

THERE IS NO CARMICHAEL NUMBER OF THE FORM $2^n p^2 + 1$ WITH $p\ \mathrm{PRIME}$

Florian Luca

School of Mathematics, University of the Witwatersrand, Wits, South Africa and Centro de Ciencias Matemáticas UNAM, Morelia, Mexico florian.luca@wits.ac.za

Jean Lucien Randrianantenaina

AIMS Cameroon, South West Region, Crystal Gardens, Cameroon lucien.randrianantenaina@aims-cameroon.org

Received: 5/13/23, Accepted: 7/11/23, Published: 7/21/23

Abstract

In this paper, we prove that there is no Carmichael number of the form $2^n p^2 + 1$ with some integer $n \ge 0$ and prime p.

1. Introduction

A Carmichael number N is a composite positive integer such that the congruence $a^N \equiv a \pmod{N}$ for all integers a. A criterion due to Korselt [3] states that N is Carmichael if and only if N is squarefree, composite and $p-1 \mid N-1$ for all $p \mid N$. In particular, $\omega(N) \geq 3$, where $\omega(N)$ is the number of distinct prime factors of N.

Some recent papers investigated Carmichael numbers of the form $2^{n}k + 1$ for some fixed odd positive integer k. For example, in [2] it is shown that $k \ge 27$ and

$$n < 2^{2 \times 10^7 \tau(k)^2 (\log k)^2 \omega(k)}$$
.

where $\tau(k)$ is the number of divisors of k. In [1], it is shown that there is no Carmichael number of the form $2^n p + 1$ for a prime p.

Here we take this one step further and prove the following theorem.

Theorem 1. There is no Carmichael number of the form $2^n p^2 + 1$ with p prime. DOI: 10.5281/zenodo.8174516

2. The Proof

2.1. Bounding p and n

We follow [1] where it was shown that there is no Carmichael number of the form $2^n p + 1$. We may assume that $n \ge 1$; otherwise $N = p^2 + 1$ is odd, therefore p = 2, which is false. Next, p > 3 since there is no Carmichael number of the form $2^m + 1$ for any positive integer m. Thus $p^2 \ge 27$, so $p \ge 7$. Since N is Carmichael, it is squarefree and all its prime factors are of the form $q = 2^{\lambda} p^{\delta} + 1$ for some integer $\lambda \in [1, n]$ and $\delta \in \{0, 1, 2\}$. When $\delta = 0, q$ is a Fermat prime so λ is a power of 2.

So, we may write N as

$$2^{n}p^{2} + 1 = \prod_{j=1}^{r} (2^{\ell_{j}} + 1) \prod_{j=1}^{s} (2^{n_{j}}p + 1) \prod_{j=1}^{t} (2^{m_{j}}p^{2} + 1)$$

We have $\omega(N) \ge 3$. Thus, $r + s + t = \omega(N) \ge 3$. We write

$$F_j := 2^{\ell_j} + 1, \qquad P_j := 2^{n_j}p + 1, \qquad \text{and} \qquad Q_j := 2^{m_j}p^2 + 1.$$

We also let

$$F := \prod_{j=1}^{r} F_j, \qquad P := \prod_{j=1}^{s} P_j, \qquad \text{and} \qquad Q := \prod_{j=1}^{t} Q_j$$

We assume $\ell_1 < \cdots < \ell_r$, $n_1 < \cdots < n_s$, $m_1 < \cdots < m_t$. We need bounds for F, P, Q. The following is Lemma 2 in [2].

Lemma 1. The inequality $F_j < p^4$ holds for all j = 1, ..., r.

In particular, writing $\ell_j = 2^{\alpha_j}$ for $j = 1, \ldots, r$, with $\ell_1 < \cdots < \ell_r$, we have that

$$F = \prod_{j=1}^{r} (2^{2^{\alpha_j}} + 1) \le (2^{2^{\alpha_r}} + 1)(2^{2^{\alpha_r}} - 1) < F_r^2 < p^8.$$

Lemma 2. The numbers $P_i - 1$ and N - 1 are multiplicatively independent for all $j = 1, \ldots, s$. Further, the numbers $Q_j - 1$ and N - 1 are multiplicatively independent for all j = 1, ..., t.

Proof. The statement about $Q_j - 1 = 2^{m_j} p^2$ and $N - 1 = 2^n p^2$ is clear since $m_j < n$ for all j = 1, ..., t. As for $P_j - 1 = 2^{n_j} p$ and $N - 1 = 2^n p^2$, the only chance of them being multiplicatively dependent is when $2 \mid n$ and $n_i = n/2$. But then

$$P_j = 2^{n/2}p + 1 \mid (2^{n/2}p + 1)(2^{n/2}p - 1) = 2^n p^2 - 1 = N - 2$$

implies that P_j divides both N and N-2, so it divides 2, a contradiction.

Lemma 3. The inequality $n_j < 7\sqrt{2n \log p}$ holds for j = 1, ..., s. Also the inequality $m_j < 7\sqrt{2n \log p}$ holds for j = 1, ..., t.

Proof. Both inequalities follow from Lemma 4 in [2] except that in that lemma, one needed $n > 6 \log p$. So, assume that $m_j \ge 7\sqrt{2n \log p}$ holds for some $j = 1, \ldots, s$. This entails $n < 6 \log p$. Since

$$2^{m_j}p^2 + 1 \mid 2^n p^2 + 1$$

entails $n > m_j$, we get

$$n > m_j \ge 7\sqrt{2n\log p}$$
 so $n > 98\log p$

contradicting $n < 6 \log p$. A similar argument takes care of $n_j < 7\sqrt{2n \log p}$ for $j = 1, \ldots, s$. Indeed, assume that $n_j \geq 7\sqrt{2n \log p}$ for some $j = 1, \ldots, s$. In particular, $n < 6 \log p$. If $t \geq 1$, then

$$2^{n}p^{2} + 1 > (2^{n_{j}}p + 1)(2p^{2} + 1) > 2^{n_{j}+1}p^{3},$$

 \mathbf{SO}

$$n > n_j \ge 7\sqrt{2n\log p}$$
 so $n > 98\log p_j$

contradicting $n < 6 \log p$. So, we may assume that t = 0 so Q = 1. If $s \ge 2$, then

$$2^{n}p^{2} + 1 \ge (2^{n_{j}}p + 1)(2p + 1) > 2^{n_{j}}p^{2} + 1,$$

showing that $n > n_j$. Thus, $n > n_j \ge 7\sqrt{2n\log p}$, so again $n > 98\log p$, contradicting the fact that $n < 6\log p$. So, it remains to consider the case when s = 1 so $P = P_1 = 2^{n_1}p + 1$. It then follows that $\ell_1 = n_1 \ge 7\sqrt{2n\log p}$. Further,

$$2^{n}p^{2} + 1 = (2^{\ell_{1}} + 1) \cdots (2^{\ell_{r}} + 1)(2^{\ell_{1}}p + 1).$$

Expanding we get that $2^{\min\{\ell_1,\ell_2-\ell_1\}} \mid p+1$. In addition, $\lambda(N) = 2^{\ell_r}p$. Here, $\lambda(N)$ is the Carmichael λ -function of N. Recall that for a squarefree positive integer M we have $\lambda(M) = \operatorname{lcm}[p-1:p \mid M]$. By Wright's result [4], $p \in \{3,5,7,127\}$ or p is an unknown Fermat prime. In all these cases, $\min\{\ell_1,\ell_2-\ell_1\} \leq 7$. But $\ell_1 = n_1 \geq 7\sqrt{2n\log p} \geq 7\sqrt{2\log 7} > 13$ is a power of 2 and then ℓ_2 is at least the next power of 2, so $\ell_2 - \ell_1 \geq \ell_1 \geq 13$, a contradiction.

The next lemmas deal with spacings between the n_j s and m_j s. For an odd prime P let $O_P := \text{ord}_P(2)$ be the multiplicative order of 2 modulo P.

Lemma 4. We have $n - 2n_j \equiv 0 \pmod{o_j}$, with

$$o_j := \operatorname{ord}_{P_j}(2)/\operatorname{gcd}(2, \operatorname{ord}_{P_j}(2)).$$

Proof. Well, we have $2^{n_j}p \equiv -1 \pmod{P_j}$ and $2^n p^2 \equiv -1 \pmod{P_j}$. Thus, $2^{n-2n_j} \equiv -1 \pmod{P_j}$. This implies that $O_{P_j} \mid 2(n-2n_j)$, which in turn implies $n-2n_j \equiv 0 \pmod{o_j}$.

Lemma 5. We have $n - m_j \equiv 0 \pmod{O_j}$, where $O_j := \operatorname{ord}_{Q_j}(2)$.

Proof. Well, we have $2^{n_j}p^2 \equiv -1 \pmod{Q_j}$ and $2^np^2 \equiv -1 \pmod{Q_j}$. Thus, $2^{n-m_j} \equiv 1 \pmod{P_j}$. This implies that $n - m_j \equiv 0 \pmod{Q_j}$.

We next bound o_i and O_i from below.

Lemma 6. We have $o_j > 3n_j$ for $1 \le j \le s$ and $O_j > 3m_j$ for $1 \le j \le t$.

Proof. We start with o_j . Since $o_j = \operatorname{ord}_{P_j}(2)/\operatorname{gcd}(2, \operatorname{ord}_{P_j}(2))$, we have that there is $\varepsilon \in \{\pm 1\}$ such that

$$2^{o_j} \equiv \varepsilon \pmod{P_j}.$$

Thus,

$$2^{o_j} - \varepsilon = (2^{n_j}p + 1)(2^{n'_j}\lambda_j - \varepsilon).$$

$$\tag{1}$$

Here, $n'_j \ge 1$ and λ_j is odd. We treat the case $\varepsilon = 1$, and $(n'_j, \lambda_j) = (1, 1)$. In this peculiar case we get

$$2^{o_j} - 1 = 2^{n_j}p + 1$$
, so $2^{o_j} = 2(2^{n_j - 1}p + 1)$,

which gives $2^{o_j-1} = 2^{n_j-1}p + 1$. This implies $n_j = 1$, and $2^{o_j-1} = p + 1 \ge 8$, so $o_j \ge 4 > 3n_j = 3$.

From now on, we assume that $(n'_j, \lambda_j) \neq (1, 1)$ when $\varepsilon = 1$. Expanding in (1), we get

$$2^{o_j} = 2^{n_j + n'_j} p\lambda_j + 2^{n'_j} \lambda_j - \varepsilon 2^{n_j} p,$$

and we see that $n_j = n'_j$. Thus,

$$2^{o_j - n_j} = 2^{n_j} p \lambda_j + (\lambda_j - \varepsilon p).$$

Hence, $2^{n_j} \mid \lambda_j - \varepsilon p$. Note that $\lambda_j - \varepsilon p \neq 0$, otherwise $\varepsilon = 1$, $\lambda_j = p$ and $2^{o_j} = 2^{2n_j}p^2$, which is false. In particular, $p + \lambda_j \geq 2^{n_j}$. If $\lambda_j \geq 3$, then $p\lambda_j \geq p + \lambda_j \geq 2^{n_j}$. If $\lambda_j = 1$, then $p\lambda_j = p \geq 2^{n_j} - 1 > 2^{n_j - 0.5}$. The above inequality is true for $n_j \geq 2$. For $n_j = 1$, the inequality $p\lambda_j = p > 2^{n_j - 0.5}$ is also true. Hence,

$$2^{o_j} = (2^{n_j}p+1)(2^{n_j}\lambda_j - \varepsilon) + \varepsilon > (2^{n_j}p)(2^{n_j-0.5}\lambda_j) = 2^{2n_j-0.5}p\lambda_j > 2^{3n_j-1}.$$

To see the above inequality, note that it is clear when $\varepsilon = -1$, while for $\varepsilon = 1$ we used $2^{n_j}\lambda_j - 1 > 2^{n_j-0.5}\lambda_j$, which holds since $(n_j, \lambda_j) \neq (1, 1)$. We thus get that $o_j > 3n_j - 1$, so $o_j \geq 3n_j$. Since $o_j \mid P_j - 1 \mid 2^n p^2$ is coprime to 3, we get that $o_j > 3n_j$.

A similar argument works with O_j . In this case, $n \equiv m_j \pmod{O_j}$. Further $2^{O_j} \equiv 1 \pmod{2^{m_j}p^2 + 1}$. We write

$$2^{O_j} - 1 = (2^{m_j}p^2 + 1)(2^{m'_j}\lambda_j - 1),$$

with an odd value of λ_i . Expanding, we get

$$2^{O_j} = 2^{m_j + m'_j} p^2 \lambda_j - 2^{m_j} p^2 + 2^{m'_j} \lambda_j.$$

Identifying powers of 2 we get $m_j = m'_j$ and further that $2^{m_j} | p^2 - \lambda_j$. Note that this last number is nonzero otherwise we have $2^{O_j} = 2^{2m_j}p^4$, which is impossible. Thus, either $p^2 > 2^{m_j}$ or $\lambda_j > 2^{m_j}$. Hence, we get

$$2^{O_j} = (2^{m_j} p^2 + 1)(2^{m_j} \lambda_j - 1) \ge 2^{2m_j - 1} p^2 \lambda_j > 2^{3m_j - 1}.$$

In the above, we used that $2^{m_j}p^2 + 1 > 2^{m_j}p^2$ and $2^{m_j}\lambda_j - 1 \ge 2^{m_j-1}\lambda_j$. Thus, $O_j \ge 3m_j$, and since O_j is coprime to 3 (as a divisor of 2^np^2), the inequality is in fact strict. Hence, $O_j > 3m_j$.

Lemma 7. We have $n > 2n_j$ for $j = 1, \ldots, s$ and $n > m_j$ for $j = 1, \ldots, t$.

Proof. The second one is clear since $2^{m_j}p^2 + 1 \mid 2^n p^2 + 1$. For the first one, note that $n - 2n_j$ is nonzero, otherwise

$$2^{n_j}p + 1 \mid 2^{2n_j}p^2 + 1,$$

which is not possible. If $2n_j - n > 0$, then since $2n_j - n \equiv 0 \pmod{o_j}$, we get that o_j is a divisor of $2n_j - n$. In particular, $o_j < 2n_j$ contradicting the fact that $o_j > 3n_j$. Thus, it must be the case that $n > 2n_j$.

We next bound s, t.

Lemma 8. We have

$$s < 3\left(1 + \frac{\log(7\sqrt{2n\log p})}{\log 2.5}\right) \qquad \text{and} \qquad t < 3\left(1 + \frac{\log(7\sqrt{2n\log p})}{\log 2.5}\right).$$

Proof. We show that if X is any number smaller than or equal to $7\sqrt{2n\log p}$, then the interval [2X/5, X) contains at most three numbers of the form n_j for some $j = 1, \ldots, s$. Indeed, assume there are four such. Their o_j 's are of the form $2^{u_j}p^{\delta_j}$, where $\delta_j \in \{0, 1, 2\}$. Since we have four numbers, there are two of them say o_j and o'_j having $\delta_j = \delta_{j'}$. In particular, one of o_j , $o_{j'}$ divides the other and therefore $o := \min\{o_j, o_{j'}\} = \gcd(o_j, o_{j'})$ is one of o_j or $o_{j'}$. Since $n_j, n'_j \in [2X/5, X)$, we get that $o > 3 \min\{n_j, n_{j'}\} \ge 6X/5$. Now

$$n \equiv 2n_j \equiv 2n_{j'} \pmod{o},$$

so that $n_j - n_{j'} \equiv 0 \pmod{o'}$, where $o' := o/\gcd(o, 2)$. But

$$|n_j - n_{j'}| < 3X/5 \le o/2 \le o'$$

which shows that $n_j = n_{j'}$, a contradiction.

A similar argument shows that for any positive real number X the interval [2X/5, X) contains at most three of the numbers m_j for $j = 1, \ldots, t$.

Staring with $X := 7\sqrt{2n\log p}$, then each of the intervals

$$[X/2.5, X), [X/(2.5)^2, X/2.5), \cdots, [X/(2.5)^{k+1}, X/(2.5)^k),$$

contains at most three values of n_j . Also, each of the above intervals contains at most three values of m_j . If

$$k \ge 1 + \left\lfloor \frac{\log X}{\log 2.5} \right\rfloor > \frac{\log X}{\log 2.5},$$

then $X/(2.5)^k < 1$, so the last interval is contained in (0,1) so it cannot contain any n_i or m_j . This shows that

$$k \le \left\lfloor \frac{\log X}{\log 2.5} \right\rfloor.$$

Thus,

$$s \le 3(k+1) \le 3\left(\left\lfloor \frac{\log(7\sqrt{2n\log p})}{\log 2.5} \right\rfloor + 1\right) < 3\left(1 + \frac{\log(7\sqrt{2n\log p})}{\log 2.5}\right),$$

and also

$$t < 3\left(1 + \frac{\log(7\sqrt{2n\log p})}{\log 2.5}\right).$$

Now

$$P = \prod_{j=1}^{s} (2^{n_j} p + 1)$$

$$< 2^{3X \sum_{j \ge 1} (2/5)^{-j}} p^s \prod_{j \ge 1} \left(1 + \frac{1}{2^j p} \right)^3$$

$$< 1.3^3 \cdot 2^{35\sqrt{2n \log p} + 3(1 + \log(7\sqrt{2n \log p})/\log 2.5)(\log p/\log 2)}.$$

In the above we used that

$$3X\sum_{j\geq 0} (2.5)^{-j} = \frac{3X}{1-1/2.5} = 5X = 35\sqrt{2n\log p},$$

as well as

$$\prod_{j \ge 1} \left(1 + \frac{1}{2^j p} \right) < \exp\left(\sum_{j \ge 1} \frac{1}{2^j p} \right) < \exp(1/p) < \exp(1/5) < 1.3.$$

Similarly,

$$Q = \prod_{j=1}^{t} (2^{m_j} p^2 + 1) < 1.3^3 \cdot 2^{35\sqrt{2n\log p} + 3(1 + \log(7\sqrt{2n\log p})/\log 2.5)(2\log p/\log 2)}.$$

We record this as the following lemma.

Lemma 9. We have

$$\begin{split} P &< 1.3^3 \cdot 2^{35\sqrt{2n\log p} + 3(1 + \log(7\sqrt{2n\log p})/\log 2.5)(\log p)/(\log 2)}; \\ Q &< 1.3^3 \cdot 2^{35\sqrt{2n\log p} + 3(1 + \log(7\sqrt{2n\log p})/\log 2.5)(2\log p)/(\log 2)}. \end{split}$$

Now we put everything together and use that

$$n\log 2 = \log(2^n) < \log N < \log F + \log P + \log Q$$

to get the following result.

Lemma 10. The inequality

$$n \log 2 < 8 \log p + 6 \log(1.3) + (70 \log 2) \sqrt{2n \log p}$$

$$+ \left(1 + \frac{\log(7\sqrt{2n \log p})}{\log 2.5}\right) (9 \log p).$$
(2)

holds.

Lemma 11. It is not possible that all o_j (for $1 \le j \le s$) and O_j (for $1 \le j \le t$) are coprime to p.

Proof. Assume all o_j $(1 \le j \le s)$ and O_j $(1 \le j \le t)$ are powers of 2. Let b be maximal such that $2^b \le n/2$. We show:

- (i) $O_j/2 \le 2^b$ for j = 1, ..., t;
- (ii) $\ell_r \le 2^b$ for j = 1, ..., r;
- (iii) $o_j \leq 2^b$ for j = 1, ..., s with at most one exception j which then is unique, has $o_j = 2^{b+1}$ and $n = 2n_j + o_j$.

We start with (i). We have

$$n - m_j \equiv 0 \pmod{O_j}$$
.

Clearly, $2^n p^2 + 1 > 2^{m_j} p^2 + 1$ so $n > m_j$. Thus, $O_j < n$, and so $O_j/2 < n/2 \le 2^b$.

We next deal with (ii). We have $2^{\ell_r} + 1 \mid N$, so $2^{\ell_r} = F_r - 1 \mid N - 1 = 2^n p^2$ showing that $\ell_r \leq n$. We need to show that $\ell_r \leq n/2$. Assume $\ell_r > n/2$. Write

$$2^{n}p^{2} + 1 = (2^{\ell_{r}} + 1)(2^{a}\lambda + 1),$$

for some integers $a \ge 1$ and λ odd. Thus,

$$2^{n}p^{2} = 2^{\ell_{r}+a}\lambda + 2^{\ell_{r}} + 2^{a}\lambda.$$

and by inspecting the power of 2 we get $a = \ell_r$. Thus,

$$2^{n}p^{2} = 2^{2\ell_{r}}\lambda + 2^{\ell_{r}}(\lambda+1).$$

Since $2\ell_r > n$, we get that $\ell_r = n$. Next, if $t \ge 1$, then

$$(2^n p^2 + 1) > (2^{\ell_r} + 1)(2p^2 + 1) = (2^n + 1)(2p^2 + 1) > 2^n p^2 + 1,$$

a contradiction. Thus, t = 0 so Q = 1. It follows that $s \ge 1$. If $s \ge 2$, then

$$2^np^2 + 1 \ge (2^{\ell_r} + 1)(2p + 1)(4p + 1) = (2^n + 1)(2p + 1)(4p + 1) > 2^np^2 + 1$$

a contradiction. Thus, s = 1 and

$$2^{n}p^{2} + 1 = (2^{\ell_{1}} + 1) \cdots (2^{n} + 1)(2^{n_{1}}p + 1).$$

We get $2^{n-2n_1} \equiv -1 \pmod{2^{n_1}p+1}$. So, $n-2n_1 \equiv o_1 \pmod{2o_1}$, and $o_1 \leq n$ is a power of 2. Since *n* is a power of 2 which is at least o_1 , we get that $o_1 \mid n$ and since $o_1 \mid n-2n_1$, we get that $o_1 \mid 2n_1$, contradicting the fact that $o_1 > 3n_1$. This shows that $\ell_r \leq n/2$.

We now deal with (iii). We have $n - 2n_j \equiv 0 \pmod{o_j}$. If $o_j \leq n/2$, we have what we want. Assume $o_j > n/2$. Then $n - 2n_j = mo_j$ with some positive integer m together with the fact that $o_j > n/2$ implies that m = 1. Thus, $o_j = 2^{b+1}$ is the only power of 2 in [n/2, n) and $n_j = (n - o_j)/2$. Hence, o_j and j are unique.

To finish, assume first that $O_j/2$ $(1 \le j \le t)$, ℓ_r and o_j $(1 \le j \le s)$ are all powers of 2 of exponent at most b. Then since

$$2^{o_j} + 1 \equiv 0 \pmod{P_j} \quad (1 \le j \le s) \quad 2^{O_j/2} + 1 \equiv 0 \pmod{Q_j} \quad (1 \le j \le t),$$

we get

$$2^{n}p^{2} + 1 \mid \prod_{0 \le a \le b} (2^{2^{a}} + 1) = 2^{2^{b+1}} - 1 < 2^{n},$$

a contradiction. Assume next that there is one j in $\{1, \ldots, s\}$ such that $o_j = 2^{b+1}$ and $n = 2n_j + o_j$. Then

$$2^{2n_j+o_j}p^2 + 1 = 2^n p^2 + 1 | (2^{n_j}p + 1) \prod_{0 \le a \le b} (2^{2^a} + 1)$$

= $(2^{n_j}p + 1)(2^{2^{b+1}} - 1) < (2^{n_j}p + 1)2^{o_j},$

which gives

$$2^{2n_j} p^2 \le 2^{n_j} p,$$

a contradiction. This finishes the proof of this lemma.

Lemma 11 is good news since it shows that one of o_j , O_j is a multiple of p and since $n - 2n_j$ and $n - m_j$ are positive integers which are multiples of o_j (for $1 \le j \le s$) and O_j respectively (for $1 \le j \le t$), we conclude that n > p. Inequality (2) now gives

$$\log 2 < \frac{8\log p}{p} + \frac{6\log(1.3)}{p} + (70\log 2)\sqrt{\frac{2\log p}{p}} + \left(\frac{1}{\sqrt{p}} + \frac{\log(7\sqrt{2p\log p})}{\sqrt{p\log 2.5}}\right) \left(\frac{9\log p}{\sqrt{p}}\right).$$

The above gives p < 120000. But we can do a bit better. That is, assume first that $n \ge p^2$. Then inequality (2) gives

$$\log 2 < \frac{8\log p}{p^2} + \frac{6\log(1.3)}{p^2} + (70\log 2)\sqrt{\frac{2\log p}{p^2}} + \left(\frac{1}{p} + \frac{\log(7\sqrt{2p^2\log p})}{p\log 2.5}\right) \left(\frac{9\log p}{p}\right),$$

which implies $p \leq 233$. With this value of p, inequality (2) gives

Assume next that $n < p^2$. We now revisit Lemma 8 but keep in mind that since $n < p^2$, we must have that o_j , O_j are of the form $2^{\lambda_j} p^{\delta_j}$, where $\delta_j \in \{0, 1\}$. That argument shows that in fact the inequalities of Lemma 8 hold with the factor of 2 on the right-hand side instead of 3 and in fact even (2) holds with the right-hand side scaled by a factor of 2/3. This can be rewritten as

$$\frac{3n\log 2}{2} < 8\log p + 6\log(1.3) + (70\log 2)\sqrt{2n\log p}$$
(3)
+ $\left(1 + \frac{\log(7\sqrt{2n\log p})}{\log 2.5}\right)(9\log p).$

Since n > p, we get

$$\begin{aligned} \frac{3\log 2}{2} &< \frac{8\log p}{p} + \frac{6\log(1.3)}{p} + (70\log 2)\sqrt{\frac{2\log p}{p}} \\ &+ \left(\frac{1}{\sqrt{p}} + \frac{\log(7\sqrt{2p\log p})}{\sqrt{p\log 2.5}}\right) \left(\frac{9\log p}{\sqrt{p}}\right), \end{aligned}$$

which gives p < 50000. With this value of p, inequality (3) gives

n < 50000.

Let us summarize our numerical conclusions.

Lemma 12. We have p < 50000 and n < 55010.

It remains to do the numerics. Since p < 50000, we get that

 $F_i < p^2 < 10^{10},$

so $F_j \in \{3, 5, 17, 257, 65537\}.$

2.2. The Case F > 1

Assume F > 1. Then $p \mid F - 1$. Since p < 50000, the only possibilities are

 $p \in \{7, 11, 13, 19, 29, 31, 41, 43, 47, 83, 107, 113, 127, 131, 151, ...\}$

241, 331, 467, 2579, 6553, 10631, 13159, 19661, 45083.

We start with the large primes.

The case p = 45083. The only possibility is $F = F_1F_3F_4 = 5 \cdot 257 \cdot 65537$. This is not convenient since none of 2p + 1, $2p^2 + 1$, 4p + 1, $4p^2 + 1$ is prime.

The case p = 19661. The only possibility is $F = F_0 \cdot F_4 = 3 \cdot 65537$. Since $2p^2 + 1$ is not prime, it follows that $P_1 = 2p + 1$, $F_1 = 3$. Then $2^n p^2 + 1 \equiv 0 \pmod{65537}$. The order of 2 modulo 65537 is 32 and a short calculation shows that $2^i p^2 + 1 \not\equiv 0 \pmod{65537}$ for all $i = 0, \ldots, 31$.

The case p = 13159. The only possibility is $F = F_0F_2F_4 = 3 \cdot 17 \cdot 65537$. This is not convenient since neither 2p + 1 nor $2p^2 + 1$ is prime.

The case p = 10631. The only possibility is $F = F_1F_2F_4 = 5 \cdot 17 \cdot 65537$. This is not convenient since neither of 2p + 1, $2p^2 + 1$, 4p + 1, $4p^2 + 1$ is prime.

The case p = 6553. In this case $F = F_0F_2F_3 = 3 \cdot 17 \cdot 257$. This is not convenient since both 2p + 1, $2p^2 + 1$ are composite.

The case p = 2579. In this case $F = F_2F_4 = 17 \cdot 65537$. This is not convenient since neither one of 2p + 1, $2p^2 + 1$, 4p + 1, $4p^2 + 1$, 8p + 1, $8p^2 + 1$, 16p + 1, $16p^2 + 1$ is prime.

The case p = 467. In this case, $F = F_1F_3F_4 = 5 \cdot 257 \cdot 65537$. This is not convenient since neither of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case p = 331. In this case $F = F_1F_2F_3F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. This is not convenient since neither of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case p = 241. In this case $F = F_3F_4 = 257 \cdot 65537$. This is not convenient since neither of

$$2p+1,\ 2p^2+1,\ 4p+1,\ 4p^2+1,\ 8p+1,\ 8p^2+1,\ 16p+1,\ 16p^2+1,$$

32p + 1, $32p^2 + 1$, 64p + 1, $64p^2 + 1$, 128p + 1, $128p^2 + 1$, 256p + 1, $256p^2 + 1$ is prime.

The case p = 151. Here, $F = F_0F_1F_2F_3 = 3 \cdot 5 \cdot 17 \cdot 257$ or $F = F_1F_2F_3F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. However, this is not convenient since none of 2p+1, $2p^2+1$, 4p+1, $4p^2+1$ is prime.

The case p = 131. In this case, $F = F_1F_2F_4 = 5 \cdot 17 \cdot 65537$. Now 2p + 1 is prime but $2p^2 + 1$ is not. So, n_1 cannot be 1. Also, neither of 4p + 1, $4p^2 + 1$ is prime so n_1 cannot be 2, which is a contradiction since $\ell_1 = 2$.

The case p = 127. In this case, we have $F = F_0F_1F_2 = 3 \cdot 5 \cdot 17$ or $F = F_0F_2F_4 = 3 \cdot 17 \cdot 65537$ or $F = F_1F_2F_3 = 5 \cdot 17 \cdot 257$ or $F = F_2F_3F_4 = 17 \cdot 257 \cdot 65537$. Neither of 2p+1, $2p^2+1$ is prime, so the Fermat prime 3 cannot be involved. Also, 8p+1, $8p^2+1$, 16p+1, $16p^2+1$ are all composite so we cannot have $n_1 \in \{3,4\}$. However, 4p+1 is prime and $4p^2+1$ is composite. So the only possibility is $P_1 = 4p+1$ and $F_1 = 5$ are both involved in N and 5 is the smallest Fermat prime in N. Then $257 \mid 2^n p^2 + 1$. Since the order of 2 modulo 257 is 16, we check whether $2^i p^2 + 1$ is a multiple of 257 for $i = 0, \ldots, 15$ and find no solution.

The case p = 113. The only possibility is $F = F_2F_3F_4 = 17 \cdot 257 \cdot 65537$. We have that 2p + 1 is prime but $2p^2 + 1$ is not, so $n_1 > 1$. Since also none of

$$4p+1, 4p^2+1, 8p+1, 8p^2+1, 16p+1, 16p^2+1$$

is prime, we get a contradiction.

The case p = 107. We then have $F = F_1F_3 = 5 \cdot 257$. This is not convenient since none of 2p + 1, $2p^2 + 1$, 4p + 1, $4p^2 + 1$ is prime.

The case p = 83. We have $F = F_1F_4 = 5 \cdot 65537$. We have 2p + 1 is prime but $2p^2 + 1$ is not. Further, none of $4p + 1, 4p^2 + 1$ is prime, which is a contradiction.

The case p = 47. In this case, we have $F = F_1F_4 = 5 \cdot 65537$, or $F = F_0F_1F_3 = 3 \cdot 5 \cdot 257$. We have $2p+1, 2p^2+1, 4p+1$ are all composite but $4p^2+1$ is prime. Thus, the only possibility is $n_1 = 2$ and $F = F_1F_4$ is involved in N. Thus, $65537 \mid 2^np^2+1$. The order of 2 modulo 65537 is 32 and we check that $2^ip^2+1 \neq 0 \pmod{65537}$ for any $i = 0, \ldots, 31$.

The case p = 43. In this case $F = F_1F_2F_3 = 5 \cdot 17 \cdot 257$, or $F = F_2F_3F_4 = 17 \cdot 257 \cdot 65537$. None of $2p + 1, 2p^2 + 1$ is prime so $n_1 > 1$. None of

$$8p+1, 8p^2+1, 16p+1, 16p^2+1$$

is prime so we cannot have $n_2 \in \{3, 4\}$. However, 4p + 1 is prime (and $4p^2 + 1$ is not), so $n_1 = 2$, $P_1 = 4p + 1$ and $F = 5 \cdot 17 \cdot 257$. Thus, $257 \mid 2^n \cdot p^2 + 1$. This is false as it can be checked that $2^i p^2 + 1$ is not a multiple of 257 for any $i = 0, 1, \ldots, 15$.

The case p = 41. In this case $F = F_0F_1F_3 = 3 \cdot 5 \cdot 257$. We have 2p + 1 is prime but $2p^2 + 1$ is not. So, $n_1 = 1$ and $257 | 2^n p^2 + 1$. Again we check that this is false by checking that $2^i p^2 + 1$ is not a multiple of 257 for any $i = 0, \ldots, 15$.

The case p = 31. Here, $F = F_0F_1F_2F_3 = 3 \cdot 5 \cdot 17 \cdot 257$ or $F = F_1F_2F_3F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$, but none of 2p + 1, $2p^2 + 1$, 4p + 1, $4p^2 + 1$ is prime.

The case p = 29. In this case $F = F_2 F_3 F_4 = 17 \cdot 257 \cdot 65537$. None of

$$2p+1, 2p^2+1, 4p+1, 4p^2+1$$

is prime so $n_1 \ge 3$. We have that 8p + 1 is prime but $8p^2 + 1$ is not so $n_1 > 3$. Finally, 16p + 1 is not prime but $16p^2 + 1$ is, so $n_1 = 4$ and $F = 17 \cdot 257 \cdot 65537$. We check that $65537 \mid 2^n p^2 + 1$ is impossible by checking that $2^i p^2 + 1$ is not a multiple of 65537 for any $i = 0, \ldots, 31$.

The case p = 19. In this case $F = F_0F_2F_3F_4 = 3 \cdot 17 \cdot 257 \cdot 65537$. However, this is not possible as none of 2p + 1, $2p^2 + 1$ is prime.

The case p = 13. In this case $F = F_2F_3 = 17 \cdot 257$, or $F = F_3F_4 = 257 \cdot 65537$. We have 2p+1 and $2p^2+1$ are composite. However, both 4p+1, $4p^2+1$ are primes. If $n_1 = 2$, then $P_1 = 4p+1$, $Q_1 = 4p^2+1$. Then $P_1Q_1 = (1+4p(p+1)+16p^2)$ and 2||p+1. So, we must have that one of 8p+1, $8p^2+1$ is involved in N, but none is a prime. Hence, $n_1 > 2$. None of

$$16p + 1, \ 16p^2 + 1, \ 32p + 1, \ 32p^2 + 1, \ 64p + 1, \ 64p^2 + 1, \ 128p + 1, \ 128p^2 + 1$$

is prime. Also, $256p^2 + 1$ is not prime but 256p + 1 is prime. So, we may have $n_1 = 8$, $P_1 = 256p + 1$ and $F = 257 \cdot 65537$ is involved in N. Again we check that $65537 \nmid 2^n p^2 + 1$ by checking that $2^i p^2 + 1$ is never a multiple of 65537 for $i = 0, \ldots, 31$.

The case p = 11. Then $F = F_0F_3 = 3 \cdot 257$, or $F = F_1F_2F_3F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. We have that 2p + 1 is prime but $2p^2 + 1$ is not. So, we may have $n_1 = 1$ and then $3 \cdot 257$ is involved in N. In this case, $F = 3 \cdot 257$ is involved in N. Further, it follows that $F_1P_1 = (2+1)(2p+1) = (1+4p+2(p+1))$. Since $8 \mid 2(p+1)$, it follows that one of 4p + 1 or $4p^2 + 1$ must be a prime involved in N, but none of these is prime. Thus, $n_1 > 1$ and since none of 4p + 1, $4p^2 + 1$ is prime, the number 5 cannot be involved in N, a contradiction.

The case p = 7. In this case $F = F_0F_1 = 3 \cdot 5$, or $F = F_0F_3 = 3 \cdot 257$, or $F = F_1F_2 = 5 \cdot 17$, or $F = F_1F_4 = 5 \cdot 65537$, or $F = F_2F_3 = 17 \cdot 257$, or $F = F_3F_4 = 17 \cdot 257$ 257 · 65537, or $F = F_0 F_1 F_2 F_3 = 3 \cdot 5 \cdot 17 \cdot 257$, or $F = F_0 F_1 F_3 F_4 = 3 \cdot 5 \cdot 257 \cdot 65537$, or $F = F_1 F_2 F_3 F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. At any rate, none of 2p + 1, $2p^2 + 1$ is prime so 3 is not involved in N. Now 65537 does not divide $2^n p^2 + 1$ for any n as it can be checked that $2^i p^2 + 1$ is not a multiple of 65537 for i = 0, ..., 31. Thus, 65537 is not involved in N. Similarly, 257 is not involved in N. So, the only Fermat numbers that can be involved in N are 5 and 17 and there must be at least two of them so $F = 5 \cdot 17$. It thus follows that one of 4p + 1, $4p^2 + 1$ is involved in N but not both (they are both prime). Assume the one involved is $4p^2 + 1$. Then $(4+1) \cdot (4p^2+1) = (16p^2+4(p^2+1))$ and $2||p^2+1$. So, we need one of 8p+1, $8p^2+1$ to be involved in N but none is prime. Assume next that the one involved is 4p + 1. Then (4 + 1)(4p + 1) = (16p + 4(p + 1)) and $2^7 ||4(p + 1)$. Since 17 is already involved in N, it follows that either both 16p + 1, $16p^2 + 1$ is involved in N (false since $16p^2 + 1$ is not prime), or none of them is. So, none of them is. Then $5 \cdot 17 \cdot (4p+1) = (1+2^5m)$ for some odd m, so one of 32p+1, $32p^2+1$ is involved in N and this is false since they are both composite.

2.3. The Case F = 1

Here, $n_1 = m_1$. Let $P_1 = 2^a p + 1$, $Q_1 = 2^a p^2 + 1$. Note that $2^m p^2 + 1$ is a multiple of 3 if m is odd, so all m_j are even. In particular, a is even, so $p \equiv 1 \pmod{3}$. This shows that all n_j are even otherwise $2^{n_j}p + 1$ is a multiple of 3 for n_j odd. We can even do a bit better. Note that $p^2 \pmod{5} \in \{1, 4\}$ and $a = 2a_1$ is even. So, if $p^2 \equiv 1 \pmod{4}$, we cannot have a_1 odd since then $2^a \equiv 2^{2a_1} \equiv 4 \pmod{5}$ so $5 \mid 2^a p^2 + 1$. Thus, if $p^2 \equiv 1 \pmod{5}$, then $a_1 \equiv 0 \pmod{2}$ and if $p^2 \equiv 4 \pmod{5}$, then $a_1 \equiv 1 \pmod{2}$. This also shows that $p \not\equiv 4 \pmod{5}$.

Then

$$P_1Q_1 = 2^{2a}p^3 + 2^ap(p+1) + 1.$$

Assume that $\min\{n_2, m_2\} > a + \nu_2(p+1)$. Recall that $\nu_2(p+1)$ is the exponent of 2 in the factorization of p+1. It then follows that $a = \nu_2(p+1)$ and for this value of a both $2^a p + 1$, $2^a p^2 + 1$ are primes. Mathematica revealed that there are only 24 such primes p in [7, 50000], namely

 $\{67, 163, 883, 3067, 3307, 6991, 7951, 13267, 14683, 16603, 17551, 18523, 22147,$

23563, 24763, 27631, 28867, 37747, 38923, 40591, 43963, 49363, 49603, 49843.

Now we follow the proof. We need $2^n p^2 + 1$ to be a multiple of both $2^a p + 1$ and $2^a p^2 + 1$. Thus,

$$n-2a \equiv 0 \pmod{o_1}$$
 and $n-a \equiv 0 \pmod{O_1}$,

where $o_1 = \operatorname{ord}_{P_1}(2)/\operatorname{gcd}(2, \operatorname{ord}_{P_1}(2))$, and $O_1 = \operatorname{ord}_{Q_1}(2)$. Thus, we want that $n - 2a \equiv n - a \pmod{d}$, where $d := \operatorname{gcd}(o_1, O_1)$. This means $d \mid a$. A computer program ran for a few seconds and found no instance for which $d \mid a$.

Next we assume that $b = \min\{n_2, m_2\} \leq a + \nu_2(p+1)$. Since b > a must be even, it follows that $p \equiv 3 \pmod{4}$, so $p \equiv 7 \pmod{12}$. There are 969 primes $p \in [7, 50000]$ such that $p \equiv 7 \pmod{12}$ and $p \not\equiv 4 \pmod{5}$. For each one of them, we have

$$n - 2a \equiv 0 \pmod{o_1}$$
 and $n - a \equiv 0 \pmod{o_2}$.

Since $o_1 > 3a$, we get that 5a < n < 55010 and since $a = 2a_1$, we get

$$a_1 < n/10$$
 so $a_1 \le 5000$.

Further, $a_1 = 2a_2 + w_p$, where $w_p = 0$ if $p^2 \equiv 1 \pmod{5}$ and $w_p = 1$ if $p^2 \equiv 4 \pmod{5}$.

So, we wrote a code which goes through the 969 primes $p \in [7, 50000]$ satisfying $p \equiv 7 \pmod{12}$ and $p \not\equiv 4 \pmod{5}$, and through all integers

$$0 \le a_2 \le 2500$$

and calculates whether with $a_1 = 2a_2 + w_p$, both numbers

$$P_1 = 2^{2a_1}p + 1$$
 and $2^{2a_1}p^2 + 1$

are primes. If they are, the code computes $o_1 = \operatorname{ord}_{P_1}(2)/\operatorname{gcd}(2, \operatorname{ord}_{P_1}(2))$ and $O_1 = \operatorname{ord}_{Q_1}(2)$, and checks whether $d = \operatorname{gcd}(o_1, O_1)$ divides $a = 2a_1$.

The Mathematica code ran for less than 24 hours and produced no examples. This finishes the proof.

Acknowledgement. We thank the anonymous referee for a careful reading of our paper and for suggestions that helped improve the final version of this manuscript.

References

 A. Alahmadi and F. Luca, There are no Carmichael numbers of the form 2ⁿp+1 with p prime, C. R. Math. 360 (2022), 1177–1181.

- [2] J. Cilleruelo, F. Luca and A. Pizarro-Madariaga, Carmichael numbers in the sequence $(2^n k + 1)_{n \ge 1}$, Math. Comp. 85 (2016), 357–377.
- [3] A. R. Korselt, Problème chinois, L'intermédiaire des mathématiciens 6 (1899), 142–143.
- [4] T. Wright, The impossibility of certain types of Carmichael numbers, Integers 12 (2012), 951–964.