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Abstract
This paper presents the p-adic valuation of the sequence Cy,(m) = [[,_,, H(k‘z -
m2), n=m+1,m+2,--- . An explicit formula is derived for the p-adic valuation

of Cy,(m). From an applicational perspective, this study proves that C,,(m) is not a
square when m = 2, 3. Additionally, this paper provides a criterion for C,,(m) being
a powerful number when n > 3m.

1. Introduction

Let f(x) € Z[z]. Squares and powerful numbers in the sequence C,,(f) = [Ti_, f(k)
have already attracted significant attention of several researchers.

In 2008, Amdeberhan, Medina, and Moll [1] presented a conjecture that C.,(f)
is not a square when f(z) = 22 + 1 and n > 3. After the conjecture was proven by
Cilleruelo [3], the problems related to the squares in C,(f) have been studied by
numerous mathematicians.

For f(x) = 2% + b with b € Z, Ho [10], Hong and Liu [11], Giirel [8], and Zhang
and Niu [16] studied the cases b = 1,b = —1,b = m? — 1, and b = m?, respectively.
Fang [7] proved that C,,(f) is not a square when f(x) = 42? + 1 and 222 — 2z + 1.
Yang, Togbé, and He [14] studied the number of squares in the sequence C,,(f),
where f(z) = ax® + b with (a,b) = 1,1 < a <10, and 1 < b < 20.

Additionally, the squares in C,,(f) when the degree of f(x) is greater than 2 have
been investigated. For f(z) = 2% + 1, Giirel and Kisisel [9] proved that C,,(f) is
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not a square. Generally, for irreducible f(z), the number of squares in the sequence
Cy(f) was estimated by Cilleruelo, Luca, Quirds, and Shparlinski [4].

For f(z) = 2% + 1, Zhang and Wang [18], Chen and Gong [6], and Chen, Gong,
and Ren [5] discussed the cases where d is a prime number greater than 5, an odd
prime, and an odd number, respectively, to study powerful numbers in C,(f). When
f(z) = 2% 4+ ¢¢, Niu and Liu [12] and Yang and Zhao [15] investigated the cases
where d = 3 and d is an odd integer, respectively.

Now, for Cp(m) = [T,_,,,1(k* —m?), we discuss the p-adic valuations of C\,(m)
in this study and extend results for C),(1) by Hong and Liu [11].

For a prime p, let v,(n) = e if p | n and p®*! { n. Let Zé:o n;p* be the p-adic
expansion of n. Then, we write s,(n) = Zé:o n;.

For positive integers x and y, with > y, we can define a constant 6,(x,y) as
follows. Let

x:ao+a1p+a2p2+"'+alpl (1)
and
y = by + bip + bop® + - - + byp* (2)

be the p-adic expansions of = and y, respectively. For convenience, let b; = 0 if
1 > k. Define

I:{i|ai—b¢ <0,2=0,1,--- 7Z}U{i0}:{i07i1,i2,“- ,it}, (3)

J = {] | a; _bj >0,5=01,--- 7l}U{j0} = {j07j1>j27"' 7js}7 (4)

where ig = jo = =1, 11 <ig < - - <, and j; < jo < -+ < jg. Then z — y can be
written as
t

p—y =3 (@i, — b + 3 ag, — by )0
r=1

r=1

Let

I'={ip €1Iixr_1 <j<iyforsomejeJ}={ar, - ,an} (5)
and

J' ={jr€J|jr1 <i<jiforsomeielt={p1,,0Bn} (6)
where a1 < ag < - < ap, and B < f2 < -+ < Bh,.

Definition 1. For positive integers x > y and with the same notation as in Equa-
tions (5) and (6), we define

Sz, y) =D j— Y i

jeJ’ iel’



INTEGERS: 23 (2023) 3

In this paper, we show the following results.

Theorem 1. Let x,y be positive integers with x > y. We have
sp(@ —y) + sp(y) — sp(x) = (p— 1)dp(z,y).

By Theorem 1, the p-adic valuation of the binomial coefficient (z) is just d,(z, y).
Corollary 1. Let x,y be positive integers with x > y. We have

0p((5)) = 8 (, ).

By Theorem 1, a formula of v,(Cy(m)) can be formulated, and the asymptotic
behavior of v,(Cp(m)) can be studied.

Theorem 2. Let m,n be positive integers with n > m + 1. We have

2
vp(Cr(m)) = P (n—m —sp(n —m)) + dp(n+ m,2m).

Corollary 2. For any prime p, we have v,(Cy(m)) ~ I% as n — oo.

Hence, we deduce the following corollary.

Corollary 3. Let m,n be positive integers with n > m+1. Then Cp,(m) is a square
if and only if 6,(n 4+ m,2m) is even for any prime p.

From the applicational perspective of Theorem 2, when m = 2 or m = 3, we can
show that a prime p always exists such that v,(Cy(m)) is odd. Consequently, we
can deduce the following theorems.

Theorem 3. When m = 2, we have that C,(2) is not a square if n > 3.
Theorem 4. When m = 3, we have that Cy,(3) is not a square if n > 4.

The paper is organized as follows. In Section 2, we study the properties of §,(z,y)
and prove Theorems 1 and 2. A comparative study of our formula for v,(Cy(1))
relative to that of [11] is presented in Section 3. In Sections 4 and 5, we restrict our
attention to m = 2 and m = 3 and prove Theorems 3 and 4, respectively. Finally, a
criterion for C,,(m) being a powerful number when n > 3m is discussed in Section
6.

2. Proofs of Theorems 1 and 2

Recall the definition of d,(x,y). The following two examples contribute to our un-
derstanding of I, J', §,(z, y), and Theorem 2.



INTEGERS: 23 (2023) 4

Example 1. Let p = 17,
r=24+174+4-177+2- 17 +3- 174,
and
y=1+2-174+17*+2-17%
Thus,
z—y=1+(-1)-17+3-17* +2-17° + 17%

We have I = {-1,1}, J ={-1,0,2,3,4}, I' = {1}, and J’ = {2}, which results in
017(xz,y) = 1. Let x = n+ m and y = 2m. It follows that n = 177881, m = 83683,
and

n—m=94198 =14+ 16-174+2- 17> +2- 173 + 174
By Theorem 2, we have v17(C,,(m)) = 11773.
Example 2. Let p =17,
r=1+3-7T42-74+6- T +4-74+4- P+ 427 +4.746-7 +7°,
and
y=3+74+4-7+3-7+2.746-7"+2-7+4.74+4.7"4+3.7°
Thus
T—y=—2+2-7T4+(=2)-74+3.74+2.-7"+(-2)-7°
+(=1)- 75 4 (=2)- 77 +3-70 4710,

We have I = {~1,0,2,5,6,7}, J = {~1,1,3,4,9}, I = {0,2,5}, and J' = {1,3,9},
which results in d7(z,y) = 6. Let = n+ m and y = 2m. It follows that n =
475621653, m = 73878187, and

n —m = 401743466
=5+7+5-7?+2-724+2.7+5.7°
+5. 7447 4+6-74+2.7° 4710,

By Theorem 2, we have v7(C,(m)) = 133914476.

Lemma 1. Considering the same notation as was used in Equations (3), (4), (5),
and (6), we have that oy = i1, that oy is the smallest element in I and is greater
than Br_1 for k > 2, and that By is the smallest element in J and is greater than
ap for k> 1. As an immediate consequence, we have hi = hs.
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Proof. Since i1 > ig and ig = jo < i1, we have 7; € I’. Hence a; = ;.

If 81 = js,, we claim that iy € (js,—1,Js,)- Otherwise, we have i; < js,—1. It
follows that s; > 1. Therefore, there exists Js; € J such that jy < js,—1 < Js,
and jg 1 < i1 < jg. Thus ju € J’, which contradicts js, = 1. Hence jg, is the
smallest element in J and is greater than ;.

If ag =4y, > i1, we claim that 8y € (iy,—1,14s,). Otherwise, there exists iy, €1
such that 4y <it,—1 <it, and iy 1 < B1 < iy, It follows that iy, € I’ and By, > U1,
which contradicts i;, = as. Thus, from 51 € (it,-1,1,), we have iz, is the smallest
element in I that is greater than (.

Therefore, the lemma follows by induction. O

Definition 2. For a positive integer n and a prime p, if

n=rng+mnp+nop® + - +np, (7)
where 0<ny<p—landl—p<n;<p—1fori=0,1,---,l —1, we can define
(n)F: Z nipiv

ierNZ

where I' C R is an interval.
Lemma 2. Considering the same notation as was used in Definition 2, we have
sp(n) = sp((n)o,) + 5p((n) (£,11),
where t = min{i | n; >0, i =0,1,--- ,1}.
Proof. Since ny,n; > 0, it follows that (n)jo4 and (1)« are both positive. Then
(o, =g +4p + -+ + npp’ (8)

and

(n) @y = n;+1pt+1 + n2+2pt+2 t+ot ngplv 9)
where 0 <n; <p-—1fori=0,1,---,I. Thus

sp((n)o,) = no +ny + - +nj,

and
sp((n) () = Mgy +Npyg + -+ 1.
From Equations (8) and (9), we have

n=(n)og+ M)y =no+nip+-+np.
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It follows that

sp(n) =mng +ny 4+ np = sp(()po.g) + sp((0)(e,)-

O

Lemma 3. Let n be a positive integer. If

n=ng+nip+---+mnp
with0<ny<p—1landl—p<n; <0 fori=0,1,---,1—1, we have
1
sp(n) =Y ni+(p—1)(1—k),
i=0
where k = min{i | n; #0, ¢ =0,1,--- ,1}.
Proof. Write
n= mlpil + ni,,pi2 + 4+ nitp“ + nlpl7
where n; < 0 for ¢ = 41,42, ,4; and 11 < iy < --- < 74, then the p-adic expansion
of n is
n =i, +p)p" +(p—Dp" -+ (p = 1)p= T+ (ng, +p - 1)p
+p—1p T 4 (p = 1T (g +p - 1)p
+ (g, +p = Dp" + (p = Dp" - (p = Dp' T (- D
Thus
l 1
sp(n) =D mi+(p—D(—i) =D ni+ -1k
1=0 1=0

O

Corollary 4. For positive integers x >y, and with the same notation as in Equa-
tions (5) and (6), when k =1,2,---  hy, we have
SP((JC - y)[ak,ﬁk]) + Sp((y)[akﬁk]) - SP((I)[ozkﬁk}) = (p - 1)(6’6 - ak)'

Proof. Observe that 1 —p < a; —b; <0 for i € [ag, Bk), 1 = p < aq, — ba,, <0, and
0 <ag, —bg, <p—1. By Lemma 3, we have

SP((x - y)[akﬁk]) = Z (a'i - bz) + (p - 1)(6’6 - Oék)

1€ [ag,Br]
= $p((®) ek 8)) — Sp((W)[an.5e]) + (0 — V(B — ax)-
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Proof of Theorem 1. By Lemma 2, we have

sp(x —y) + sp(y) — sp(x)
= sp((z = Y)[0,a1)) + 5p((W)0,01)) — $p((%)0,a1))

h—1
+ Z (SP((x - y)(ﬁk,ak-u)) + SP((y)(ﬁk,ak+1)) - SP((x)(Bk,ak+1)>>

" Z ( W) + 5p(0)onin)) — sp<<x>[m,,ak]>)

sp(( = v)n,.) + (W) (s, 1) — Sp((&) (84,17 (10)

If i € [0,01), then a; — b; > 0. Thus, the p-adic expansion of (z — y)[,a,) is
> ic(0,an) (@ — bi )pt. Therefore

(@ = W) = Y (@i =) = 55((@)p.ar) = (W) 0.00))-

1€[0,a1)

Hence, we have

SP((x - y)[O,al)) + SP((y)[O,al)) - SP((x)[O,ozl)) =0.

Additionally, by similar arguments we have

sp((& = W), +1.0) + p((W) 8, +1,0) = 5p(@)(5,,, +1,0) =0,

and for 1 < k < hy — 1, we have

SP((x - y)(ﬁk7ak+1)) + sp((y)(5k7ak+l)) - Sp((x)(ﬁk7ak+1)) =0.

Furthermore, by Equation (10) and Corollary 4, we have
sp(T = y) + sp(y) — sp()

- Z ( D) + 5B ) — (D)

h1
=(p-1)>_(Br—ax) = (p— 1)dp(x,y).
k=1
This completes the proof. O

Proof of Corollary 1. Since v,(n!) = n_p%”f”), by Theorem 1 we have

UP((;)) =Up <y|(xx' y)'> = p i 1 (S;D(m - y) + S:D(y) - Sp(x)) = §p(x7y)'
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This completes the proof.

Proof of Theorem 2. Since Cy,(m) = (";}™)((n — m)!)?, we have

2m

vp(C(m)) = v (")) + 2up((n — m))

= (n—m —sp(n—m))+ op(n+m,2m).

The proof is done.

Lemma 4 ([2]). For any positive integer n and prime p, we have

n log(1+n) n

< N< ——.
p—1 logp _Up(n)_p—l

Lemma 5. For any positive integer n and prime p, we have s,(n) < (p—1) logp(n—i—

1).
Proof. By Legendre’s formula and Lemma 4, we have

sp(n) =n— (p—Duvp(n!) < (p—1)log,(n +1).

Proof of Corollary 2. By Theorem 2, we have

p—1 p—1

2n

Observe that

(l+1) < log> x + log,

!
< < =
Ofép(x,y)fzk 5 < 5
k=1
Then
p-1 (p— 1)(l0g2n + log, n)
0< = —=0dy(n+m,2m) < o 2,

By Lemma 5, we have

0< sp(n —m) < (p— l)logp(n+1)'
n - n

vp(Cp(m)) =1+ Wép(n +m,2m) — %(m + sp(n —m)).

(11)

(13)

Thus, by Equations (12) and (13), the limits of 215, (n+m, 2m) and X (m+s,(n—

m)) in Equation (11) are both 0 as n goes to infinity. The proof is done.

O
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3. m=1

The following formula of v,(C), (1)) was provided by Hong and Liu [11]:

2n — 2 — 2s5( 5= L) 4 (2L 7 Ly, p=2, 24n;
vp(Cp(1)) =< 2n—4 — 252(7 -1) +v2(%), p=2,2|n; (14)
I%(n—l sp(n—1)) +vp(n) +vp(n+1), p>2.

By Theorem 2, for n > 2, we have

2
=1

(n—1—sp(n—1))+d,(n+1,2). (15)
For p = 2, we have
n+l=ag+a-2+ay-2°+ - +a;-2',

where a; =0or 1 fori=0,1,---,l. Let k =min{i |a; =1, 1 =2,3,--- ,{}.
If a1 = 1, we have

n—1l=uao+ap-2"+ - +a- 2"

It follows that I’ = @ and J' = @. Hence, we have d3(n+1,2) = 0 and v2(Cy, (1)) =
2n — 2 — 2s9(n — 1).
If a1 = 0, we have

n—1=a0—2+ak~2k—|—-~-—|—al-21.

Then I' = {1},J" = {k}, and d2(n +1,2) = k — 1. Thus v2(Cy(1)) = 2n — 3 —
2s9(n —1) + k.
For an odd prime p, by Corollary 1, we have

Op(n+1,2) = vp(("gl)) = vp(n) +vp(n+1).

Hence, we have v,(Cy, (1)) = vp(n) + vp(n+ 1) + p%l(n —1—s,(n—1)).
In summary, Equation (15) is equivalent to
2n — 2 — 2s9(n — 1), p=2, a1 =1;
Up(Cn(1)) =< 2n —3 —2s9(n — 1) + k, p=2, a1 =0; (16)
ﬁ(n—l—sp(n—1))—|—vp(n)—|—vp(n—|—1), p> 2.

Herein, it is trivial to see that Equations (14) and (16) coincide with each other.
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4. m =2

In this section, we discuss the case for m = 2 and prove Theorem 3, while assuming
n > 3. The objective is to show that a prime p exists such that v,(C,(2)) is odd.
Let S ={a? | a € Z}. Let P(n) denote the set of primes p such that v,(n) is odd.

Lemma 6. For a positive integer n and a prime p > 5, we have vp(Hfzil(n—i—i)) =
vp(n +1ig) for some iy € {—1,0,1,2}.

Proof. The greatest common divisors of any two numbers in {n —1,n,n+1,n+ 2}
should not exceed 3. If p { n + 4 for each 4, then Up(H?=_1(n +14)) = 0. Otherwise,
there exists a unique i such that p | n + ig. It follows that

vp((n—1n(n+ 1)(n+2)) = vy(n + io). O

Proof of Theorem 8. By Theorem 2, we observe that v,(C,(2)) and é,(n + 2,4)
have the same parity. By Corollary 1, we have

op(n+2,4) = vp((nIQ)) = vy((n® = 1)(n” + 2n)) — 3v,(2) — v,(3).

We assume that vp((”jl'z)) is even for all primes p > 5. Otherwise, there exists
a prime p > 5 such that v,(C,(2)) is odd and C,(2) is not a square. Thus, this
assumption and Lemma 6 imply that p ¢ P(n?—1) if p > 5. Similarly, P(n?+2n) #

@ and p ¢ P(n? + 2n) if p > 5. Thus, for any p > 5, we have
p¢ P(n—1)UPn)UP(n+1)UP(n+2). (17)

Case 1. P(n? —1) = {3}. If 3 € P(n? + 2n), then v3(("}?)) = v3(n® + 2n) +
v3(n? — 1) — 1 is odd. Thus C,(2) is not a square. If P(n? + 2n) = {2}, then n is
even. Hence (n,n +2) = 2. Since 222 € S, we either have n € Sorn+2 € S.

Thus n+ 1,n — 1 ¢ S, which contradicts "251 €s.

Case 2. P(n?—1) = {2}. In this case, we have that n is odd and (n+1,n—1) = 2.
Since ”22_1 € S, we either have n+1€ Sorn—1¢€ 5. Thus n,n+ 2 ¢ S, which
implies that P(n),P(n+2) # @. If 2¢ P(n)UP(n+2) and P(n)NP(n+2) =&,
then there exists a prime p > 5 in P(n) U P(n + 2), which contradicts Equation

(17).

Case 3. P(n?—1) ={2,3}. In this case, we have that n is odd and (n,n+2) = 1.
Since n% +2n ¢ S, we either have n ¢ Sorn+2 ¢ S. Since 2 | n?—1 and 3 | n? -1,
we have 2,3 ¢ P(n). Thus, combining with Equation (17), we have n € S and
n+2¢S. Since 2 ¢ P(n+ 2), we have P(n+ 2) = {3}. Thus

v3(("7?) = vs(n+2) +vz(n* —1) — 1

is odd.
The proof of Theorem 3 is completed. O



INTEGERS: 23 (2023) 11

5 m=3
Similar to Section 4, we discuss the proof for Theorem 4 in this section.

Lemma 7. For a positive integer n and a prime p > 7, we have vp(]_[?:_z(n—l—i)) =
vp(n +1ig) for some iy € [-2,3].

Proof. The proof is similarly to that of Lemma 6. O

Lemma 8. The following facts have been established.

1. The Diophantine equation x>

1<k <5,

—y? = k has no solutions when x > 3 and

2. The Diophantine equation ax® — 2y?> = k has no solutions when = and y are
odd, a =1 (mod 4), and k=1 (mod 4).

3. The Diophantine equation ax?® —ky?> = —1 has no solutions when x is odd and
y is even for any integer k and a =1 (mod 4).

4. The Diophantine equation x> —5y? = k has no solutions for k = +2 (mod 5).

Proof. Here, the first statement is trivial. For the other statements, otherwise, we
have —2 = 1 (mod 4), —1 = 1 (mod 4), or 2% = 42 (mod 5), respectively, which
are all contradictions. O

Lemma 9. For an integer n > 6, there exists at most one square in {n —2,n —
I,myn+1,n+2n+3}.

Proof. By trivial computations, we observe that the lemma holds for n = 7,8,9,
and 10. When n > 10, we assume that n+1¢,n+ j are squares when ¢ > j and i, j €
{-2,-1,0,1,2,3}. It follows that (v/n +1i,/n + j) is a solution to 22 — y? =i — j
with vn+4 > 3 and 1 < ¢ — j < 5. This result contradicts the first statement of
Lemma 8. O

Proof of Theorem /4. Upon the decompositions of C,(3) when n = 4,5, and 6, the
theorem holds trivially for n < 6. Hence, we have assumed n > 6.

By Theorem 2, it is sufficient to prove that there exists a prime p such that
vp(("g'?’)) is odd. By Corollary 1, we have

UP((ngg)) = ”p(”2 —4)+ U:D(n2 -1+ vp(n2 +3n) — vp(5) — 20,(12). (18)

By Lemma 7, if there exists a prime p > 7 in | J?__, P(n+1), then vp(("F?)) is odd,

and C,(3) is not a square. Hence, we always assume |J°__, P(n+1i) C {2,3,5}.
We claim that n? —1 ¢ S,n? —4 ¢ S, and n? + 3n ¢ S. The first two facts are

trivial, while for the last fact, observe that (n,n +3) = 1 or 3. Thus n? +3n € S
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implies that either n,n+3 € S or 2,243 € S. This yields a solution (vn + 3, /n)

or (\/’%3, \/g) of 22 —y? = 3 or 22 — y? = 1, respectively, which contradicts
Lemma 8.

Case 1. P(n? —4) = {5}. Since n? = 4 (mod 5), we have 5 ¢ P(n? —1). If
3 € P(n? — 1), then v3(("$%)) = v3(n® — 1) + v3(n® — 4) — 2 is odd as desired. If
P(n? — 1) = {2}, then n is odd and (n + 1,n — 1) = 2. Since "22_1 € S, we either
haven+1 € Sorn—1€ S. Thus n+ 2,n —2 ¢ S. Therefore, by the fact that
(n+2,n—2) =1, we have "254 ¢ S, which contradicts P(n? — 4) = {5}.

Case 2. P(n? —4) = {3}. Since n? =4 (mod 3), we have P(n)NP(n+3) = @
and 3 ¢ P(n) UP(n + 3).

Case 2.1. n¢ S,n+3¢S. If P(n)={5} and P(n+3) = {2}, then n is odd and
(n+2,n—2) = 1. It follows that either n +2 € S or n72 € S since =4 € .
Therefore, we either have a solution (v/n + 2, \/g ) of 22 —5y? =2 or a solutlon
(Vn—2,\/%) of 2* — 5y* = —2, which is a contradiction. Thus P(n) = {2} and
v2(n) is odd. Additionally, since 2 ¢ P(n? — 4), we observe that vo(n? — 4) is even.

It follows that va(("$?)) = va(n) + va(n? — 4) — 4 is odd.

Case 2.2. n€ Sorn+3 € S. In this case, we have n+2 ¢ Sandn—2 ¢ S. If nis

odd, then (n+2,n—2) = 1. Since ”:;4 € S, we either have n4+2 € Sorn—2 € S,
which is a contradiction. Hence n is even. If n = 2 (mod 4), then (22, 222) = 1.
Since 3_4 € S,wehaven+2¢€ Sorn—2 € S, which is a contradlctlon Therefore,

we have n = 0 (mod 4) and (242, 252) = 1. Thus, either 252 € S or %£2 € S since
e

If n € S, then P(n+ 3) = {5} since 2 ¢ P(n + 3). Therefore 3 € S. Hence,
we either have an odd solution (4/ "T'H)’, \/”T_Q) of 522 — 2y? = 5 or an odd solution

(\/@7 \/@) of 522 — 2y = 1, which is a contradiction.
Additionally, if n + 3 € S, then we either have an odd solution (v/n + 3, y/%52)

of 22 — 2y? = 5 or an odd solution (v/n+3,,/%E2) of 2? — 2y? = 1, which is a
contradiction.

Case 3. P(n? —4) = {2}. In this case, we have that n is even. If n = 0 (mod 4),

we have vg(n? —4) = 2, which implies that 2 ¢ P(n? —4). Therefore n =2 (mod 4)
and (252, 242) = 1. Since ”22_4 € S, we either have n —2 € S or n+2 € S. Thus
n—1,n+1,n+3¢S, and P(n—1),P(n+ 1) and P(n + 3) are all non-empty sets.
Since any two of n—1,n+1, and n+ 3 are coprime, we have that P(n—1), P(n+1),
and P(n + 3) are disjoint from each other. Therefore, one of P(n — 1), P(n + 1),

and P(n + 3) contains 2, which contradicts that n is even.

Il
e

Case 4. P(n? —4) = {3,5}. In this case, we have n? = 4 (mod 3) and n?
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(mod 5). It follows that 3 ¢ P(n) UP(n+3) and 5 ¢ U;Lf1 P(n+1i). Additionally,
we have P(n) N P(n + 3) = @ since (n,n + 3) =

If either n —1 € Sorn+1 € S, then we have n ¢ S and n+ 3 ¢ S. Thus
P(n) = {2}, which implies that n is even. Hence, we have P(n + 3) = {5} since
2,3 ¢ P(n + 3). It follows that vs(n? — 4) and vs(n + 3) are both odd. Thus
v5(("g3)) =v5(n? —4) + vs(n+3) — 1 is odd as desired.

If n—1,n+1¢& S, then we have that P(n? — 1) # {2}. Otherwise, we have

that n is odd and ”22_1 € S, which implies that either n —1 € Sorn+1 € S.

If P(n? —1) = {2,3}, then n is odd and "26_1 € S. Hence, we obtain a solution

(4/ "21;1,1/"26_1) of 5z% — 2y? = —1, where z is odd and y is even. This is a

contradiction. If P(n? — 1) = {3}, then "QT_l € S. Hence, we claim that n is odd.
Otherwise, we have (n + 1,n — 1) = 1, which implies that either n — 1 € S or

n2—4 n2—1
15 3
odd and y is even. This is also a contradiction.

n+ 1€ S. Hence, we get a solution ( ) of 522 — y? = —1, where 7 is

Case 5. P(n? —4) = {2,5}. In this case, we have that n is even and n? =

(mod 5). It follows that 2,5 ¢ P(n? — 1). Therefore P(n? — 1) = {3} and 3 ¢
P(n? + 3n). We have vg(("g?’)) =v3(n? — 1) =1 (mod 2). Hence vg(("g?))) is odd
as desired.

Case 6. P(n? —4) = {2,3}. In this case, we have that n is even and n? = 1
(mod 3). It follows that 3 ¢ P(n), and 2,3 ¢ P(n+3). Since 2 € P(n? —4), we have
n =2 (mod 4). Therefore (n —2,n + 2) = 4.

Case 6.1. n—1¢€ Sorn+1 € S.In this case, we have n ¢ S and n+3 ¢ S. Hence

P(n+3) = {5} and 5 ¢ P(n). Therefore 73( ) = {2} since 3 ¢ P(n). Since =2 € S,
we have %21 € S, which implies that 52 € S or %2 € § since 232, 22 gé S and
(252, 242) — 1. Thus we either have 252 6 S or "+2 € S. Hence, we get a solution

(V% 1/ n=2) or (1/242, V5) of 22 —y? =1, Whlch is a contradiction.

Case 6.2. n—1¢ Sn+1¢S5. Since Pln—1)NPn+1) =0 and 2 ¢ P(n —
1)UP(n+ 1), we either have P(n — 1) = {3}, P(n+ 1) = {5} or P(n — 1) = {5},
P(n+1)={3}. Since (n—1,n+1) =1, we have P(n? —1) = P(n—1)UP(n+1).
Thus 5 € P(n? — 1) and n? =1 (mod 5), which implies that 5 ¢ P(n? + 3n). Since
31 n, we also have 3 ¢ P(n*+3n). Hence P(n?+3n) = {2} and ”2;73" € S. It follows
that § € S and n+ 3 € S since (§,n + 3) = 1. Therefore, we have n — 2 ¢ S and

"2_ in Case 6.1, we either have ”— € S or

n+ 2 §é S. By the same argument on

o2 ¢ G Therefore, we get a solution ( f \/ 552) or (y/52,\/5) of a? —y? =1,

Wthh is also a contradiction.

Case 7. P(n® —4) = {2,3,5}. In this case, we have that n is even, n?> = 4
(mod 3), and n? = 4 (mod 5). It follows that 2,5 ¢ P(n? — 1), which implies that
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P(n? — 1) = {3}. Therefore, either n —1 € Sorn+1¢€ S since (n—1,n+1)=1
Hence, we have n ¢ S and n + 3 ¢ S. Since 3,5 ¢ P(n), we have P(n) = {2},
which implies that P(n+3) = {5} since 3 ¢ P(n+ 3) and (n,n+ 3) = 1. Therefore
v5(("g'3)) =v5(n? —4) + vs(n+3) — 1 is odd.

The proof of Theorem 4 is completed. O

6. Criterion for C,,(m) Being a Powerful Number

The criterion for C,,(m) being a powerful number has been discussed in this section.
A relevant example has also been provided to conclude the findings.

Theorem 5. Let m,n be positive integers with n > m + 1. If there are no primes
in (n —m,n +m], then C,(m) is a powerful number.

Proof. Recall that

p(Cr(m)) = 2vp((n = m)!) + v, (("5"))- (19)

If there are no primes in (n — m,n + m|, then for any prime divisor p of C),(m),
we have p < m — m, which implies that p|(n — m)!. By Equation (19), we have
vp(Cr(m)) > 2v,((n —m)!) > 2. Thus C,,(m) is a powerful number. O

Corollary 5. Let m,n be positive integers with n > 3m. Then C,,(m) is a powerful
number if and only if there are no primes in (n — m,n + m].

Proof. By Theorem 5, the sufficiency has been established. Conversely, assume
that there exists a prime p € (n — m,n + m|. Since p > n —m > 2m, we have
vp((n — m)!) = 0 and v,((2m)!) = 0. Hence v,(("}")) = 0. Let p = n+i
for some ¢ € (—m,m]. Since the greatest common divisors of any two numbers in
{n=m+1,n—m+2,--- ,n+m} should not exceed 2m — 1, we have p{n + j for
j# 1,7 € (—m,m]. Thus, by Equation (19) we have

Up Z vp(n+k)=v,(n+1i) =1
k=1—-m
It follows that C),(m) is not a powerful number. O

Remark 1. From Corollary 5, it is easy to prove that if C,,(mo) is not a powerful
number with mg < %, then C,,(m) is not a powerful number for all m € (mq, ).

Lemma 10 ([13]). For every positive integer n, there exists a prime p € [n, W],

Corollary 6. When m > 3, we have that C,(m) is not a powerful number if
n € [2H8 17m — 36] .



INTEGERS: 23 (2023) 15

Proof. Since m > 3, we have w < 3m. Recall that
Up(Cn(m)) = vp((n —m)!) +vp((2m +1) -+~ (n 4+ m)). (20)

For 5’”47"’18 < n < 3m, we have n +m > w. By Lemma 10, there exists a
prime p € [2m+1,n+m]. Since p > 2m+1 > n—m, we have v,((n—m)!) = 0. Since
the greatest common divisors of any two numbers in {2m + 1,2m +2,--- ,n+m}
should not exceed 2m — 1, we also have v,((2m + 1) ---(n 4+ m)) = 1. Thus, by
Equation (20) we have v,(Cy(m)) = 1, which implies that C,,(m) is not a powerful
number for n € [3HE 3m).

For 3m <n < 17m — 36, we have w < n+m. By Lemma 10, there exists
a prime p € [n —m + 1,n + m]. Therefore, by Corollary 5, we have that C,(m) is
not a powerful number. O

Example 3. Let n < 1000. The following table lists N for 2 < m < 10, where
N = #{n € [m + 1,1000] | Cy,(m) is a powerful number}.

m 2 3 4 5 6 7 8 9 10
N 402 219 124 60 28 10 6 2 O

Table 1: N for 2 < m < 10.
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