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Abstract

This paper presents the p-adic valuation of the sequence Cn(m) =
∏n
k=m+1(k2 −

m2), n = m+ 1,m+ 2, · · · . An explicit formula is derived for the p-adic valuation
of Cn(m). From an applicational perspective, this study proves that Cn(m) is not a
square when m = 2, 3. Additionally, this paper provides a criterion for Cn(m) being
a powerful number when n ≥ 3m.

1. Introduction

Let f(x) ∈ Z[x]. Squares and powerful numbers in the sequence Cn(f) =
∏n
k=1 f(k)

have already attracted significant attention of several researchers.

In 2008, Amdeberhan, Medina, and Moll [1] presented a conjecture that Cn(f)

is not a square when f(x) = x2 + 1 and n > 3. After the conjecture was proven by

Cilleruelo [3], the problems related to the squares in Cn(f) have been studied by

numerous mathematicians.

For f(x) = x2 + b with b ∈ Z, Ho [10], Hong and Liu [11], Gürel [8], and Zhang

and Niu [16] studied the cases b = 1, b = −1, b = m2 − 1, and b = m2, respectively.

Fang [7] proved that Cn(f) is not a square when f(x) = 4x2 + 1 and 2x2 − 2x+ 1.

Yang, Togbé, and He [14] studied the number of squares in the sequence Cn(f),

where f(x) = ax2 + b with (a, b) = 1, 1 ≤ a ≤ 10, and 1 ≤ b ≤ 20.

Additionally, the squares in Cn(f) when the degree of f(x) is greater than 2 have

been investigated. For f(x) = x3 + 1, Gürel and Kisisel [9] proved that Cn(f) is
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not a square. Generally, for irreducible f(x), the number of squares in the sequence

Cn(f) was estimated by Cilleruelo, Luca, Quirós, and Shparlinski [4].

For f(x) = xd + 1, Zhang and Wang [18], Chen and Gong [6], and Chen, Gong,

and Ren [5] discussed the cases where d is a prime number greater than 5, an odd

prime, and an odd number, respectively, to study powerful numbers in Cn(f). When

f(x) = xd + qd, Niu and Liu [12] and Yang and Zhao [15] investigated the cases

where d = 3 and d is an odd integer, respectively.

Now, for Cn(m) =
∏n
k=m+1(k2−m2), we discuss the p-adic valuations of Cn(m)

in this study and extend results for Cn(1) by Hong and Liu [11].

For a prime p, let vp(n) = e if pe | n and pe+1 - n. Let
∑l
i=0 nip

i be the p-adic

expansion of n. Then, we write sp(n) =
∑l
i=0 ni.

For positive integers x and y, with x ≥ y, we can define a constant δp(x, y) as

follows. Let

x = a0 + a1p+ a2p
2 + · · ·+ alp

l (1)

and

y = b0 + b1p+ b2p
2 + · · ·+ bkp

k (2)

be the p-adic expansions of x and y, respectively. For convenience, let bi = 0 if

i > k. Define

I = {i | ai − bi < 0, i = 0, 1, · · · , l} ∪ {i0} = {i0, i1, i2, · · · , it}, (3)

J = {j | aj − bj > 0, j = 0, 1, · · · , l} ∪ {j0} = {j0, j1, j2, · · · , js}, (4)

where i0 = j0 = −1, i1 < i2 < · · · < it, and j1 < j2 < · · · < js. Then x− y can be

written as

x− y =

t∑
r=1

(air − bir )pir +

s∑
r=1

(ajr − bjr )pjr .

Let

I ′ = {ik ∈ I | ik−1 ≤ j < ik for some j ∈ J} = {α1, · · · , αh1} (5)

and

J ′ = {jk ∈ J | jk−1 < i < jk for some i ∈ I} = {β1, · · · , βh2
}, (6)

where α1 < α2 < · · · < αh1
and β1 < β2 < · · · < βh2

.

Definition 1. For positive integers x ≥ y and with the same notation as in Equa-

tions (5) and (6), we define

δp(x, y) =
∑
j∈J′

j −
∑
i∈I′

i.
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In this paper, we show the following results.

Theorem 1. Let x, y be positive integers with x ≥ y. We have

sp(x− y) + sp(y)− sp(x) = (p− 1)δp(x, y).

By Theorem 1, the p-adic valuation of the binomial coefficient
(
x
y

)
is just δp(x, y).

Corollary 1. Let x, y be positive integers with x ≥ y. We have

vp(
(
x
y

)
) = δp(x, y).

By Theorem 1, a formula of vp(Cn(m)) can be formulated, and the asymptotic

behavior of vp(Cn(m)) can be studied.

Theorem 2. Let m,n be positive integers with n ≥ m+ 1. We have

vp(Cn(m)) =
2

p− 1
(n−m− sp(n−m)) + δp(n+m, 2m).

Corollary 2. For any prime p, we have vp(Cn(m)) ∼ 2n
p−1 as n→∞.

Hence, we deduce the following corollary.

Corollary 3. Let m,n be positive integers with n ≥ m+1. Then Cn(m) is a square

if and only if δp(n+m, 2m) is even for any prime p.

From the applicational perspective of Theorem 2, when m = 2 or m = 3, we can

show that a prime p always exists such that vp(Cn(m)) is odd. Consequently, we

can deduce the following theorems.

Theorem 3. When m = 2, we have that Cn(2) is not a square if n ≥ 3.

Theorem 4. When m = 3, we have that Cn(3) is not a square if n ≥ 4.

The paper is organized as follows. In Section 2, we study the properties of δp(x, y)

and prove Theorems 1 and 2. A comparative study of our formula for vp(Cn(1))

relative to that of [11] is presented in Section 3. In Sections 4 and 5, we restrict our

attention to m = 2 and m = 3 and prove Theorems 3 and 4, respectively. Finally, a

criterion for Cn(m) being a powerful number when n ≥ 3m is discussed in Section

6.

2. Proofs of Theorems 1 and 2

Recall the definition of δp(x, y). The following two examples contribute to our un-

derstanding of I ′, J ′, δp(x, y), and Theorem 2.
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Example 1. Let p = 17,

x = 2 + 17 + 4 · 172 + 2 · 173 + 3 · 174,

and

y = 1 + 2 · 17 + 172 + 2 · 174.

Thus,

x− y = 1 + (−1) · 17 + 3 · 172 + 2 · 173 + 174.

We have I = {−1, 1}, J = {−1, 0, 2, 3, 4}, I ′ = {1}, and J ′ = {2}, which results in

δ17(x, y) = 1. Let x = n+m and y = 2m. It follows that n = 177881, m = 83683,

and

n−m = 94198 = 1 + 16 · 17 + 2 · 172 + 2 · 173 + 174.

By Theorem 2, we have v17(Cn(m)) = 11773.

Example 2. Let p = 7,

x = 1 + 3 · 7 + 2 · 72 + 6 · 73 + 4 · 74 + 4 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + 710,

and

y = 3 + 7 + 4 · 72 + 3 · 73 + 2 · 74 + 6 · 75 + 2 · 76 + 4 · 77 + 4 · 78 + 3 · 79.

Thus

x− y =− 2 + 2 · 7 + (−2) · 72 + 3 · 73 + 2 · 74 + (−2) · 75

+ (−1) · 76 + (−2) · 77 + 3 · 79 + 710.

We have I = {−1, 0, 2, 5, 6, 7}, J = {−1, 1, 3, 4, 9}, I ′ = {0, 2, 5}, and J ′ = {1, 3, 9},
which results in δ7(x, y) = 6. Let x = n + m and y = 2m. It follows that n =

475621653, m = 73878187, and

n−m = 401743466

= 5 + 7 + 5 · 72 + 2 · 73 + 2 · 74 + 5 · 75

+ 5 · 76 + 4 · 77 + 6 · 78 + 2 · 79 + 710.

By Theorem 2, we have v7(Cn(m)) = 133914476.

Lemma 1. Considering the same notation as was used in Equations (3), (4), (5),

and (6), we have that α1 = i1, that αk is the smallest element in I and is greater

than βk−1 for k ≥ 2, and that βk is the smallest element in J and is greater than

αk for k ≥ 1. As an immediate consequence, we have h1 = h2.
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Proof. Since i1 > i0 and i0 = j0 < i1, we have i1 ∈ I ′. Hence α1 = i1.

If β1 = js1 , we claim that i1 ∈ (js1−1, js1). Otherwise, we have i1 < js1−1. It

follows that s1 > 1. Therefore, there exists js′1 ∈ J such that js′1 ≤ js1−1 < js1
and js′1−1 < i1 < js′1 . Thus js′1 ∈ J

′, which contradicts js1 = β1. Hence js1 is the

smallest element in J and is greater than i1.

If α2 = it2 > i1, we claim that β1 ∈ (it2−1, it2). Otherwise, there exists it′2 ∈ I
such that it′2 ≤ it2−1 < it2 and it′2−1 < β1 < it′2 . It follows that it′2 ∈ I

′ and it′2 > i1,

which contradicts it2 = α2. Thus, from β1 ∈ (it2−1, it2), we have it2 is the smallest

element in I that is greater than β1.

Therefore, the lemma follows by induction.

Definition 2. For a positive integer n and a prime p, if

n = n0 + n1p+ n2p
2 + · · ·+ nlp

l, (7)

where 0 < nl ≤ p− 1 and 1− p ≤ ni ≤ p− 1 for i = 0, 1, · · · , l − 1, we can define

(n)Γ =
∑
i∈Γ∩Z

nip
i,

where Γ ⊆ R is an interval.

Lemma 2. Considering the same notation as was used in Definition 2, we have

sp(n) = sp((n)[0,t]) + sp((n)(t,l]),

where t = min{i | ni > 0, i = 0, 1, · · · , l}.

Proof. Since nt, nl > 0, it follows that (n)[0,t] and (n)(t,l] are both positive. Then

(n)[0,t] = n′0 + n′1p+ · · ·+ n′tp
t (8)

and

(n)(t,l] = n′t+1p
t+1 + n′t+2p

t+2 + · · ·+ n′lp
l, (9)

where 0 ≤ n′i ≤ p− 1 for i = 0, 1, · · · , l. Thus

sp((n)[0,t]) = n′0 + n′1 + · · ·+ n′t,

and

sp((n)(t,l]) = n′t+1 + n′t+2 + · · ·+ n′l.

From Equations (8) and (9), we have

n = (n)[0,t] + (n)(t,l] = n′0 + n′1p+ · · ·+ n′lp
l.
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It follows that

sp(n) = n′0 + n′1 + · · ·+ n′l = sp((n)[0,t]) + sp((n)(t,l]).

Lemma 3. Let n be a positive integer. If

n = n0 + n1p+ · · ·+ nlp
l

with 0 < nl ≤ p− 1 and 1− p ≤ ni ≤ 0 for i = 0, 1, · · · , l − 1, we have

sp(n) =

l∑
i=0

ni + (p− 1)(l − k),

where k = min{i | ni 6= 0, i = 0, 1, · · · , l}.

Proof. Write

n = ni1p
i1 + ni2p

i2 + · · ·+ nitp
it + nlp

l,

where ni < 0 for i = i1, i2, · · · , it and i1 < i2 < · · · < it, then the p-adic expansion

of n is

n =(ni1 + p)pi1 + (p− 1)pi1+1 + · · ·+ (p− 1)pi2−1 + (ni2 + p− 1)pi2

+ (p− 1)pi2+1 + · · ·+ (p− 1)pi3−1 + (ni3 + p− 1)pi3

+ · · ·
+ (nit + p− 1)pit + (p− 1)pit+1 + · · ·+ (p− 1)pl−1 + (nl − 1)pl.

Thus

sp(n) =

l∑
i=0

ni + (p− 1)(l − i1) =

l∑
i=0

ni + (p− 1)(l − k).

Corollary 4. For positive integers x ≥ y, and with the same notation as in Equa-

tions (5) and (6), when k = 1, 2, · · · , h1, we have

sp((x− y)[αk,βk]) + sp((y)[αk,βk])− sp((x)[αk,βk]) = (p− 1)(βk − αk).

Proof. Observe that 1− p ≤ ai − bi ≤ 0 for i ∈ [αk, βk), 1− p ≤ aαk
− bαk

< 0, and

0 < aβk
− bβk

≤ p− 1. By Lemma 3, we have

sp((x− y)[αk,βk]) =
∑

i∈[αk,βk]

(ai − bi) + (p− 1)(βk − αk)

= sp((x)[αk,βk])− sp((y)[αk,βk]) + (p− 1)(βk − αk).
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Proof of Theorem 1. By Lemma 2, we have

sp(x− y) + sp(y)− sp(x)

= sp((x− y)[0,α1)) + sp((y)[0,α1))− sp((x)[0,α1))

+

h−1∑
k=1

(
sp((x− y)(βk,αk+1)) + sp((y)(βk,αk+1))− sp((x)(βk,αk+1))

)

+

h∑
k=1

(
sp((x− y)[αk,βk]) + sp((y)[αk,βk])− sp((x)[αk,βk])

)
+ sp((x− y)(βh1

,l]) + sp((y)(βh1
,l])− sp((x)(βh1

,l]). (10)

If i ∈ [0, α1), then ai − bi ≥ 0. Thus, the p-adic expansion of (x − y)[0,α1) is∑
i∈[0,α1)(ai − bi)pi. Therefore

sp((x− y)[0,α1)) =
∑

i∈[0,α1)

(ai − bi) = sp((x)[0,α1))− sp((y)[0,α1)).

Hence, we have

sp((x− y)[0,α1)) + sp((y)[0,α1))− sp((x)[0,α1)) = 0.

Additionally, by similar arguments we have

sp((x− y)[βh1
+1,l]) + sp((y)[βh1

+1,l])− sp((x)[βh1
+1,l]) = 0,

and for 1 ≤ k ≤ h1 − 1, we have

sp((x− y)(βk,αk+1)) + sp((y)(βk,αk+1))− sp((x)(βk,αk+1)) = 0.

Furthermore, by Equation (10) and Corollary 4, we have

sp(x− y) + sp(y)− sp(x)

=

h1∑
k=1

(
sp((x− y)[αk,βk]) + sp((y)[αk,βk])− sp((x)[αk,βk])

)

= (p− 1)

h1∑
k=1

(βk − αk) = (p− 1)δp(x, y).

This completes the proof.

Proof of Corollary 1. Since vp(n!) =
n−sp(n)
p−1 , by Theorem 1 we have

vp(
(
x
y

)
) = vp

(
x!

y!(x− y)!

)
=

1

p− 1
(sp(x− y) + sp(y)− sp(x)) = δp(x, y).
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This completes the proof.

Proof of Theorem 2. Since Cn(m) =
(
n+m
2m

)
((n−m)!)2, we have

vp(Cn(m)) = vp(
(
n+m
2m

)
) + 2vp((n−m)!)

=
2

p− 1
(n−m− sp(n−m)) + δp(n+m, 2m).

The proof is done.

Lemma 4 ([2]). For any positive integer n and prime p, we have

n

p− 1
− log(1 + n)

log p
≤ vp(n!) ≤ n

p− 1
.

Lemma 5. For any positive integer n and prime p, we have sp(n) ≤ (p−1) logp(n+

1).

Proof. By Legendre’s formula and Lemma 4, we have

sp(n) = n− (p− 1)vp(n!) ≤ (p− 1) logp(n+ 1).

Proof of Corollary 2. By Theorem 2, we have

p− 1

2n
vp(Cn(m)) = 1 +

p− 1

2n
δp(n+m, 2m)− 1

n
(m+ sp(n−m)). (11)

Observe that

0 ≤ δp(x, y) ≤
l∑

k=1

k =
l(l + 1)

2
≤

log2
p x+ logp x

2
.

Then

0 ≤ p− 1

2n
δp(n+m, 2m) ≤

(p− 1)(log2
p n+ logp n)

4n
. (12)

By Lemma 5, we have

0 ≤ sp(n−m)

n
≤

(p− 1) logp(n+ 1)

n
. (13)

Thus, by Equations (12) and (13), the limits of p−1
2n δp(n+m, 2m) and 1

n (m+sp(n−
m)) in Equation (11) are both 0 as n goes to infinity. The proof is done.
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3. m = 1

The following formula of vp(Cn(1)) was provided by Hong and Liu [11]:

vp(Cn(1)) =


2n− 2− 2s2(n−1

2 ) + v2(n+1
2 ), p = 2, 2 - n;

2n− 4− 2s2(n2 − 1) + v2(n2 ), p = 2, 2 | n;
2
p−1 (n− 1− sp(n− 1)) + vp(n) + vp(n+ 1), p > 2.

(14)

By Theorem 2, for n ≥ 2, we have

vp(Cn(1)) =
2

p− 1
(n− 1− sp(n− 1)) + δp(n+ 1, 2). (15)

For p = 2, we have

n+ 1 = a0 + a1 · 2 + a2 · 22 + · · ·+ al · 2l,

where ai = 0 or 1 for i = 0, 1, · · · , l. Let k = min{i | ai = 1, i = 2, 3, · · · , l}.
If a1 = 1, we have

n− 1 = a0 + ak · 2k + · · ·+ al · 2l.

It follows that I ′ = ∅ and J ′ = ∅. Hence, we have δ2(n+1, 2) = 0 and v2(Cn(1)) =

2n− 2− 2s2(n− 1).

If a1 = 0, we have

n− 1 = a0 − 2 + ak · 2k + · · ·+ al · 2l.

Then I ′ = {1}, J ′ = {k}, and δ2(n + 1, 2) = k − 1. Thus v2(Cn(1)) = 2n − 3 −
2s2(n− 1) + k.

For an odd prime p, by Corollary 1, we have

δp(n+ 1, 2) = vp(
(
n+1

2

)
) = vp(n) + vp(n+ 1).

Hence, we have vp(Cn(1)) = vp(n) + vp(n+ 1) + 2
p−1 (n− 1− sp(n− 1)).

In summary, Equation (15) is equivalent to

vp(Cn(1)) =


2n− 2− 2s2(n− 1), p = 2, a1 = 1;

2n− 3− 2s2(n− 1) + k, p = 2, a1 = 0;
2
p−1 (n− 1− sp(n− 1)) + vp(n) + vp(n+ 1), p > 2.

(16)

Herein, it is trivial to see that Equations (14) and (16) coincide with each other.
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4. m = 2

In this section, we discuss the case for m = 2 and prove Theorem 3, while assuming

n ≥ 3. The objective is to show that a prime p exists such that vp(Cn(2)) is odd.

Let S = {a2 | a ∈ Z}. Let P(n) denote the set of primes p such that vp(n) is odd.

Lemma 6. For a positive integer n and a prime p ≥ 5, we have vp(
∏2
i=−1(n+i)) =

vp(n+ i0) for some i0 ∈ {−1, 0, 1, 2}.

Proof. The greatest common divisors of any two numbers in {n− 1, n, n+ 1, n+ 2}
should not exceed 3. If p - n+ i for each i, then vp(

∏2
i=−1(n+ i)) = 0. Otherwise,

there exists a unique i0 such that p | n+ i0. It follows that

vp((n− 1)n(n+ 1)(n+ 2)) = vp(n+ i0). 2

Proof of Theorem 3. By Theorem 2, we observe that vp(Cn(2)) and δp(n + 2, 4)

have the same parity. By Corollary 1, we have

δp(n+ 2, 4) = vp
((
n+2

4

))
= vp((n

2 − 1)(n2 + 2n))− 3vp(2)− vp(3).

We assume that vp
((
n+2

4

))
is even for all primes p ≥ 5. Otherwise, there exists

a prime p ≥ 5 such that vp(Cn(2)) is odd and Cn(2) is not a square. Thus, this

assumption and Lemma 6 imply that p /∈ P(n2−1) if p ≥ 5. Similarly, P(n2 +2n) 6=
∅ and p /∈ P(n2 + 2n) if p ≥ 5. Thus, for any p ≥ 5, we have

p /∈ P (n− 1) ∪ P (n) ∪ P (n+ 1) ∪ P (n+ 2). (17)

Case 1. P(n2 − 1) = {3}. If 3 ∈ P(n2 + 2n), then v3(
(
n+2

4

)
) = v3(n2 + 2n) +

v3(n2 − 1) − 1 is odd. Thus Cn(2) is not a square. If P(n2 + 2n) = {2}, then n is

even. Hence (n, n + 2) = 2. Since n2+2n
2 ∈ S, we either have n ∈ S or n + 2 ∈ S.

Thus n+ 1, n− 1 /∈ S, which contradicts n2−1
3 ∈ S.

Case 2. P(n2−1) = {2}. In this case, we have that n is odd and (n+1, n−1) = 2.

Since n2−1
2 ∈ S, we either have n + 1 ∈ S or n − 1 ∈ S. Thus n, n + 2 /∈ S, which

implies that P(n),P(n+ 2) 6= ∅. If 2 /∈ P(n)∪P(n+ 2) and P(n)∩P(n+ 2) = ∅,
then there exists a prime p ≥ 5 in P(n) ∪ P(n + 2), which contradicts Equation

(17).

Case 3. P(n2− 1) = {2, 3}. In this case, we have that n is odd and (n, n+ 2) = 1.

Since n2 +2n /∈ S, we either have n /∈ S or n+2 /∈ S. Since 2 | n2−1 and 3 | n2−1,

we have 2, 3 /∈ P(n). Thus, combining with Equation (17), we have n ∈ S and

n+ 2 /∈ S. Since 2 /∈ P(n+ 2), we have P(n+ 2) = {3}. Thus

v3(
(
n+2

4

)
) = v3(n+ 2) + v3(n2 − 1)− 1

is odd.

The proof of Theorem 3 is completed.
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5. m = 3

Similar to Section 4, we discuss the proof for Theorem 4 in this section.

Lemma 7. For a positive integer n and a prime p ≥ 7, we have vp(
∏3
i=−2(n+i)) =

vp(n+ i0) for some i0 ∈ [−2, 3].

Proof. The proof is similarly to that of Lemma 6.

Lemma 8. The following facts have been established.

1. The Diophantine equation x2 − y2 = k has no solutions when x > 3 and

1 ≤ k ≤ 5.

2. The Diophantine equation ax2 − 2y2 = k has no solutions when x and y are

odd, a ≡ 1 (mod 4), and k ≡ 1 (mod 4).

3. The Diophantine equation ax2−ky2 = −1 has no solutions when x is odd and

y is even for any integer k and a ≡ 1 (mod 4).

4. The Diophantine equation x2−5y2 = k has no solutions for k ≡ ±2 (mod 5).

Proof. Here, the first statement is trivial. For the other statements, otherwise, we

have −2 ≡ 1 (mod 4), −1 ≡ 1 (mod 4), or x2 ≡ ±2 (mod 5), respectively, which

are all contradictions.

Lemma 9. For an integer n > 6, there exists at most one square in {n − 2, n −
1, n, n+ 1, n+ 2, n+ 3}.

Proof. By trivial computations, we observe that the lemma holds for n = 7, 8, 9,

and 10. When n > 10, we assume that n+ i, n+ j are squares when i > j and i, j ∈
{−2,−1, 0, 1, 2, 3}. It follows that (

√
n+ i,

√
n+ j) is a solution to x2 − y2 = i− j

with
√
n+ i > 3 and 1 ≤ i − j ≤ 5. This result contradicts the first statement of

Lemma 8.

Proof of Theorem 4. Upon the decompositions of Cn(3) when n = 4, 5, and 6, the

theorem holds trivially for n ≤ 6. Hence, we have assumed n > 6.

By Theorem 2, it is sufficient to prove that there exists a prime p such that

vp(
(
n+3

6

)
) is odd. By Corollary 1, we have

vp(
(
n+3

6

)
) = vp(n

2 − 4) + vp(n
2 − 1) + vp(n

2 + 3n)− vp(5)− 2vp(12). (18)

By Lemma 7, if there exists a prime p ≥ 7 in
⋃3
i=−2 P(n+ i), then vp(

(
n+3

6

)
) is odd,

and Cn(3) is not a square. Hence, we always assume
⋃3
i=−2 P(n+ i) ⊆ {2, 3, 5}.

We claim that n2 − 1 /∈ S, n2 − 4 /∈ S, and n2 + 3n /∈ S. The first two facts are

trivial, while for the last fact, observe that (n, n + 3) = 1 or 3. Thus n2 + 3n ∈ S
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implies that either n, n+ 3 ∈ S or n
3 ,

n+3
3 ∈ S. This yields a solution (

√
n+ 3,

√
n)

or (
√

n+3
3 ,
√

n
3 ) of x2 − y2 = 3 or x2 − y2 = 1, respectively, which contradicts

Lemma 8.

Case 1. P(n2 − 4) = {5}. Since n2 ≡ 4 (mod 5), we have 5 /∈ P(n2 − 1). If

3 ∈ P(n2 − 1), then v3(
(
n+3

6

)
) = v3(n2 − 1) + v3(n2 − 4) − 2 is odd as desired. If

P(n2 − 1) = {2}, then n is odd and (n + 1, n − 1) = 2. Since n2−1
2 ∈ S, we either

have n + 1 ∈ S or n − 1 ∈ S. Thus n + 2, n − 2 /∈ S. Therefore, by the fact that

(n+ 2, n− 2) = 1, we have n2−4
5 /∈ S, which contradicts P(n2 − 4) = {5}.

Case 2. P(n2 − 4) = {3}. Since n2 ≡ 4 (mod 3), we have P(n) ∩ P(n + 3) = ∅
and 3 /∈ P(n) ∪ P(n+ 3).

Case 2.1. n /∈ S, n+ 3 /∈ S. If P(n) = {5} and P(n+ 3) = {2}, then n is odd and

(n + 2, n − 2) = 1. It follows that either n + 2 ∈ S or n − 2 ∈ S since n2−4
3 ∈ S.

Therefore, we either have a solution (
√
n+ 2,

√
n
5 ) of x2 − 5y2 = 2 or a solution

(
√
n− 2,

√
n
5 ) of x2 − 5y2 = −2, which is a contradiction. Thus P(n) = {2} and

v2(n) is odd. Additionally, since 2 /∈ P(n2 − 4), we observe that v2(n2 − 4) is even.

It follows that v2(
(
n+3

6

)
) = v2(n) + v2(n2 − 4)− 4 is odd.

Case 2.2. n ∈ S or n+3 ∈ S. In this case, we have n+2 /∈ S and n−2 /∈ S. If n is

odd, then (n+ 2, n− 2) = 1. Since n2−4
3 ∈ S, we either have n+ 2 ∈ S or n− 2 ∈ S,

which is a contradiction. Hence n is even. If n ≡ 2 (mod 4), then (n+2
4 , n−2

4 ) = 1.

Since n2−4
3 ∈ S, we have n+2 ∈ S or n−2 ∈ S, which is a contradiction. Therefore,

we have n ≡ 0 (mod 4) and (n+2
2 , n−2

2 ) = 1. Thus, either n−2
2 ∈ S or n+2

2 ∈ S since
n2−4

3 ∈ S.
If n ∈ S, then P(n + 3) = {5} since 2 /∈ P(n + 3). Therefore n+3

5 ∈ S. Hence,

we either have an odd solution (
√

n+3
5 ,
√

n−2
2 ) of 5x2 − 2y2 = 5 or an odd solution

(
√

n+3
5 ,
√

n+2
2 ) of 5x2 − 2y2 = 1, which is a contradiction.

Additionally, if n+ 3 ∈ S, then we either have an odd solution (
√
n+ 3,

√
n−2

2 )

of x2 − 2y2 = 5 or an odd solution (
√
n+ 3,

√
n+2

2 ) of x2 − 2y2 = 1, which is a

contradiction.

Case 3. P(n2 − 4) = {2}. In this case, we have that n is even. If n ≡ 0 (mod 4),

we have v2(n2−4) = 2, which implies that 2 /∈ P(n2−4). Therefore n ≡ 2 (mod 4)

and (n−2
4 , n+2

4 ) = 1. Since n2−4
2 ∈ S, we either have n − 2 ∈ S or n + 2 ∈ S. Thus

n− 1, n+ 1, n+ 3 /∈ S, and P(n− 1),P(n+ 1) and P(n+ 3) are all non-empty sets.

Since any two of n−1, n+1, and n+3 are coprime, we have that P(n−1),P(n+1),

and P(n + 3) are disjoint from each other. Therefore, one of P(n − 1),P(n + 1),

and P(n+ 3) contains 2, which contradicts that n is even.

Case 4. P(n2 − 4) = {3, 5}. In this case, we have n2 ≡ 4 (mod 3) and n2 ≡ 4
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(mod 5). It follows that 3 /∈ P(n)∪P(n+ 3) and 5 /∈
⋃1
i=−1 P(n+ i). Additionally,

we have P(n) ∩ P(n+ 3) = ∅ since (n, n+ 3) = 1.

If either n − 1 ∈ S or n + 1 ∈ S, then we have n /∈ S and n + 3 /∈ S. Thus

P(n) = {2}, which implies that n is even. Hence, we have P(n + 3) = {5} since

2, 3 /∈ P(n + 3). It follows that v5(n2 − 4) and v5(n + 3) are both odd. Thus

v5(
(
n+3

6

)
) = v5(n2 − 4) + v5(n+ 3)− 1 is odd as desired.

If n − 1, n + 1 /∈ S, then we have that P(n2 − 1) 6= {2}. Otherwise, we have

that n is odd and n2−1
2 ∈ S, which implies that either n − 1 ∈ S or n + 1 ∈ S.

If P(n2 − 1) = {2, 3}, then n is odd and n2−1
6 ∈ S. Hence, we obtain a solution

(
√

n2−4
15 ,

√
n2−1

6 ) of 5x2 − 2y2 = −1, where x is odd and y is even. This is a

contradiction. If P(n2 − 1) = {3}, then n2−1
3 ∈ S. Hence, we claim that n is odd.

Otherwise, we have (n + 1, n − 1) = 1, which implies that either n − 1 ∈ S or

n+ 1 ∈ S. Hence, we get a solution (
√

n2−4
15 ,

√
n2−1

3 ) of 5x2 − y2 = −1, where x is

odd and y is even. This is also a contradiction.

Case 5. P(n2 − 4) = {2, 5}. In this case, we have that n is even and n2 ≡ 4

(mod 5). It follows that 2, 5 6∈ P(n2 − 1). Therefore P(n2 − 1) = {3} and 3 /∈
P(n2 + 3n). We have v3(

(
n+3

6

)
) ≡ v3(n2 − 1) ≡ 1 (mod 2). Hence v3(

(
n+3

6

)
) is odd

as desired.

Case 6. P(n2 − 4) = {2, 3}. In this case, we have that n is even and n2 ≡ 1

(mod 3). It follows that 3 /∈ P(n), and 2, 3 /∈ P(n+3). Since 2 ∈ P(n2−4), we have

n ≡ 2 (mod 4). Therefore (n− 2, n+ 2) = 4.

Case 6.1. n−1 ∈ S or n+1 ∈ S. In this case, we have n /∈ S and n+3 /∈ S. Hence

P(n+3) = {5} and 5 /∈ P(n). Therefore P(n) = {2} since 3 /∈ P(n). Since n2−4
6 ∈ S,

we have n2−4
6·16 ∈ S, which implies that n−2

8 ∈ S or n+2
8 ∈ S since n−2

4 , n+2
4 /∈ S and

(n−2
4 , n+2

4 ) = 1. Thus we either have n−2
2 ∈ S or n+2

2 ∈ S. Hence, we get a solution

(
√

n
2 ,
√

n−2
2 ) or (

√
n+2

2 ,
√

n
2 ) of x2 − y2 = 1, which is a contradiction.

Case 6.2. n − 1 /∈ S, n + 1 /∈ S. Since P(n − 1) ∩ P(n + 1) = ∅ and 2 /∈ P(n −
1) ∪ P(n + 1), we either have P(n − 1) = {3}, P(n + 1) = {5} or P(n − 1) = {5},
P(n+ 1) = {3}. Since (n− 1, n+ 1) = 1, we have P(n2− 1) = P(n− 1)∪P(n+ 1).

Thus 5 ∈ P(n2 − 1) and n2 ≡ 1 (mod 5), which implies that 5 /∈ P(n2 + 3n). Since

3 - n, we also have 3 /∈ P(n2+3n). Hence P(n2+3n) = {2} and n2+3n
2 ∈ S. It follows

that n
2 ∈ S and n + 3 ∈ S since (n2 , n + 3) = 1. Therefore, we have n − 2 /∈ S and

n+ 2 /∈ S. By the same argument on n2−4
6 in Case 6.1, we either have n−2

2 ∈ S or

n+2
2 ∈ S. Therefore, we get a solution (

√
n
2 ,
√

n−2
2 ) or (

√
n+2

2 ,
√

n
2 ) of x2− y2 = 1,

which is also a contradiction.

Case 7. P(n2 − 4) = {2, 3, 5}. In this case, we have that n is even, n2 ≡ 4

(mod 3), and n2 ≡ 4 (mod 5). It follows that 2, 5 /∈ P(n2 − 1), which implies that
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P(n2 − 1) = {3}. Therefore, either n− 1 ∈ S or n+ 1 ∈ S since (n− 1, n+ 1) = 1.

Hence, we have n /∈ S and n + 3 /∈ S. Since 3, 5 /∈ P(n), we have P(n) = {2},
which implies that P(n+ 3) = {5} since 3 /∈ P(n+ 3) and (n, n+ 3) = 1. Therefore

v5(
(
n+3

6

)
) = v5(n2 − 4) + v5(n+ 3)− 1 is odd.

The proof of Theorem 4 is completed.

6. Criterion for Cn(m) Being a Powerful Number

The criterion for Cn(m) being a powerful number has been discussed in this section.

A relevant example has also been provided to conclude the findings.

Theorem 5. Let m,n be positive integers with n ≥ m + 1. If there are no primes

in (n−m,n+m], then Cn(m) is a powerful number.

Proof. Recall that

vp(Cn(m)) = 2vp((n−m)!) + vp(
(
n+m
2m

)
). (19)

If there are no primes in (n −m,n + m], then for any prime divisor p of Cn(m),

we have p ≤ n − m, which implies that p|(n − m)!. By Equation (19), we have

vp(Cn(m)) ≥ 2vp((n−m)!) ≥ 2. Thus Cn(m) is a powerful number.

Corollary 5. Let m,n be positive integers with n ≥ 3m. Then Cn(m) is a powerful

number if and only if there are no primes in (n−m,n+m].

Proof. By Theorem 5, the sufficiency has been established. Conversely, assume

that there exists a prime p ∈ (n − m,n + m]. Since p > n − m ≥ 2m, we have

vp((n − m)!) = 0 and vp((2m)!) = 0. Hence vp(
(
n+m
2m

)
) = 0. Let p = n + i

for some i ∈ (−m,m]. Since the greatest common divisors of any two numbers in

{n−m+ 1, n−m+ 2, · · · , n+m} should not exceed 2m− 1, we have p - n+ j for

j 6= i, j ∈ (−m,m]. Thus, by Equation (19) we have

vp(Cn(m)) =

m∑
k=1−m

vp(n+ k) = vp(n+ i) = 1.

It follows that Cn(m) is not a powerful number.

Remark 1. From Corollary 5, it is easy to prove that if Cn0
(m0) is not a powerful

number with m0 ≤ n0

3 , then Cn0
(m) is not a powerful number for all m ∈ (m0,

n0

3 ].

Lemma 10 ([13]). For every positive integer n, there exists a prime p ∈ [n, 9(n+3)
8 ].

Corollary 6. When m ≥ 3, we have that Cn(m) is not a powerful number if

n ∈ [ 5m+18
4 , 17m− 36] .
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Proof. Since m ≥ 3, we have 5m+18
4 ≤ 3m. Recall that

vp(Cn(m)) = vp((n−m)!) + vp((2m+ 1) · · · (n+m)). (20)

For 5m+18
4 ≤ n < 3m, we have n + m ≥ 9(2m+4)

8 . By Lemma 10, there exists a

prime p ∈ [2m+1, n+m]. Since p ≥ 2m+1 > n−m, we have vp((n−m)!) = 0. Since

the greatest common divisors of any two numbers in {2m+ 1, 2m+ 2, · · · , n+m}
should not exceed 2m − 1, we also have vp((2m + 1) · · · (n + m)) = 1. Thus, by

Equation (20) we have vp(Cn(m)) = 1, which implies that Cn(m) is not a powerful

number for n ∈ [ 5m+18
4 , 3m).

For 3m ≤ n ≤ 17m− 36, we have 9(n−m+4)
8 ≤ n+m. By Lemma 10, there exists

a prime p ∈ [n −m + 1, n + m]. Therefore, by Corollary 5, we have that Cn(m) is

not a powerful number.

Example 3. Let n ≤ 1000. The following table lists N for 2 ≤ m ≤ 10, where

N = #{n ∈ [m+ 1, 1000] | Cn(m) is a powerful number}.

m 2 3 4 5 6 7 8 9 10

N 402 219 124 60 28 10 6 2 0

Table 1: N for 2 ≤ m ≤ 10.
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