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Abstract

In this short note, we first give a simple example (Theorem 1 below) of a coloring f
of N (which uses infinitely many colors) for which no piecewise syndetic subset S of N
exists such that f restricted to S is either constant or 1-1. We then show (Theorem
2) that for every coloring f of N (using finitely many or infinitely many colors)
there exists a piecewise syndetic subset S of N on which f is either constant or is
finite-to-one, which means that for all y ∈ N, we have |{x ∈ S : f(x) = y}| <∞.

–Dedicated to the memory of Allen R. Freedman

1. Introduction

We write N for the set of positive integers {1, 2, 3, . . . }. The “canonical van der

Waerden theorem” states that for any coloring of N with finitely many or infinitely

many colors, there exists, for every k ∈ N, a k-term arithmetic progression on

which the given coloring is either constant or 1-1. It is in this sense (the use of

either finitely many or infinitely many colors) that we use the word “canonical” in

the title of this paper. (The canonical van der Waerden theorem is first stated in

[4, p. 17] as a consequence of Szemerédi’s theorem [14]. For an elementary proof,

see [6] or [13].)

We write [0, d] for the interval {0, 1, 2, . . . , d}. Let S be an infinite subset of

N. If there exists d ∈ N such that S + [0, d] contains an infinite interval, then S

is syndetic; if S + [0, d] contains arbitrarily large finite intervals of N, then S is

piecewise syndetic. In both cases, the minimum such d is the gap size associated

with S. (As usual, S+ [0, d] denotes the set {s+x : s ∈ S, x ∈ [0, d]}.) Of course, N
itself is syndetic, and hence piecewise syndetic, with d = 1. It is an elementary fact

([1], [2], [5], [7]-[13]) that for every finite coloring of N there is a monochromatic
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piecewise syndetic set. In fact, for any finite coloring of any piecewise syndetic

subset X of N, there is a monochromatic piecewise syndetic set. We use this, stated

as Lemma 1, in the proof of Theorem 2 below. (It is also an elementary fact (see for

example [13]) that every piecewise syndetic set S contains arbitrarily long (finite)

arithmetic progressions.)

In the short paper [3] is a complicated coloring f of N (each color class is a

translate of a single fixed infinite set) such that for every piecewise syndetic subset

S of N, f restricted to S is neither constant nor 1-1. Here is a simple coloring of N
(each color class is a finite interval) which has this property.

Theorem 1. Let {an}∞n=1 be an increasing sequence in N such that lim
n→∞

(an+1 −
an) = ∞ and define f : N → N by f(x) = min{n ∈ N : x < an}. Then there is no

piecewise syndetic set S on which f is either constant or 1-1.

Proof. Since each color is used only finitely many times, and a piecewise syndetic

set S is infinite, f is not constant on S. Since the coloring is constant on the

intervals [an, an+1), which become arbitrarily large, then no matter how large the

“gap size” d associated with S is, the piecewise syndetic set S will intersect some

intervals [an, an+1) more than once, so the coloring is not 1-1 on S.

Remark. For the reader who is familiar with the relevant notions, it can be ob-

served that Theorem 1 provides a very simple proof that there are no selective

ultrafilters in the closure of the smallest ideal of (βN,+). (In fact, by [9, Corollary

8.37], there are no P -points in that closure, but that has a much more complicated

proof.)

2. The Main Theorem

Lemma 1. Let X be any piecewise syndetic subset of N. For every finite coloring

of X, there is a monochromatic piecewise syndetic set.

(References for Lemma 1 are given in the Introduction. The simplest proof is in

[9, p. 332], where it is observed that if A,B are subsets of N which are not piecewise

syndetic then A ∪B is also not piecewise syndetic.)

Definition 1. Let f : N→ N and let S ⊆ N. Then f is finite-to-one on S if for all

y ∈ N,

|{x ∈ S : f(x) = y}| <∞.

Theorem 2. Let f : N → N be arbitrary. Then there exists a piecewise syndetic

subset S of N such that either f is constant on S or f is finite-to-one on S.
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Proof. Let f : N → N be given. Let us assume throughout the proof that f is

not constant on any piecewise syndetic set. We now inductively construct pairwise

disjoint intervals B0, B1, . . . , Bn, . . . which have the following three properties:

1. |Bi| = 10i, 0 ≤ i.
2. maxBi < minBj , 0 ≤ i < j.

3. f(Bi) ∩ f(Bj) = ∅, 0 ≤ i < j.

We set B0 = {1}. To choose B1, consider the infinite sequence of intervals, each

of size 10, given by

I1 = [2, 3, 4, . . . , 11],
I2 = [3, 4, 5, . . . , 12],
I3 = [4, 5, 6, . . . , 13],

...
Ij = [j + 1, j + 2, j + 3, . . . , j + 10],

... .

If there is xj ∈ Ij with f(xj) = f(1) for all j ≥ 1, then the setX = {x1, x2, x3, . . . }
is a monochromatic syndetic (hence piecewise syndetic) set with gap size at most

10, contrary to our assumption on f . Hence there is an interval B1 = [a + 1, a +

2, . . . , a+ 10] such that f(1) /∈ f(B1).

These choices for B0 and B1 begin our induction. We have |B0| = 100, |B1| = 101,

maxB0 < minB1, and f(B0) ∩ f(B1) = ∅.
Now suppose n ≥ 1 and that B0, B1, . . . , Bn are intervals of N which satisfy the

above properties 1 - 3. Let C = f(B0 ∪ B1 ∪ · · · ∪ Bn), the set of all the colors

assigned by f to the elements of B0 ∪B1 ∪ · · · ∪Bn. Consider the infinite sequence

J1, J2, J3, . . . of successive intervals, each of size 10n+1, which immediately follow

the last element, q = maxBn, of Bn:

J1 = [q + 1, q + 10n+1],
J2 = [q + 2, q + 1 + 10n+1],
J3 = [q + 3, q + 2 + 10n+1],

...
Jj = [q + j, q + j − 1 + 10n+1],

... .

Suppose that C ∩ f(Jj) 6= ∅ for all j ≥ 1, say xj ∈ Jj and f(xj) ∈ C, j ≥ 1. Then

the set X = {x1, x2, x3, . . . } is a piecewise syndetic (hence syndetic) set with gap

size at most 10n+1, and the coloring f restricted to X maps X to the finite set C.

By Lemma 1 there is an f -monochromatic piecewise syndetic set, contrary to our

initial assumption about the coloring f . Thus for some j ≥ 1 we have Cn ∩ Ij = ∅,
and we take Bn+1 = Ij . We now have that B1, B2, B3, . . . , Bn+1 satisfy the three

properties listed at the beginning of the proof.
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This finishes the inductive construction of the sets B0, B1, B2 . . . , and we set

S = B0 ∪ B1 ∪ B2 ∪ · · · . The set S is certainly piecewise syndetic (the associated

gap size is d = 1). Finally, property (3) of the sets Bi, i ≥ 1, guarantees that any

color that appears in Bn occurs at most 10n times in S altogether, thus f restricted

to S is finite-to-one.
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