
log(7+/2n1
b (14 eeTV2n1o8p) Y gy 0
l0g 2.5

holds.

Lemma 11. It is not possible that all o; (for 1 < j <s) and O; (for1 < j <t)
are coprime to p.

Proof. Assume all 0; (1 < j < s)and O; (1 < j < t) are powers of 2. Let b be
maximal such that 2° < n/2. We show:

(i) 0;/2<2"forj=1,...,t
(i) £, <2V forj=1,...,7;

(ii) o; < 2" for j = 1,...,s with at most one exception j which then is unique,
has o; = 2**! and n = 2n; + o;.
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We start with (1). We have
n—m; =0 (mod O;).

Clearly, 2"p? +1 > 2™ip? + 1 so n > m;. Thus, O; < n, and so O;/2 < n/2 < 2°.
We next deal with (ii). We have 2 +1 | N, s0 2 = F, — 1| N — 1 = 2"p?
showing that ¢, < n. We need to show that £, < n/2. Assume ¢, > n/2. Write

2"p? + 1= (2 +1)(2°N + 1),

for some integers a > 1 and A\ odd. Thus,

onp? = 2brFa) 4 9f 4 o0)
and by inspecting the power of 2 we get a = ¢,.. Thus,

2"p? = 226 N 425 (N + 1),
Since 20, > n, we get that ¢, = n. Next, if ¢t > 1, then

(2"p? +1) > (2 + 1)(2p% +1) = (2" + 1)(2p* + 1) > 2"p? + 1,
a contradiction. Thus, ¢ = 0 so @ = 1. It follows that s > 1. If s > 2, then
2"p” +12 (27 + 1)(2p+ 1)(dp+1) = (2" + 1)(2p + 1)(dp +1) > 2"p* + 1
a contradiction. Thus, s =1 and
2"p? +1= (2 +1)--- (2" + 1)(2Mp + 1).

We get 2772 = —1 (mod 2"'p+1). So, n —2n; = o1 (mod 201), and 0; < n is a
power of 2. Since n is a power of 2 which is at least o1, we get that o1 | n and since
01 | n— 2nq, we get that o | 2n;, contradicting the fact that oy > 3n;. This shows
that £, < n/2.

We now deal with (iii). We have n — 2n; = 0 (mod o;). If 0; < n/2, we have
what we want. Assume o; > n/2. Then n — 2n; = mo; with some positive integer
m together with the fact that o; > n/2 implies that m = 1. Thus, 0; = 20F1 is the
only power of 2 in [n/2,n) and n; = (n — 0;)/2. Hence, o; and j are unique.

To finish, assume first that O;/2 (1 < j <t), £, and 0; (1 < j < s) are all powers
of 2 of exponent at most . Then since

2% 4+1=0 (mod P;) (1<j<s) 29/241=0 (modQ;) (1<j<t),

we get
a b+1
2p? +1] J] @ +1)=2" —1<2",

0<a<b



INTEGERS: 23 (2023) 9

a contradiction. Assume next that there is one j in {1,...,s} such that o; = 2°+1
and n = 2n; 4+ 0;. Then

rateip? 1 = 2'p? 41| (2¥p+1) J[ % +1)
0<a<b
= @up+1)(@¥ —1) < (2Vp+1)2%,
which gives
22mip? < 2Mip,
a contradiction. This finishes the proof of this lemma. O

Lemma 11 is good news since it shows that one of o;, O; is a multiple of p
and since n — 2n; and n — m; are positive integers which are multiples of o; (for
1 <j <s) and Oy respectively (for 1 < j <t), we conclude that n > p. Inequality

(2) now gives
1 log(1. 21
log2 < i (;gp + 0 ogp( 3) + (70log 2)4 | c;gp

G ()

The above gives p < 120000. But we can do a bit better. That is, assume first that
n > p?. Then inequality (2) gives

81 6log(1.3 21
log2 < 02gp + og(2 ) + (70log 2) o2gp
p p p
1 log(7+/2p?logp) 9logp
+ |-+ :
P plog 2.5 P

which implies p < 233. With this value of p, inequality (2) gives
n < 55010.

Assume next that n < p?. We now revisit Lemma 8 but keep in mind that since
n < p?, we must have that o;, O, are of the form 2% p% | where 0; € {0,1}. That
argument shows that in fact the inequalities of Lemma 8 hold with the factor of 2
on the right-hand side instead of 3 and in fact even (2) holds with the right-hand
side scaled by a factor of 2/3. This can be rewritten as

3nlog?2
2

< 8logp+ 6log(1.3) + (70log 2)\/2nlogp (3)

log(7+/2n1
n <1+°g(7 "ng)>(9logp).
log 2.5
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Since n > p, we get

3log 2 81 6log(1.3 21
282 < %8P og(L:3) + (701log 2) o8P
2 D D D

- (GeEE) ()

which gives p < 50000. With this value of p, inequality (3) gives

n < 50000.

Let us summarize our numerical conclusions.
Lemma 12. We have p < 50000 and n < 55010.

It remains to do the numerics. Since p < 50000, we get that
Fj < p* <1019
so Fj € {3,5,17,257,65537}.

2.2. The Case F > 1

Assume F' > 1. Then p | F — 1. Since p < 50000, the only possibilities are
p e {7,11,13,19,29,31,41,43,47,83,107, 113,127,131, 151,

241,331,467, 2579, 6553, 10631, 13159, 19661, 45083} .
We start with the large primes.

The case p = 45083. The only possibility is ' = Fy F3F, = 5-257-65537. This is
not convenient since none of 2p +1,2p% +1,4p + 1, 4p? + 1 is prime.

The case p = 19661. The only possibility is F = Fy - Fy = 3-65537. Since 2p? + 1
is not prime, it follows that P, = 2p+ 1, F; = 3. Then 2"p? + 1 =0 (mod 65537).
The order of 2 modulo 65537 is 32 and a short calculation shows that 2p? +1 # 0
(mod 65537) for all i =0,...,31.

The case p = 13159. The only possibility is F' = FoFyFy = 3 - 17 -65537. This is
not convenient since neither 2p + 1 nor 2p? + 1 is prime.

The case p = 10631. The only possibility is F' = F} FyFy = 5-17-65537. This is
not convenient since neither of 2p + 1,2p? + 1,4p + 1,4p? + 1 is prime.

The case p = 6553. In this case F' = FyFyF3 = 3-17-257. This is not convenient
since both 2p + 1, 2p? 4+ 1 are composite.
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The case p = 2579. In this case F' = FyF, = 17 - 65537. This is not convenient
since neither one of 2p+1,2p% + 1,4p + 1,4p% +1,8p + 1,8p> +1,16p + 1,16p* + 1
is prime.

The case p = 467. In this case, F = Fy1F3F, = 5- 257 -65537. This is not
convenient since neither of 2p 4+ 1,2p? + 1,4p + 1,4p? + 1 is prime.

The case p = 331. In this case F' = F1FyF3Fy = 517 -257 - 65537. This is not
convenient since neither of 2p 4+ 1,2p? + 1,4p + 1,4p? + 1 is prime.

The case p = 241. In this case F' = F3Fy = 257 - 65537. This is not convenient
since neither of

2p+1, 204+ 1, dp+1, 4p> +1, 8p+1, 8p> +1, 16p+1, 16p> +1,

32p+1, 32p% + 1, 64p+1, 64p> + 1, 128p + 1, 128p> + 1, 256p + 1, 256p% + 1
is prime.

The case p=151. Here, F' = FoF1FoF3=3-5-17-257Tor F' = F1 FyF3F, =5-17-
257-65537. However, this is not convenient since none of 2p+1,2p? 41, 4p+1, 4p? +1
is prime.

The case p = 131. In this case, F' = Fy > Fy =5-17-65537. Now 2p + 1 is prime
but 2p? 4 1 is not. So, n; cannot be 1. Also, neither of 4p + 1, 4p? + 1 is prime so
ny cannot be 2, which is a contradiction since ¢; = 2.

The case p = 127. In this case, we have F' = FoF 1 Fo =3-5-17or F = FyFyFy =
3-17-65537 or F' = F1FoF3 = 517257 or F' = FoF3Fy = 17 - 257 - 65537.
Neither of 2p+1, 2p? +1 is prime, so the Fermat prime 3 cannot be involved. Also,
8p + 1,8p? +1,16p + 1,16p? + 1 are all composite so we cannot have n; € {3,4}.
However, 4p + 1 is prime and 4p? + 1 is composite. So the only possibility is
P, =4p+1 and F; = 5 are both involved in N and 5 is the smallest Fermat prime
in N. Then 257 | 2"p? + 1. Since the order of 2 modulo 257 is 16, we check whether
2ip% + 1 is a multiple of 257 for i = 0,...,15 and find no solution.

The case p = 113. The only possibility is F' = FyF3F, = 17-257-65537. We have
that 2p + 1 is prime but 2p? + 1 is not, so n; > 1. Since also none of

dp+1, 4> +1, 8p+1, 8> +1, 16p+1, 16p> +1

is prime, we get a contradiction.

The case p = 107. We then have F' = F} F3 = 5-257. This is not convenient since
none of 2p + 1,2p% + 1,4p + 1,4p? + 1 is prime.

The case p = 83. We have F' = F1F; = 5-65537. We have 2p + 1 is prime but
2p? + 1 is not. Further, none of 4p + 1,4p? + 1 is prime, which is a contradiction.
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The case p = 47. In this case, we have F' = F1Fy = 5-65537, or F' = FoF1F5 =
3-5-257. We have 2p+1,2p?+1,4p+1 are all composite but 4p? +1 is prime. Thus,
the only possibility is n; = 2 and F = Fy F} is involved in N. Thus, 65537 | 2"p*+1.
The order of 2 modulo 65537 is 32 and we check that 2ip? + 1 # 0 (mod 65537) for
any ¢ =0,...,31.

The case p = 43. In this case F' = F1FyF3 = 517257, or F' = FyF3Fy =
17 - 257 - 65537. None of 2p + 1,2p? + 1 is prime so n; > 1. None of

8p+1, 8p? +1, 16p+ 1, 16p*> +1

is prime so we cannot have ny € {3,4}. However, 4p + 1 is prime (and 4p® + 1 is
not),son; =2, P, =4p+1and F = 5-17-257. Thus, 257 | 2" -p?+ 1. This is false
as it can be checked that 2'p? + 1 is not a multiple of 257 for any i = 0,1,...,15.

The case p = 41. In this case F' = FoFF3 = 3-5-257. We have 2p + 1 is prime
but 2p? + 1 is not. So, n; = 1 and 257 | 2"p? + 1. Again we check that this is false
by checking that 2p? + 1 is not a multiple of 257 for any i = 0, ..., 15.

The case p = 31. Here, ' = FolhFoF5 = 3-5-17-257 or F = F1F3F5F, =
5-17-257 - 65537, but none of 2p +1,2p? + 1,4p + 1, 4p? + 1 is prime.

The case p =29. In this case F = FyF3F, = 17 - 257 - 65537. None of
2p+1, 2p° +1, dp+1, 4p° +1

is prime so n; > 3. We have that 8p + 1 is prime but 8p? + 1 is not so n; > 3.
Finally, 16p + 1 is not prime but 16p? + 1 is, so n; = 4 and F = 17-257-65537. We
check that 65537 | 2"p? + 1 is impossible by checking that 2'p? + 1 is not a multiple
of 65537 for any i = 0,...,31.

The case p = 19. In this case F = FoFyF3F, = 3 - 17 - 257 - 65537. However, this
is not possible as none of 2p + 1, 2p? + 1 is prime.

The case p = 13. In this case F' = FyF3 = 17257, or F = F3F, = 257 - 65537.
We have 2p+1 and 2p? +1 are composite. However, both 4p+1, 4p?+1 are primes.
If ny =2, then P, =4p+1, Q1 = 4p?> +1. Then PiQ; = (1+4p(p+1) +16p?) and
2||p + 1. So, we must have that one of 8p + 1,8p? + 1 is involved in N, but none is
a prime. Hence, n; > 2. None of

16p+1, 16p> +1, 32p+1, 32p> +1, 64p+ 1, 64p> +1, 128p+ 1, 128p> + 1

is prime. Also, 256p° + 1 is not prime but 256p + 1 is prime. So, we may have
ny = 8, P = 256p + 1 and F = 257 - 65537 is involved in N. Again we check
that 65537 1 2"p? + 1 by checking that 2?p? + 1 is never a multiple of 65537 for
i=0,...,3L
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The case p=11. Then FF = FyF3 =3-257, or F = F1FoF3F, = 5-17-257-65537.
We have that 2p + 1 is prime but 2p? + 1 is not. So, we may have n; = 1 and then
3-257 is involved in N. In this case, F' = 3-257 is involved in N. Further, it follows
that 1P = (24+1)2p+1) = (1 +4p+2(p+1)). Since 8 | 2(p+ 1), it follows that
one of 4p+ 1 or 4p? + 1 must be a prime involved in NN, but none of these is prime.
Thus, n; > 1 and since none of 4p + 1, 4p® + 1 is prime, the number 5 cannot be
involved in NV, a contradiction.

The case p = 7. In this case F = FyF} = 3-5, or F = FyF3 = 3 - 257, or
F=FF,=517or F = F1Fy =5-65537, or F' = FyF5 = 17-257, or F = F3F; =
257'65537, or F' = F0F1F2F3 =3-5-17- 257, or FF = FOF1F3F4 =3-5-257- 65537,
or F = F1F,F3Fy = 5-17 - 257 - 65537. At any rate, none of 2p + 1, 2p% + 1
is prime so 3 is not involved in N. Now 65537 does not divide 2"p? + 1 for any
n as it can be checked that 2ip? + 1 is not a multiple of 65537 for i = 0,...,31.
Thus, 65537 is not involved in N. Similarly, 257 is not involved in N. So, the only
Fermat numbers that can be involved in N are 5 and 17 and there must be at least
two of them so F' = 5-17. It thus follows that one of 4p + 1, 4p? + 1 is involved
in N but not both (they are both prime). Assume the one involved is 4p? + 1.
Then (4 + 1) - (4p? + 1) = (16p* + 4(p? + 1)) and 2|[p? + 1. So, we need one of
8p+ 1, 8p? 4+ 1 to be involved in N but none is prime. Assume next that the one
involved is 4p + 1. Then (4 + 1)(4p + 1) = (16p + 4(p + 1)) and 27||4(p + 1). Since
17 is already involved in N, it follows that either both 16p+ 1, 16p% + 1 is involved
in N (false since 16p* + 1 is not prime), or none of them is. So, none of them is.
Then 5-17- (4p + 1) = (1 + 2°m) for some odd m, so one of 32p + 1, 32p® + 1 is
involved in N and this is false since they are both composite.

2.3. The Case F =1

Here, ny = m;. Let P, = 2%+ 1, Q1 = 2°p? + 1. Note that 2™p? + 1 is a multiple
of 3 if m is odd, so all m; are even. In particular, a is even, so p = 1 (mod 3).
This shows that all n; are even otherwise 2"ip 4+ 1 is a multiple of 3 for n; odd.
We can even do a bit better. Note that p?> (mod 5) € {1,4} and a = 2a; is even.
So, if p? =1 (mod 4), we cannot have a; odd since then 2% = 224 =4 (mod 5) so
5| 2%p% + 1. Thus, if p> =1 (mod 5), then a; =0 (mod 2) and if p*> =4 (mod 5),
then a; =1 (mod 2). This also shows that p #4 (mod 5).
Then
PiQy = 2% + 2%p(p+1) + 1.

Assume that min{nz, ma} > a + v2(p+1). Recall that v5(p+ 1) is the exponent of
2 in the factorization of p 4+ 1. It then follows that a = vo(p + 1) and for this value
of a both 2%p + 1, 2p? + 1 are primes. Mathematica revealed that there are only
24 such primes p in [7,50000], namely

{67,163, 883,3067,3307,6991, 7951, 13267, 14683, 16603, 17551, 18523, 22147,
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23563, 24763,27631, 28867, 37747, 38923, 40591, 43963, 49363,49603, 49843} .

Now we follow the proof. We need 2"p? + 1 to be a multiple of both 2%p + 1 and
2%p? + 1. Thus,

n—2a=0 (mod o;) and n—a=0 (mod Oy),

where 01 = ordp, (2)/gcd(2,0rdp, (2)), and O; = ordg, (2). Thus, we want that
n —2a =n —a (mod d), where d := gcd(o1,01). This means d | a. A computer
program ran for a few seconds and found no instance for which d | a.

Next we assume that b = min{ng,m2} < a + va(p + 1). Since b > a must be
even, it follows that p = 3 (mod 4), so p = 7 (mod 12). There are 969 primes
p € [7,50000] such that p =7 (mod 12) and p # 4 (mod 5). For each one of them,
we have

n—2a=0 (mod o) and n—a=0 (mod os).

Since o1 > 3a, we get that 5a < n < 55010 and since a = 2a;1, we get
a; <n/10 SO a1 < 5000.

Further, a; = 2as + wp, where w, = 0 if p> = 1 (mod 5) and w, = 1 if p? =
(mod 5).

So, we wrote a code which goes through the 969 primes p € [7,50000] satisfying
p=7 (mod 12) and p # 4 (mod 5), and through all integers

0 < ap <2500
and calculates whether with a; = 2as + wp, both numbers
P=2>p41 and @ 2%9p? 41

are primes. If they are, the code computes 01 = ordp, (2)/gcd(2,0rdp, (2)) and
01 = ordg, (2), and checks whether d = ged(o1,01) divides a = 2a;.

The Mathematica code ran for less than 24 hours and produced no examples.
This finishes the proof.
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