ON THE INTEGER SOLUTIONS OF THE DIOPHANTINE EQUATION $(x+y+z)^{2}=x y w$

Heli Duan ${ }^{1}$
School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, People's Republic of China
duanhelizmlx@163.com
Yangcheng Li
School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, People's Republic of China
liyangchengmlx@163.com

Received: 4/21/23, Accepted: 7/11/23, Published: 7/21/23

Abstract

By using the theory of Pell equations, we prove that the Diophantine equation $(x+y+z)^{2}=x y w$ has infinitely many integer solutions. Moreover, we show that every positive integer solution of this Diophantine equation can generate infinitely many different positive integer solutions by the following transformation: $$
(x, y, z, w)<\begin{aligned} & \left(x, y, k x y w-2 x-2 y-z, k^{2} x y w^{2}-2 k w(x+y+z)+w\right), \\ & (x, w x-2 x-2 z-y, z, w) \\ & (w y-2 y-2 z-x, y, z, w) \end{aligned}
$$

where $k>\frac{2}{x+y+z}$ and $k \in \mathbb{Q}^{+}$.

1. Introduction

In 1994, Guy [8] proposed the problem of determining which integers can be represented by

$$
\frac{(x+y+z)^{2}}{x y z}
$$

where x, y and z are positive integers. In 1997, Bremner [3] reported that all negative integers can be represented in this way by taking $(x, y, z)=\left(n,-n, n^{3}\right)$. In 1998, Brueggeman [4] made an interesting discovery. He constructed four binary

[^0]trees from the root triples $(1,1,1),(1,1,2),(1,2,3)$ and $(1,4,5)$, such that the triple (x, y, z) gives rise to the triples $\left(x, z,(x+z)^{2} / y\right)$ and $\left(y, z,(y+z)^{2} / x\right)$. Each node (x, y, z) of these trees makes $(x+y+z)^{2} / x y z$ an integer. He proved that $1,2,3,4,5,6,8$, and 9 are the only integers that are represented by $(x+y+z)^{2} / x y z$, where x, y and z are positive integers.

In 2002, Andreescu [1] investigated the Diophantine equation

$$
\begin{equation*}
(x+y+z)^{2}=x y z \tag{1}
\end{equation*}
$$

and found four different families of infinitely many positive integer solutions with z being 5,6,8, and 12. In 2013, Gopalan, Vidhyalakshmi and Kavitha [6] found finite integer solutions of Equation (1). Furthermore, in 2003, Andreescu [2] studied the positive integer solutions of the Diophantine equation $(x+y+z+t)^{2}=x y z t$, but only found nine families of infinitely many positive integer solutions. In 2013, Gopalan, Vidhyalakshmi and Kavitha [7] indicated a method to generate six different infinite families of positive integral solutions of the Diophantine equation $(x+y+z+t)^{2}=$ $x y z t+1$. In 2018, Sadhasivam, Nagajothi and Vimala [10] investigated the integer solutions of the Diophantine equation

$$
\begin{equation*}
\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right)^{2}=x_{1} x_{2} x_{3} \cdots x_{n} \tag{2}
\end{equation*}
$$

while they only found finite families of infinitely many positive integer solutions with n being 5 and 6 .

Duan and Li [5] investigated the solvability of the Diophantine equation

$$
\begin{equation*}
(x+y+z)^{2}=a x y z, a \in \mathbb{Z} \tag{3}
\end{equation*}
$$

and they found infinitely many integer solutions.
In this note, we are interested in the existence of the integer solutions of the Diophantine equation

$$
\begin{equation*}
(x+y+z)^{2}=x y w \tag{4}
\end{equation*}
$$

We prove that Equation (4) has infinitely many integer solutions.

2. Preliminaries

To prove our results, we give the following lemmas.
Lemma 1 ([9]). Let D be a positive integer which is not a perfect square, then the Pell equation $x^{2}-D y^{2}=1$ has infinitely many positive integer solutions. If (u, v) is the least positive integer solution of the Pell equation $x^{2}-D y^{2}=1$, then all positive integer solutions are given by

$$
x_{k}+y_{k} \sqrt{D}=(u+v \sqrt{D})^{k}
$$

where k is an arbitrary positive integer.

Lemma 2 ([9]). Let D be a positive integer which is not a perfect square, N be a nonzero integer, and (u, v) is the least positive integer solution of $x^{2}-D y^{2}=1$. If (p, q) is a positive integer solution of $x^{2}-D y^{2}=N$, then infinite positive integer solutions are given by

$$
x_{k}+y_{k} \sqrt{D}=(p+q \sqrt{D})(u+v \sqrt{D})^{k}
$$

where k is an arbitrary nonnegative integer.

3. The Main Results

Theorem 1. For any given $w, z \in \mathbb{Z}$, if $w(w-4)$ is a positive integer, there are infinite families of infinitely many integer solutions of Equation (4).

Remark 1. For any two integer solutions of Equation (4), we say they are in the same family if they have the same w and z.

Proof. For any given $w, z \in \mathbb{Z}$, solving Equation (4), we have

$$
\begin{equation*}
x=\frac{w y}{2}-y-z \pm \frac{\sqrt{w(w-4) y^{2}-4 w y z}}{2} \tag{5}
\end{equation*}
$$

We will only discuss the case of minus sign. To find $x \in \mathbb{Z}$, we consider

$$
w(w-4) y^{2}-4 w z y=t^{2}
$$

then

$$
(w(w y-4 y-2 z))^{2}-w(w-4) t^{2}=4 w^{2} z^{2}
$$

Let

$$
\begin{equation*}
X=w(w y-4 y-2 z) \quad \text { and } \quad Y=t= \pm(w y-2 x-2 y-2 z) \tag{6}
\end{equation*}
$$

We obtain the Pell equation

$$
\begin{equation*}
X^{2}-w(w-4) Y^{2}=4 w^{2} z^{2} \tag{7}
\end{equation*}
$$

It is easy to show that $w(w-4)$ is not a perfect square. If $w(w-4)$ is a positive integer, by Lemma 1, the Pell equation $X^{2}-w(w-4) Y^{2}=1$ has infinitely many positive integer solutions. Put (u, v) be the least positive integer solution of $X^{2}-w(w-4) Y^{2}=1$.

According to $(x, y, z, w)=(-w z,-z, z, w)$ is a trivial solution of Equation (4), from Equation (6), we find that $(X, Y)=(-z(w-2) w, w z)$ is an integer solution of Equation (7). By Lemma 2, an infinitude of integer solutions of Equation (7) are given by
$X_{k}+Y_{k} \sqrt{w(w-4)}=(-z(w-2) w+w z \sqrt{w(w-4)})(u+v \sqrt{w(w-4)})^{k}, \quad k \geq 0$.

Thus

$$
\left\{\begin{aligned}
X_{k+1} & =2 u X_{k}-X_{k-1} \\
Y_{k+1} & =2 u Y_{k}-Y_{k-1}
\end{aligned}\right.
$$

where

$$
\begin{aligned}
X_{0} & =-z(w-2) w \\
X_{1} & =-w z((w-2) u-v w(w-4)) \\
Y_{0} & =w z \\
Y_{1} & =w z(u-v(w-2))
\end{aligned}
$$

Using the recurrence relations of X_{k} and Y_{k} twice, we get

$$
\left\{\begin{align*}
X_{2 k+2} & =2\left(2 u^{2}-1\right) X_{2 k}-X_{2 k-2} \tag{8}\\
Y_{2 k+2} & =2\left(2 u^{2}-1\right) Y_{2 k}-Y_{2 k-2}
\end{align*}\right.
$$

where

$$
\begin{aligned}
& X_{0}=-z(w-2) w \\
& X_{2}=-w z\left((w-2) u^{2}-2 v w(w-4) u+v^{2} w(w-2)(w-4)\right) \\
& Y_{0}=w z \\
& Y_{2}=w z(u-v(w-4))(u-v w)
\end{aligned}
$$

From Equation (5) and Equation (6), we have

$$
\begin{equation*}
x=\frac{w y}{2}-y-z \pm \frac{Y}{2} \quad \text { and } \quad y=\frac{2 w z+X}{w(w-4)} \tag{9}
\end{equation*}
$$

Substituting Equation (9) into Equation (8), we obtain

$$
\left\{\begin{align*}
x_{2 k+2} & =2\left(2 u^{2}-1\right) x_{2 k}-x_{2 k-2}-8 v^{2} w z \tag{10}\\
y_{2 k+2} & =2\left(2 u^{2}-1\right) y_{2 k}-y_{2 k-2}-8 v^{2} w z
\end{align*}\right.
$$

where

$$
\begin{aligned}
& x_{0}=-w z \\
& x_{2}=\left(2(w-2) u v-2\left(w^{2}-4 w+2\right) v^{2}-1\right) w z \\
& y_{0}=-z \\
& y_{2}=\left(2 u v w-2 w(w-2) v^{2}-1\right) z
\end{aligned}
$$

It follows that $x_{2 k}, y_{2 k} \in \mathbb{Z}$ for all $k \geq 0$.
Therefore, for any given $w, z \in \mathbb{Z}$, if $w(w-4)$ is a positive integer, there are infinite families of infinitely many integer solutions of Equation (4).

Example 1. When $w=-1, z=1$, then Equation (7) becomes

$$
X^{2}-5 Y^{2}=4
$$

which has an integer solution $(X, Y)=(-3,-1)$. Note that $(u, v)=(9,4)$ is the least positive integer solution of $X^{2}-5 Y^{2}=1$. Therefore, from Equation (10), infinitely many integer solutions of Equation (4) are given by

$$
\left\{\begin{aligned}
& x_{2 k+2}=322 x_{2 k}-x_{2 k-2}+128, \quad x_{0}=1, \quad x_{2}=441 \\
& y_{2 k+2}=322 y_{2 k}-y_{2 k-2}+128, \quad y_{0}=-1, \quad y_{2}=-169
\end{aligned}\right.
$$

Theorem 2. If Equation (4) has a positive integer solution $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$, then it has infinitely many positive integer solutions with the same $z=z_{0}$ and $w=w_{0}$.

Proof. Suppose that $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$ is a positive integer solution of Equation (4). Without losing generality, we set $0<y_{0} \leq x_{0}$. Solving Equation (4) with $z=z_{0}$ and $w=w_{0}$, we have

$$
\begin{equation*}
x=\frac{w_{0} y}{2}-y-z_{0} \pm \frac{\sqrt{w_{0}\left(w_{0}-4\right) y^{2}-4 w_{0} z_{0} y}}{2} \tag{11}
\end{equation*}
$$

We will only discuss the case of minus sign. It is necessary to take

$$
w_{0}\left(w_{0}-4\right) y^{2}-4 w_{0} z_{0} y=t^{2}
$$

By the transformation

$$
\begin{equation*}
X=w_{0}\left(w_{0} y-4 y-2 z_{0}\right) \quad \text { and } \quad Y=t= \pm\left(w_{0} y-2 x-2 y-2 z_{0}\right) \tag{12}
\end{equation*}
$$

we get the Pell equation

$$
\begin{equation*}
X^{2}-w_{0}\left(w_{0}-4\right) Y^{2}=4 w_{0}^{2} z_{0}^{2} \tag{13}
\end{equation*}
$$

From Equation (4), we have

$$
w_{0}=\frac{\left(x_{0}+y_{0}+z_{0}\right)^{2}}{x_{0} y_{0}}>\frac{\left(x_{0}+y_{0}\right)^{2}}{x_{0} y_{0}} \geq 4
$$

Hence, $w_{0}\left(w_{0}-4\right)$ is a positive integer but not a perfect square. By Lemma 1 , the Pell equation $X^{2}-w_{0}\left(w_{0}-4\right) Y^{2}=1$ has infinitely many positive integer solutions. Put (u, v) be the least positive integer solution of $X^{2}-w_{0}\left(w_{0}-4\right) Y^{2}=1$.

From the given positive integer solution $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$, we find that

$$
\left(X_{0}, Y_{0}\right)=\left(w_{0}\left(w_{0} y_{0}-4 y_{0}-2 z_{0}\right), w_{0} y_{0}-2 x_{0}-2 y_{0}-2 z_{0}\right)
$$

is an integer solution of Equation (13).

In order to obtain positive integer solutions of Equation (4), we need to ensure that X_{0} and Y_{0} are positive. Multiplying Y_{0} by x_{0}, we have

$$
\begin{equation*}
x_{0} Y_{0}=x_{0} y_{0} w_{0}-2 x_{0}^{2}-2 x_{0} y_{0}-2 x_{0} z_{0} \tag{14}
\end{equation*}
$$

Substituting $\left(x_{0}+y_{0}+z_{0}\right)^{2}=x_{0} y_{0} w_{0}$ into Equation (14), we get

$$
x_{0} Y_{0}=\left(y_{0}+z_{0}\right)^{2}-x_{0}^{2}
$$

Note that

$$
x_{0}=\frac{w_{0} y_{0}}{2}-y_{0}-z_{0}-\frac{\sqrt{w_{0}\left(w_{0}-4\right) y_{0}^{2}-4 w_{0} z_{0} y_{0}}}{2} \leq \frac{w_{0} y_{0}}{2}-y_{0}-z_{0}
$$

Multiplying x_{0} by x_{0}, we get

$$
\begin{equation*}
x_{0}^{2} \leq \frac{x_{0} w_{0} y_{0}}{2}-x_{0} y_{0}-x_{0} z_{0} \tag{15}
\end{equation*}
$$

Then substitute $\left(x_{0}+y_{0}+z_{0}\right)^{2}=x_{0} y_{0} w_{0}$ into Equation (15), we obtain $x_{0}^{2} \leq$ $\left(y_{0}+z_{0}\right)^{2}$. Therefore, $Y_{0} \geq 0$ with $0<x_{0} \leq y_{0}+z_{0}$. Moreover, it is easy to see that $X_{0}=w_{0} Y_{0}+2 w_{0}\left(x_{0}-y_{0}\right)$. Hence, X_{0} is positive with $y_{0} \leq x_{0}$.

It is easy to provide infinitely many positive integer solutions of Equation (13) by the formula

$$
X_{k}+\sqrt{w_{0}\left(w_{0}-4\right)} Y_{k}=\left(X_{0}+\sqrt{w_{0}\left(w_{0}-4\right)} Y_{0}\right)\left(u+\sqrt{w_{0}\left(w_{0}-4\right)} v\right)^{k}, k \geq 0
$$

Then we have

$$
\left\{\begin{aligned}
X_{k+1} & =2 u X_{k}-X_{k-1}, \quad X_{0}=X_{0}, \quad X_{1}=u X_{0}+w_{0}\left(w_{0}-4\right) v Y_{0} \\
Y_{k+1} & =2 u Y_{k}-Y_{k-1}, \quad Y_{0}=Y_{0}, \quad Y_{1}=v X_{0}+u Y_{0}
\end{aligned}\right.
$$

Using the recurrence relations of X_{k} and Y_{k} twice, we get

$$
\left\{\begin{align*}
X_{2 k+2} & =2\left(2 u^{2}-1\right) X_{2 k}-X_{2 k-2} \tag{16}\\
Y_{2 k+2} & =2\left(2 u^{2}-1\right) Y_{2 k}-Y_{2 k-2}
\end{align*}\right.
$$

where

$$
\begin{aligned}
X_{0} & =X_{0} \\
X_{2} & =\left(2 u^{2}-1\right) X_{0}+2 w_{0}\left(w_{0}-4\right) u v Y_{0} \\
Y_{0} & =Y_{0} \\
Y_{2} & =2 u v X_{0}+\left(2 u^{2}-1\right) Y_{0}
\end{aligned}
$$

From Equation (6) and Equation (11), we have

$$
\begin{equation*}
x=\frac{w_{0} y}{2}-y-z_{0} \pm \frac{Y}{2} \quad \text { and } \quad y=\frac{2 w_{0} z_{0}+X}{w_{0}\left(w_{0}-4\right)} . \tag{17}
\end{equation*}
$$

Substituting Equation (17) into Equation (16), we obtain

$$
\left\{\begin{array}{l}
x_{2 k+2}=2\left(2 u^{2}-1\right) x_{2 k}-x_{2 k-2}-8 v^{2} w_{0} z_{0} \tag{18}\\
y_{2 k+2}=2\left(2 u^{2}-1\right) y_{2 k}-y_{2 k-2}-8 v^{2} w_{0} z_{0}
\end{array}\right.
$$

where

$$
\begin{aligned}
& x_{0}=x_{0} \\
& x_{2}=2 w_{0}\left(w_{0} x_{0}-4 x_{0}-2 z_{0}\right) v^{2}-2 v\left(w_{0} x_{0}-2 x_{0}-2 y_{0}-2 z_{0}\right) u+x_{0} \\
& y_{0}=y_{0} \\
& y_{2}=2 w_{0}\left(w_{0} y_{0}-4 y_{0}-2 z_{0}\right) v^{2}+2 u\left(w_{0} y_{0}-2 x_{0}-2 y_{0}-2 z_{0}\right) v+y_{0}
\end{aligned}
$$

It follows that $x_{2 k}, y_{2 k} \in \mathbb{Z}$ for all $k \geq 0$.
Since $X_{2 k}>0$ for all $k \geq 0$, from Equation (17), we have $y_{2 k}>0$ for all $k \geq 0$. Moreover, from Equation (6), we have

$$
x_{2 k}=\frac{\left(x_{2 k}+y_{2 k}+z_{2 k}\right)^{2}}{y_{2 k} w_{2 k}}>0 \quad \text { for all } k \geq 0
$$

Therefore, if Equation (4) has a positive integer solution $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$, then it has infinitely many positive integer solutions with the same $z=z_{0}$ and $w=w_{0}$.

Example 2. It is easy to check that $(x, y, z, w)=(1,1,1,9)$ is a positive integer solution of Equation (4); then Equation (13) becomes $X^{2}-45 Y^{2}=324$, which has an positive integer solution $\left(X_{0}, Y_{0}\right)=(27,3)$. Note that $(u, v)=(161,24)$ is the least positive integer solution of $X^{2}-45 Y^{2}=1$. Therefore, from Equation (18), infinitely many positive integer solutions of Equation (4) are given by

$$
\left\{\begin{array}{l}
x_{2 k+2}=103682 x_{2 k}-x_{2 k-2}-41472, \quad x_{0}=1, \quad x_{2}=7921 \\
y_{2 k+2}=103682 y_{2 k}-y_{2 k-2}-41472, \quad y_{0}=1, \quad y_{2}=54289
\end{array}\right.
$$

Duan and Li [5] investigated Equation (3) and they showed that every positive integer solution of Equation (3) can generate infinitely many different positive integer solutions of Equation (3) by the following transformation:

We give infinitely many positive integer solutions of Equation (4) by similar transformation in Theorem 3.

Theorem 3. Every positive integer solution of Equation (4) can generate infinitely many different positive integer solutions by the following transformation:

where $k>\frac{2}{x+y+z}$ and $k \in \mathbb{Q}^{+}$.
Proof. Suppose that $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$ is a positive integer solution of Equation (4). Without losing generality, we set $0<y_{0} \leq x_{0}$. Next, we need to show that the generated integer solutions are all positive and there are at least two solutions different from the previous. We just need to prove that the generated integer solutions are larger than the previous. For the first branch, we need to show that

$$
\begin{equation*}
k x y w-2 x-2 y-2 z>0 \quad \text { and } \quad k^{2} x y w^{2}-2 k w(x+y+z)>0 . \tag{19}
\end{equation*}
$$

Substituting $(x+y+z)^{2}=x y w$ into Equation (19), we have

$$
(x+y+z)(k(x+y+z)-2)>0 \quad \text { and } \quad k w(x+y+z)(k(x+y+z)-2)>0
$$

Therefore, if $k>\frac{2}{x+y+z}$, then

$$
k x y w-2 x-2 y-z>z \quad \text { and } \quad k^{2} x y w^{2}-2 k w(x+y+z)+w>w .
$$

For the other two branches, we show that

$$
\begin{equation*}
x w-2(x+y+z)>0 \quad \text { and } \quad y w-2(x+y+z) \geq 0 . \tag{20}
\end{equation*}
$$

Multiplying Equation (20) by y and x, respectively, then

$$
\begin{equation*}
x y w-2 y(x+y+z)>0 \quad \text { and } \quad x y w-2 x(x+y+z) \geq 0 \tag{21}
\end{equation*}
$$

Substituting $(x+y+z)^{2}=x y w$ into Equation (21), we have

$$
(x+y+z)(x-y+z)>0 \quad \text { and } \quad(x+y+z)(y+z-x) \geq 0
$$

Thus, $x w-2(x+y+z)+y>y$ and $y w-2(x+y+z)+x \geq x$.
That is to say, every positive integer solution of Equation (4) can generate infinitely many different positive integer solutions.

Example 3. It is easy to check that $(x, y, z, w)=(1,1,1,9)$ is a positive integer solution of Equation (4), then this solution can generate infinitely many different positive integer solutions:

where $k>\frac{2}{3}$ and $k \in \mathbb{Q}^{+}$.
Remark 2. From Theorem 3, every positive integer solution of Equation (4) can generate a positive integer solution with different z and w, then from Theorem 2, it is easy to draw the conclusion that there are infinite families of infinitely many positive integer solutions of Equation (4).

Remark 3. Case 1. If $w=z$, then Equation (4) becomes Equation (1).
Case 2. If $w=a z$, then Equation (4) becomes Equation (3).
Case 3. If $x=x_{1}, y=x_{2}, z=\sum_{i=3}^{n} x_{i}$ and $w=\prod_{i=3}^{n} x_{i}$, then Equation (4) becomes Equation (2). Every positive integer solution of Equation (2) can generate infinitely many different positive integer solutions by the following transformation:
$\left(x_{1}, x_{2}, \cdots, x_{n}\right)--\left(x_{1}, x_{2}, \cdots, x_{k-1}, \frac{\prod_{i=1}^{n} x_{i}}{x_{k}}-2\left(\sum_{i=1}^{n} x_{i}\right)+x_{k}, x_{k+1}, \cdots, x_{n}\right)$,
where $k=1, \cdots, n$.
Take $n=4$ as an example, then Equation (2) becomes

$$
\begin{equation*}
\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}=x_{1} x_{2} x_{3} x_{4} \tag{22}
\end{equation*}
$$

Then, we need to show that every positive integer solution of Equation (22) can generate infinitely many different positive integer solutions by the following transformation:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left\{\begin{array}{l}
\left(x_{2} x_{3} x_{4}-x_{1}-2 x_{2}-2 x_{3}-2 x_{4}, x_{2}, x_{3}, x_{4}\right) \\
\left(x_{1}, x_{2}, x_{1} x_{2} x_{4}-2 x_{1}-2 x_{2}-x_{3}-2 x_{4}, x_{4}\right) \\
\left(x_{1}, x_{2}, x_{3}, x_{1} x_{2} x_{3}-2 x_{1}-2 x_{2}-2 x_{3}-x_{4}\right) \\
\left(x_{1}, x_{1} x_{3} x_{4}-2 x_{1}-x_{2}-2 x_{3}-2 x_{4}, x_{3}, x_{4}\right)
\end{array}\right.
$$

Since x_{1}, x_{2}, x_{3}, and x_{4} are symmetric, without losing generality, we set $0<x_{1} \leq$ $x_{2} \leq x_{3} \leq x_{4}$. As an example, we prove $x_{2} x_{3} x_{4}-x_{1}-2 x_{2}-2 x_{3}-2 x_{4}$ is larger than x_{1}, i.e.,

$$
\begin{equation*}
x_{2} x_{3} x_{4}-x_{1}-2 x_{2}-2 x_{3}-2 x_{4}-x_{1}=x_{2} x_{3} x_{4}-2\left(x_{1}+x_{2}+x_{3}+x_{4}\right)>0 \tag{23}
\end{equation*}
$$

Multiplying Equation (23) by x_{1}, we have

$$
\begin{equation*}
x_{1}\left(x_{2} x_{3} x_{4}-x_{1}-2 x_{2}-2 x_{3}-2 x_{4}-x_{1}\right)=x_{1} x_{2} x_{3} x_{4}-2 x_{1}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) . \tag{24}
\end{equation*}
$$

Substituting $x_{1} x_{2} x_{3} x_{4}=\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}$ into Equation (24), we get
$x_{1}\left(x_{2} x_{3} x_{4}-x_{1}-2 x_{2}-2 x_{3}-2 x_{4}-x_{1}\right)=\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{2}+x_{3}+x_{4}-x_{1}\right)>0$.
Thus, $x_{2} x_{3} x_{4}-x_{1}-2 x_{2}-2 x_{3}-2 x_{4}>x_{1}$. Similarly, we can show that
$x_{1} x_{2} x_{4}-2 x_{1}-2 x_{2}-x_{3}-2 x_{4}>x_{3} \quad$ and $\quad x_{1} x_{3} x_{4}-2 x_{1}-x_{2}-2 x_{3}-2 x_{4}>x_{2}$.
Moreover, solving Equation (22), we get

$$
\begin{equation*}
x_{4}=\frac{x_{1} x_{2} x_{3} \pm \sqrt{x_{1}^{2} x_{2}^{2} x_{3}^{2}-4 x_{1}^{2} x_{2} x_{3}-4 x_{1} x_{2}^{2} x_{3}-4 x_{1} x_{2} x_{3}^{2}}}{2}-x_{1}-x_{2}-x_{3} \tag{25}
\end{equation*}
$$

We will only consider the case in which the square root is subtracted.

Note that

$$
x_{4} \leq \frac{x_{1} x_{2} x_{3}}{2}-x_{1}-x_{2}-x_{3}
$$

Multiplying x_{4} by x_{4}, we obtain

$$
\begin{equation*}
x_{4}^{2} \leq \frac{x_{1} x_{2} x_{3} x_{4}}{2}-x_{4}\left(x_{1}+x_{2}+x_{3}\right) \tag{26}
\end{equation*}
$$

Replacing $x_{1} x_{2} x_{3} x_{4}$ by $\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}$, we get

$$
x_{4}^{2} \leq\left(x_{1}+x_{2}+x_{3}\right)^{2}
$$

In consequence, it is easy to prove that $x_{1} x_{2} x_{3}-2 x_{1}-2 x_{2}-2 x_{3}-x_{4} \geq x_{4}$.
That is to say, every positive integer solution of Equation (22) can generate infinitely many different positive integer solutions.

Example 4. It is easy to verify that $(2,4,6,12)$ is a positive integer solution of Equation (22), then this solution can generate infinitely many different positive integer solutions:

References

[1] T. Andreescu, A Note on the equation $(x+y+z)^{2}=x y z$, Gen. Math. 10 (2002), 17-22.
[2] T. Andreescu, Solution to the Diophantine equation $(x+y+z+t)^{2}=x y z t$, Stud. Univ. Babes-Bolyai Math. 48(2) (2003), 3-7.
[3] A. Bremner and R. K. Guy, Two more representation problems, Proc. Edinb. Math. Soc. 40(1) (1997), 1-17.
[4] S. A. Brueggeman, Integers representable by $(x+y+z)^{3} / x y z$, Internat. J. Math. Math. Sci. 21(1) (1998), 107-116.
[5] H. L. Duan and Y. C. Li, On the integer solutions of the Diophantine equation $(x+y+z)^{2}=$ axyz, submitted.
[6] M. A. Gopalan, S. Vidhyalakshmi, and A. Kavitha, Observations on $(x+y+z)^{2}=x y z$, Int. J. Math. Sci. Appl. 3(1) (2013), 59-62.
[7] M. A. Gopalan, S. Vidhyalakshmi, and A. Kavitha, Integral solutions to the biquadratic equation with four unknowns $(x+y+z+w)^{2}=x y z w+1, \operatorname{IOSR} J$. Math. 7(4) (2013), 11-13.
[8] R. K. Guy, Problem 10382, Amer. Math. Monthly 101 (1994), 473.
[9] Z. Ke and Q. Sun, About Indeterminate Equation, Harbin Institute of Technology Press, 1980.
[10] V. Sadhasivam, N. Nagajothi and G. Vimala, On the positive integral solutions to the Diophantine equation of n-variables $\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right)^{2}=x_{1} x_{2} x_{3} \cdots x_{n}$, J. Comp. Matha. 2(2) (2018), 30-40.

[^0]: DOI: 10.5281/zenodo. 8174518
 ${ }^{1}$ Corresponding Author

