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Abstract

In this paper we present a new method of obtaining parametric solutions of the
classical diophantine equation A4 +B4 = C4 +D4 whose complete solution is still
not known. Two methods of solving the equation, given by Euler, yield paramet-
ric solutions given by polynomials of degrees 7 and 13. Several other parametric
solutions are now known, and with the exception of one solution of degree 11, all
the published solutions are of degrees 6n + 1 for some integer n. The method de-
scribed in this paper yields new parametric solutions of degrees 21, 39 and 75, that
is, degrees that are expressible as 6n+ 3.

1. Introduction

This paper is concerned with the classical diophantine equation,

A4 +B4 = C4 +D4, (1)

for which integer solutions were first found by Euler in 1772. In fact, Euler gave two

ways of solving Equation (1) leading to parametric solutions given by polynomials

of degrees 7 and 13, respectively (see [5, p. 1062]). Dickson [3, pp. 644–647] men-

tions various methods, found subsequently by several mathematicians, of solving

the diophantine Equation (1). Lander [5, pp. 1062–1065] applied geometric meth-

ods to obtain parametric solutions of (1). Zajta [7] carried out a survey of the

important methods of solving Equation (1) and obtained a new parametric solution

given by polynomials of degree 11. Parametric solutions of degrees 13, 19, 25 and

31 have been published by various authors ([1], [2], [5], [7]). The complete solution

of Equation (1) is, however, still not known.

Guy [4, p. 212–213] states that “a method is known for generating parametric

solutions of a4 + b4 = c4 + d4 which will generate all published solutions from the

trivial one (λ, 1, λ, 1); it will only generate solutions of degree 6n + 1.” He also
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mentions that there exist solutions of even degree but until now no solution of even

degree has been found.

Since the existing methods of solving Equation (1) generate only solutions of

odd degrees, and solutions of even degree are known to exist, there is interest in

devising new ways of solving Equation (1) that may yield solutions of even degrees.

Accordingly, we tried to find solutions of (1) by a new method which is presented

below in Section 2. While the desired solution of even degree could not be found,

the method yielded solutions of degrees 21, 39 and 75, all of these degrees being

expressible as 6n+ 3. As none of the known solutions are of degree 6n+ 3, the new

solutions obtained in this paper are interesting although solutions of even degrees

remain elusive.

2. A New Method of Finding Parametric Solutions of Equation (1)

To solve Equation (1), we write

A = a0x
2 + a1x+ a2, B = b0x

2 + b1x+ b2,

C = a0x
2 − a1x+ a2, D = b0x

2 − b1x+ b2,
(2)

where ai, bi, i = 0, 1, 2, and x are arbitrary parameters. With these values, Equation

(1) reduces, on transposing all terms to the left-hand side and removing the common

factor 8x, to

(a30a1 + b30b1)x6 + (3a20a1a2 + a0a
3
1 + 3b20b1b2 + b0b

3
1)x4

+ (3a0a1a
2
2 + a31a2 + 3b0b1b

2
2 + b31b2)x2 + a1a

3
2 + b1b

3
2 = 0. (3)

We will now choose the parameters ai, bi, i = 0, 1, 2, such that the coefficients of

x6 and x4 in Equation (3) become 0. Accordingly, we take

a1 = b30, b1 = −a30, a2 = (a80−b80)u/(3a0b
2
0), b2 = (a80−b80)(u−1)/(3a20b0), (4)

where u is an arbitrary parameter, and now Equation (3) reduces to

9a20b
2
0((a80 − b80)u+ b80)x2 + (a80 − b80)2(3u2 − 3u+ 1) = 0. (5)

We now write, without any loss of generality,

a0 = b0t, x = vb20(t8 − 1)/(3t((t8 − 1)u+ 1)), (6)

when Equation (5) reduces to

v2 = (3u2 − 3u+ 1)((1 − t8)u− 1). (7)
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The birational transformation defined by

v = Y/(3(t8 − 1)), u = −(X + 3)/(3(t8 − 1)),

X = 3(−t8 + 1)u− 3, Y = 3v(t8 − 1),
(8)

reduces Equation (7) to

Y 2 = X(X2 + 3(t8 + 1)X + 3t16 + 3t8 + 3). (9)

Now Equation (9) may be considered as the Weierstrass model of an elliptic curve

over the function field Q(t). It was found by trial that a rational point P on the

elliptic curve (9) is given by

P = ((t4 − t2 + 1)(t8 − t4 + 1)/t2, (t18 + t12 + t6 + 1)/t3). (10)

For integer values of t > 1, the elliptic curve (9) is in Weierstrass form with integer

coefficients while the point P has rational coordinates. It, therefore, follows from

the Nagell-Lutz theorem [6, p. 56] that in these cases P is not a point of finite

order. Hence, for arbitrary rational values of t also, the point P cannot be of finite

order. Thus, we can find infinitely many rational points on the elliptic curve (9)

using the group law. In fact, the coordinates of the point 2P are readily found and

are given by

((t6 − 2t4 − 2t2 + 1)2/(4t2), (t18 − 17t12 − 17t6 + 1)/(8t3)).

If (X,Y ) are the coordinates of any rational point on the curve (9), we find, on

using the relations (2), (4), (6) and (8), that a solution of the diophantine Equation

(1) may be written as follows:

A = t9X − tY + (t16 + t8 + 1)t, B = X + t4Y + t16 + t8 + 1,

C = t9X + tY + (t16 + t8 + 1)t, D = X − t4Y + t16 + t8 + 1.
(11)

While the point P yields a trivial solution of the diophantine Equation (1), the point

2P gives a nontrivial solution, which on writing t = p/q and clearing denominators,

may be expressed in terms of homogeneous polynomials of degree 21 in arbitrary

parameters p and q as follows:

A = f(p, q), B = f(q,−p), C = f(p,−q), D = f(q, p), (12)

where
f(m,n) = (m− n)(m2 +mn+ n2)(2m18 + 3m15n3

+ 23m12n6 + 6m9n9 + 8m6n12 − 9m3n15 − n18).
(13)

As a numerical example, taking p = 2, q = 1, yields the following solution of Equa-

tion (1):

A = 5042177, B = 575226, C = 4659327, D = 3638026.
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The points 3P and 4P yield solutions of degrees 39 and 75, respectively. Since

these solutions are cumbersome to write, we do not give them explicitly. All the

computations to find the solutions were performed by me on the software MAPLE.

The referee carried out the computations much further till the point 10P , and ex-

perimentally found a pattern that when n is even, the point nP yields a parametric

solution of degree 9n2/2 + 3, while for odd values of n, the point nP yields a para-

metric solution of degree (9n2 − 3)/2. It may be interesting for the reader to prove

that this is, in fact, true for all positive integer values of n.

3. Concluding Remarks

In an effort to find a solution of even degree of the diophantine Equation (1), we

explored a new method of attacking the problem, and obtained new parametric

solutions of degrees 21, 39 and 75. However, finding a solution of even degree

remains an open problem.
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