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Abstract

By using the theory of Pell equations, we prove that the Diophantine equation
(x + y + z)2 = xyw has infinitely many integer solutions. Moreover, we show that
every positive integer solution of this Diophantine equation can generate infinitely
many different positive integer solutions by the following transformation:

(x, y, z, w) (x,wx− 2x− 2z − y, z, w) ,

(
x, y, kxyw − 2x− 2y − z, k2xyw2 − 2kw(x + y + z) + w

)
,

(wy − 2y − 2z − x, y, z, w) ,

where k > 2
x+y+z and k ∈ Q+.

1. Introduction

In 1994, Guy [8] proposed the problem of determining which integers can be repre-

sented by
(x + y + z)2

xyz
,

where x, y and z are positive integers. In 1997, Bremner [3] reported that all

negative integers can be represented in this way by taking (x, y, z) = (n,−n, n3).

In 1998, Brueggeman [4] made an interesting discovery. He constructed four binary
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trees from the root triples (1, 1, 1), (1, 1, 2), (1, 2, 3) and (1, 4, 5), such that the

triple (x, y, z) gives rise to the triples (x, z, (x + z)2/y) and (y, z, (y + z)2/x). Each

node (x, y, z) of these trees makes (x + y + z)2/xyz an integer. He proved that

1,2,3,4,5,6,8, and 9 are the only integers that are represented by (x + y + z)2/xyz,

where x, y and z are positive integers.

In 2002, Andreescu [1] investigated the Diophantine equation

(x + y + z)2 = xyz (1)

and found four different families of infinitely many positive integer solutions with z

being 5,6,8, and 12. In 2013, Gopalan, Vidhyalakshmi and Kavitha [6] found finite

integer solutions of Equation (1). Furthermore, in 2003, Andreescu [2] studied the

positive integer solutions of the Diophantine equation (x+y+z+t)2 = xyzt, but only

found nine families of infinitely many positive integer solutions. In 2013, Gopalan,

Vidhyalakshmi and Kavitha [7] indicated a method to generate six different infinite

families of positive integral solutions of the Diophantine equation (x+ y+ z + t)2 =

xyzt + 1. In 2018, Sadhasivam, Nagajothi and Vimala [10] investigated the integer

solutions of the Diophantine equation

(x1 + x2 + x3 + · · ·+ xn)2 = x1x2x3 · · ·xn (2)

while they only found finite families of infinitely many positive integer solutions

with n being 5 and 6.

Duan and Li [5] investigated the solvability of the Diophantine equation

(x + y + z)2 = axyz, a ∈ Z, (3)

and they found infinitely many integer solutions.

In this note, we are interested in the existence of the integer solutions of the

Diophantine equation

(x + y + z)2 = xyw. (4)

We prove that Equation (4) has infinitely many integer solutions.

2. Preliminaries

To prove our results, we give the following lemmas.

Lemma 1 ([9]). Let D be a positive integer which is not a perfect square, then the

Pell equation x2−Dy2 = 1 has infinitely many positive integer solutions. If (u, v) is

the least positive integer solution of the Pell equation x2−Dy2 = 1, then all positive

integer solutions are given by

xk + yk
√
D = (u + v

√
D)k,

where k is an arbitrary positive integer.
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Lemma 2 ([9]). Let D be a positive integer which is not a perfect square, N be a

nonzero integer, and (u, v) is the least positive integer solution of x2 −Dy2 = 1. If

(p, q) is a positive integer solution of x2 −Dy2 = N , then infinite positive integer

solutions are given by

xk + yk
√
D = (p + q

√
D)(u + v

√
D)k,

where k is an arbitrary nonnegative integer.

3. The Main Results

Theorem 1. For any given w, z ∈ Z, if w(w − 4) is a positive integer, there are

infinite families of infinitely many integer solutions of Equation (4).

Remark 1. For any two integer solutions of Equation (4), we say they are in the

same family if they have the same w and z.

Proof. For any given w, z ∈ Z, solving Equation (4), we have

x =
wy

2
− y − z ±

√
w(w − 4)y2 − 4wyz

2
. (5)

We will only discuss the case of minus sign. To find x ∈ Z, we consider

w(w − 4)y2 − 4wzy = t2,

then

(w(wy − 4y − 2z))2 − w(w − 4)t2 = 4w2z2.

Let

X = w(wy − 4y − 2z) and Y = t = ±(wy − 2x− 2y − 2z). (6)

We obtain the Pell equation

X2 − w(w − 4)Y 2 = 4w2z2. (7)

It is easy to show that w(w − 4) is not a perfect square. If w(w − 4) is a

positive integer, by Lemma 1, the Pell equation X2−w(w−4)Y 2 = 1 has infinitely

many positive integer solutions. Put (u, v) be the least positive integer solution of

X2 − w(w − 4)Y 2 = 1.

According to (x, y, z, w) = (−wz,−z, z, w) is a trivial solution of Equation (4),

from Equation (6), we find that (X,Y ) = (−z(w − 2)w,wz) is an integer solution

of Equation (7). By Lemma 2, an infinitude of integer solutions of Equation (7) are

given by

Xk + Yk

√
w(w − 4) = (−z(w − 2)w + wz

√
w(w − 4))(u + v

√
w(w − 4))k, k ≥ 0.
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Thus {
Xk+1 = 2uXk −Xk−1,

Yk+1 = 2uYk − Yk−1,

where

X0 =− z(w − 2)w,

X1 =− wz((w − 2)u− vw(w − 4)),

Y0 = wz,

Y1 = wz(u− v(w − 2)).

Using the recurrence relations of Xk and Yk twice, we get{
X2k+2 = 2(2u2 − 1)X2k −X2k−2,

Y2k+2 = 2(2u2 − 1)Y2k − Y2k−2,
(8)

where

X0 =− z(w − 2)w,

X2 =− wz((w − 2)u2 − 2vw(w − 4)u + v2w(w − 2)(w − 4)),

Y0 = wz,

Y2 = wz(u− v(w − 4))(u− vw).

From Equation (5) and Equation (6), we have

x =
wy

2
− y − z ± Y

2
and y =

2wz + X

w(w − 4)
. (9)

Substituting Equation (9) into Equation (8), we obtain{
x2k+2 = 2(2u2 − 1)x2k − x2k−2 − 8v2wz,

y2k+2 = 2(2u2 − 1)y2k − y2k−2 − 8v2wz,
(10)

where

x0 =− wz,

x2 = (2(w − 2)uv − 2(w2 − 4w + 2)v2 − 1)wz,

y0 =− z,

y2 = (2uvw − 2w(w − 2)v2 − 1)z.

It follows that x2k, y2k ∈ Z for all k ≥ 0.

Therefore, for any given w, z ∈ Z, if w(w − 4) is a positive integer, there are

infinite families of infinitely many integer solutions of Equation (4).
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Example 1. When w = −1, z = 1, then Equation (7) becomes

X2 − 5Y 2 = 4,

which has an integer solution (X,Y ) = (−3,−1). Note that (u, v) = (9, 4) is the

least positive integer solution of X2 − 5Y 2 = 1. Therefore, from Equation (10),

infinitely many integer solutions of Equation (4) are given by{
x2k+2 = 322x2k − x2k−2 + 128, x0 = 1, x2 = 441,

y2k+2 = 322y2k − y2k−2 + 128, y0 = −1, y2 = −169.

Theorem 2. If Equation (4) has a positive integer solution (x0, y0, z0, w0), then it

has infinitely many positive integer solutions with the same z = z0 and w = w0.

Proof. Suppose that (x0, y0, z0, w0) is a positive integer solution of Equation (4).

Without losing generality, we set 0 < y0 ≤ x0. Solving Equation (4) with z = z0
and w = w0, we have

x =
w0y

2
− y − z0 ±

√
w0(w0 − 4)y2 − 4w0z0y

2
. (11)

We will only discuss the case of minus sign. It is necessary to take

w0(w0 − 4)y2 − 4w0z0y = t2.

By the transformation

X = w0(w0y − 4y − 2z0) and Y = t = ±(w0y − 2x− 2y − 2z0), (12)

we get the Pell equation

X2 − w0(w0 − 4)Y 2 = 4w2
0z

2
0 . (13)

From Equation (4), we have

w0 =
(x0 + y0 + z0)2

x0y0
>

(x0 + y0)2

x0y0
≥ 4.

Hence, w0(w0−4) is a positive integer but not a perfect square. By Lemma 1, the

Pell equation X2−w0(w0−4)Y 2 = 1 has infinitely many positive integer solutions.

Put (u, v) be the least positive integer solution of X2 − w0(w0 − 4)Y 2 = 1.

From the given positive integer solution (x0, y0, z0, w0), we find that

(X0, Y0) = (w0(w0y0 − 4y0 − 2z0), w0y0 − 2x0 − 2y0 − 2z0)

is an integer solution of Equation (13).
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In order to obtain positive integer solutions of Equation (4), we need to ensure

that X0 and Y0 are positive. Multiplying Y0 by x0, we have

x0Y0 = x0y0w0 − 2x2
0 − 2x0y0 − 2x0z0. (14)

Substituting (x0 + y0 + z0)2 = x0y0w0 into Equation (14), we get

x0Y0 = (y0 + z0)2 − x2
0.

Note that

x0 =
w0y0

2
− y0 − z0 −

√
w0(w0 − 4)y20 − 4w0z0y0

2
≤ w0y0

2
− y0 − z0.

Multiplying x0 by x0, we get

x2
0 ≤

x0w0y0
2

− x0y0 − x0z0. (15)

Then substitute (x0 + y0 + z0)2 = x0y0w0 into Equation (15), we obtain x2
0 ≤

(y0 + z0)2. Therefore, Y0 ≥ 0 with 0 < x0 ≤ y0 + z0. Moreover, it is easy to see that

X0 = w0Y0 + 2w0(x0 − y0). Hence, X0 is positive with y0 ≤ x0.

It is easy to provide infinitely many positive integer solutions of Equation (13)

by the formula

Xk +
√

w0(w0 − 4)Yk = (X0 +
√
w0(w0 − 4)Y0)(u +

√
w0(w0 − 4)v)k, k ≥ 0.

Then we have{
Xk+1 = 2uXk −Xk−1, X0 = X0, X1 = uX0 + w0(w0 − 4)vY0,

Yk+1 = 2uYk − Yk−1, Y0 = Y0, Y1 = vX0 + uY0.

Using the recurrence relations of Xk and Yk twice, we get{
X2k+2 = 2(2u2 − 1)X2k −X2k−2,

Y2k+2 = 2(2u2 − 1)Y2k − Y2k−2,
(16)

where

X0 = X0,

X2 = (2u2 − 1)X0 + 2w0(w0 − 4)uvY0,

Y0 = Y0,

Y2 = 2uvX0 + (2u2 − 1)Y0.

From Equation (6) and Equation (11), we have

x =
w0y

2
− y − z0 ±

Y

2
and y =

2w0z0 + X

w0(w0 − 4)
. (17)
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Substituting Equation (17) into Equation (16), we obtain{
x2k+2 = 2(2u2 − 1)x2k − x2k−2 − 8v2w0z0,

y2k+2 = 2(2u2 − 1)y2k − y2k−2 − 8v2w0z0,
(18)

where

x0 = x0,

x2 = 2w0(w0x0 − 4x0 − 2z0)v2 − 2v(w0x0 − 2x0 − 2y0 − 2z0)u + x0,

y0 = y0,

y2 = 2w0(w0y0 − 4y0 − 2z0)v2 + 2u(w0y0 − 2x0 − 2y0 − 2z0)v + y0.

It follows that x2k, y2k ∈ Z for all k ≥ 0.

Since X2k > 0 for all k ≥ 0, from Equation (17), we have y2k > 0 for all k ≥ 0.

Moreover, from Equation (6), we have

x2k =
(x2k + y2k + z2k)2

y2kw2k
> 0 for all k ≥ 0.

Therefore, if Equation (4) has a positive integer solution (x0, y0, z0, w0), then it

has infinitely many positive integer solutions with the same z = z0 and w = w0.

Example 2. It is easy to check that (x, y, z, w) = (1, 1, 1, 9) is a positive integer

solution of Equation (4); then Equation (13) becomes X2− 45Y 2 = 324, which has

an positive integer solution (X0, Y0) = (27, 3). Note that (u, v) = (161, 24) is the

least positive integer solution of X2 − 45Y 2 = 1. Therefore, from Equation (18),

infinitely many positive integer solutions of Equation (4) are given by{
x2k+2 = 103682x2k − x2k−2 − 41472, x0 = 1, x2 = 7921,

y2k+2 = 103682y2k − y2k−2 − 41472, y0 = 1, y2 = 54289.

Duan and Li [5] investigated Equation (3) and they showed that every positive in-

teger solution of Equation (3) can generate infinitely many different positive integer

solutions of Equation (3) by the following transformation:

(x, y, z) (x, axz − 2x− 2z − y, z) ,

(x, y, axy − 2x− 2y − z) ,

(ayz − 2y − 2z − x, y, z) .

We give infinitely many positive integer solutions of Equation (4) by similar

transformation in Theorem 3.
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Theorem 3. Every positive integer solution of Equation (4) can generate infinitely

many different positive integer solutions by the following transformation:

(x, y, z, w) (x,wx− 2x− 2z − y, z, w) ,

(
x, y, kxyw − 2x− 2y − z, k2xyw2 − 2kw(x + y + z) + w

)
,

(wy − 2y − 2z − x, y, z, w) ,

where k > 2
x+y+z and k ∈ Q+.

Proof. Suppose that (x0, y0, z0, w0) is a positive integer solution of Equation (4).

Without losing generality, we set 0 < y0 ≤ x0. Next, we need to show that the gen-

erated integer solutions are all positive and there are at least two solutions different

from the previous. We just need to prove that the generated integer solutions are

larger than the previous. For the first branch, we need to show that

kxyw − 2x− 2y − 2z > 0 and k2xyw2 − 2kw(x + y + z) > 0. (19)

Substituting (x + y + z)2 = xyw into Equation (19), we have

(x + y + z)(k(x + y + z)− 2) > 0 and kw(x + y + z)(k(x + y + z)− 2) > 0.

Therefore, if k > 2
x+y+z , then

kxyw − 2x− 2y − z > z and k2xyw2 − 2kw(x + y + z) + w > w.

For the other two branches, we show that

xw − 2(x + y + z) > 0 and yw − 2(x + y + z) ≥ 0. (20)

Multiplying Equation (20) by y and x, respectively, then

xyw − 2y(x + y + z) > 0 and xyw − 2x(x + y + z) ≥ 0. (21)

Substituting (x + y + z)2 = xyw into Equation (21), we have

(x + y + z)(x− y + z) > 0 and (x + y + z)(y + z − x) ≥ 0.

Thus, xw − 2(x + y + z) + y > y and yw − 2(x + y + z) + x ≥ x.

That is to say, every positive integer solution of Equation (4) can generate in-

finitely many different positive integer solutions.
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Example 3. It is easy to check that (x, y, z, w) = (1, 1, 1, 9) is a positive integer

solution of Equation (4), then this solution can generate infinitely many different

positive integer solutions:

(1, 1, 1, 9) (1, 4, 1, 9) · · ·

(
1, 1, 9k − 5, 81k2 − 54k + 9

)
· · ·

(4, 1, 1, 9) · · ·

where k > 2
3 and k ∈ Q+.

Remark 2. From Theorem 3, every positive integer solution of Equation (4) can

generate a positive integer solution with different z and w, then from Theorem 2,

it is easy to draw the conclusion that there are infinite families of infinitely many

positive integer solutions of Equation (4).

Remark 3. Case 1. If w = z, then Equation (4) becomes Equation (1).

Case 2. If w = az, then Equation (4) becomes Equation (3).

Case 3. If x = x1, y = x2, z =
∑n

i=3 xi and w =
∏n

i=3 xi, then Equation (4)

becomes Equation (2). Every positive integer solution of Equation (2) can generate

infinitely many different positive integer solutions by the following transformation:

(x1, x2, · · · , xn)−−

(
x1, x2, · · · , xk−1,

∏n
i=1 xi

xk
− 2

(
n∑

i=1

xi

)
+ xk, xk+1, · · · , xn

)
,

where k = 1, · · · , n.

Take n = 4 as an example, then Equation (2) becomes

(x1 + x2 + x3 + x4)2 = x1x2x3x4. (22)

Then, we need to show that every positive integer solution of Equation (22) can

generate infinitely many different positive integer solutions by the following trans-

formation:

(x1, x2, x3, x4)
(x1, x2, x1x2x4 − 2x1 − 2x2 − x3 − 2x4, x4) ,

(x2x3x4 − x1 − 2x2 − 2x3 − 2x4, x2, x3, x4) ,

(x1, x2, x3, x1x2x3 − 2x1 − 2x2 − 2x3 − x4) ,

(x1, x1x3x4 − 2x1 − x2 − 2x3 − 2x4, x3, x4) .
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Since x1, x2, x3, and x4 are symmetric, without losing generality, we set 0 < x1 ≤
x2 ≤ x3 ≤ x4. As an example, we prove x2x3x4 − x1 − 2x2 − 2x3 − 2x4 is larger

than x1, i.e.,

x2x3x4 − x1 − 2x2 − 2x3 − 2x4 − x1 = x2x3x4 − 2(x1 + x2 + x3 + x4) > 0. (23)

Multiplying Equation (23) by x1, we have

x1(x2x3x4−x1− 2x2− 2x3− 2x4−x1) = x1x2x3x4− 2x1(x1 +x2 +x3 +x4). (24)

Substituting x1x2x3x4 = (x1 + x2 + x3 + x4)2 into Equation (24), we get

x1(x2x3x4−x1−2x2−2x3−2x4−x1) = (x1 +x2 +x3 +x4)(x2 +x3 +x4−x1) > 0.

Thus, x2x3x4 − x1 − 2x2 − 2x3 − 2x4 > x1. Similarly, we can show that

x1x2x4 − 2x1 − 2x2 − x3 − 2x4 > x3 and x1x3x4 − 2x1 − x2 − 2x3 − 2x4 > x2.

Moreover, solving Equation (22), we get

x4 =
x1x2x3 ±

√
x2
1x

2
2x

2
3 − 4x2

1x2x3 − 4x1x2
2x3 − 4x1x2x2

3

2
− x1 − x2 − x3. (25)

We will only consider the case in which the square root is subtracted.

Note that

x4 ≤
x1x2x3

2
− x1 − x2 − x3.

Multiplying x4 by x4, we obtain

x2
4 ≤

x1x2x3x4

2
− x4(x1 + x2 + x3). (26)

Replacing x1x2x3x4 by (x1 + x2 + x3 + x4)2, we get

x2
4 ≤ (x1 + x2 + x3)2.

In consequence, it is easy to prove that x1x2x3 − 2x1 − 2x2 − 2x3 − x4 ≥ x4.

That is to say, every positive integer solution of Equation (22) can generate

infinitely many different positive integer solutions.

Example 4. It is easy to verify that (2, 4, 6, 12) is a positive integer solution of

Equation (22), then this solution can generate infinitely many different positive

integer solutions:
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(2, 4, 6, 12)

(2, 4, 12, 54)

(4, 6, 12, 242)

(2, 4, 6, 12)

(2, 6, 12, 100)

(6, 12, 242, 16900) · · ·
(4, 6, 242, 5292) · · ·

(2, 4, 6, 12)

(4, 12, 242, 11094) · · ·

(2, 4, 54, 300) · · ·
(4, 12, 54, 2450) · · ·

(2, 4, 6, 12)

(2, 12, 54, 1156) · · ·

(2, 6, 100, 972) · · ·
(6, 12, 100, 6962) · · ·

(2, 4, 6, 12)

(2, 12, 100, 2166) · · ·
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