

DIVISIBILITY PROPERTIES FOR INTEGER SEQUENCES

Daniel B. Shapiro

Department of Mathematics, Ohio State University, Columbus, Ohio shapiro@math.ohio-state.edu

Received: 6/16/22, Revised: 1/10/23, Accepted: 7/29/23, Published: 8/4/23

Abstract

For a sequence $f = (f_1, f_2, ...)$ of nonzero integers, define $\Delta(f)$ to be the numerical triangle that lists all the generalized binomial coefficients

$$\begin{bmatrix} n \\ k \end{bmatrix}_f = \frac{f_n f_{n-1} \cdots f_{n-k+1}}{f_k f_{k-1} \cdots f_1}.$$

Sequence f is called binomid if all entries of $\Delta(f)$ are integers. For $I=(1,2,3,\ldots)$, $\Delta(I)$ is Pascal's Triangle and I is binomid. Surprisingly, every row and column of Pascal's Triangle is also binomid. For any f, the rows and columns of $\Delta(f)$ generate their own triangles and all those triangles fit together to form the "Binomid Pyramid" $\mathbb{BP}(f)$. Sequence f is binomid at every level if all entries of $\mathbb{BP}(f)$ are integers. We prove that several familiar sequences are binomid at every level. For instance, every sequence L satisfying a linear recurrence of order 2 has that property provided L(0)=0. The sequences I, the Fibonacci numbers, and $(2^n-1)_{n\geq 1}$ provide examples.

1. Introduction

In this paper, we consider sequences $f = (f_n)_{n \ge 1} = (f_1, f_2, \dots)$ where every f_n is a nonzero integer. We sometimes write f(n) in place of f_n .

Definition 1. For integers n, k with $0 \le k \le n$, the *f-nomid* coefficient is

$$\left[\begin{array}{c} n \\ k \end{array}\right]_f = \frac{f_n f_{n-1} \cdots f_{n-k+1}}{f_k f_{k-1} \cdots f_1}.$$

Defining f-factorials as $\langle n \rangle !_f = f_n f_{n-1} \cdots f_2 f_1$ we find that

$$\left[\begin{array}{c} n \\ k \end{array}\right]_f \; = \; \frac{\langle n \rangle !_f}{\langle k \rangle !_f \cdot \langle n-k \rangle !_f}.$$

 $DOI:\,10.5281/zenodo.8214835$

Then $\begin{bmatrix} n \\ k \end{bmatrix}_f$ is defined only for $n,k \in \mathbb{Z}$ with $0 \le k \le n$. Set $\langle 0 \rangle$! = 1 so that $\begin{bmatrix} n \\ 0 \end{bmatrix}_f = \begin{bmatrix} n \\ n \end{bmatrix}_f = 1$. The factorial formula helps explain the symmetry

$$\begin{bmatrix} n \\ k \end{bmatrix}_f = \begin{bmatrix} n \\ n-k \end{bmatrix}_f$$
, whenever $0 \le k \le n$.

These generalized binomial coefficients have been considered by several authors in various contexts. Ward [25] mentioned them in 1936 and wrote several subsequent papers discussing their properties and applications. For instance, in [26] he developed a theory of calculus that includes analogues of power series. Gould [12] describes the early history of f-nomid coefficients (that he calls Fontené-Ward coefficients), and mentions some of their properties. Knuth and Wilf [19] provide a few more early references, and Ballot [2] investigates related ideas.

Definition 2. The *binomid triangle* $\Delta(f)$ is the array of all the f-nomid coefficients $\begin{bmatrix} n \\ k \end{bmatrix}_f$ for $0 \le k \le n$. Sequence f is *binomid* if every entry of $\Delta(f)$ is an integer.

Then f is binomid if and only if $f_1f_2\cdots f_k$ divides $f_{m+1}f_{m+2}\cdots f_{m+k}$, for every m and k in \mathbb{Z}^+ . If $f_1=1$ then $\begin{bmatrix} n\\1\end{bmatrix}_f=f_n$ and f appears as Column 1 of its triangle $\Delta(f)$. The classic "Pascal's Triangle" of binomial coefficients is $\Delta(I)$ where $I=(n)=(1,2,3,4,\ldots)$.

It is convenient to allow finite sequences. Suppose there is $N \geq 1$ such that

$$f_n \neq 0$$
 for $1 \leq n \leq N$ and f_n is not defined for $n > N$.

When $0 \le k \le n \le N$, define $\begin{bmatrix} n \\ k \end{bmatrix}_f$ as before, leaving $\begin{bmatrix} n \\ k \end{bmatrix}_f$ undefined when n > N. Then $\Delta(f)$ is a finite triangular array with N+1 entries along each edge.

For later references to columns of Pascal's Triangle $\Delta(I)$, we display those values in Table 1, with index $n \geq 0$ listed vertically on the left and index $k \geq 0$ across the top.

	1									
	0	1	2	3	4	5	6	7	8	
0	1									
1	1	1								
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	
:	1 :	:	•	:	:	•	:	:	:	٠.
:	:	:		:	:	:	:	:	:	•

Table 1: Classic Pascal triangle $\Delta(I)$ for I(n) = n

	0	1	2	3	4	5	6	7	
0	1								
1	1	1							
2	1	3	1						
3	1	6	6	1					
4	1	10	20	10	1				
5	1	15	50	50	15	1			
6	1	21	105	175	105	21	1		
7	1	28	196	490	490	196	28	1	
:	:	:	:	:	:	:	:	:	٠.

Table 2: Triangle for $T(n) = C_2(n) = n(n+1)/2$.

The following lemma can be used to generate examples of binomid sequences. Proofs of those statements are left to the reader.

Lemma 3. Suppose f and g are integer sequences.

- (a) Define sequence fg by $(fg)_n = f_n g_n$. Then $\begin{bmatrix} n \\ k \end{bmatrix}_{fg} = \begin{bmatrix} n \\ k \end{bmatrix}_f \begin{bmatrix} n \\ k \end{bmatrix}_g$. If f and g are binomid, then fg is binomid. If c is nonzero in \mathbb{Z} then cf is binomid if and only if f is binomid.
- (b) Sequence f is called a divisor-chain if $f_n \mid f_{n+1}$ for every n. Equivalently, $f_n = \langle n \rangle !_a$ for some integer sequence a. Every divisor-chain is binomid. In particular, $(c^n) = (c, c^2, c^3, \ldots)$ and $n! = (1, 2, 6, 24, 120, \ldots)$ are binomid.
- (c) Define an integer sequence ψ to be homomorphic¹ if $\psi(mn) = \psi(m)\psi(n)$ for every m, n. If ψ is homomorphic and f is binomid then $\psi \circ f$ is also binomid.
- (d) If $f = (f_1, f_2, f_3, ...)$ is binomid then so are the sequences $(1, f_1, f_2, f_3, ...)$, $(1, f_1, 1, f_2, 1, f_3, ...)$ and $(f_1, f_1, f_2, f_2, f_3, f_3, ...)$.

The "triangular numbers" $T(n) = \frac{n(n+1)}{2} = (1,3,6,10....)$ are the entries in Column 2 of Pascal's triangle. The first few rows of the triangle $\Delta(T)$ are displayed in Table 2. Similarly, the third Pascal column $C_3 = (1,4,10,20,35,...)$ generates the triangle in Table 3. Those integer values lead us to suspect that every Pascal column C_m is binomid. That result has been proved by several authors. It also follows from Theorem 15 and Lemma 13(c) below.

The OEIS [23] webpage for sequence A342889 provides many references related to the triangles $\Delta(C_m)$. For instance, $\Delta(T) = \Delta(C_2)$ is the triangle of Narayana numbers. The "generalized binomial coefficients" $(n, k)_m$ mentioned on those OEIS

¹Other names include "totally multiplicative" and "strongly multiplicative."

²Some authors use this term for different numerical triangles. For instance, the numbers $\binom{n}{m}_s$ in [3, p. 15] are not the same as our binomid coefficients. Similarly the "Pascal pyramid" built from trinomial coefficients (as in [3, p. 45] is not one of the Binomid Pyramids mentioned below.

	0	1	2	3	4	5	6	7	
0	1								
1	1	1							
2	1	4	1						
3	1	10	10	1					
4	1	20	50	20	1				
5	1	35	175	175	35	1			
6	1	56	490	980	980	56	1		
7	1	84	1176	4116	4116	1176	84	1	
:	:	:	:	:	:	:	:	:	٠.

Table 3: Triangle for $C_3(n) = n(n+1)(n+2)/6$.

pages are our $\left[\begin{smallmatrix} n \\ k \end{smallmatrix} \right]_{C_{m+1}}$ built from Pascal columns.

Certain determinants of binomial coefficients are related to sequence C_m :

$$\det \left[\binom{n+i}{m+j} \right]_{i,j=0}^{k-1} = \frac{\binom{n+k-1}{m} \cdots \binom{n}{m}}{\binom{m+k-1}{m} \cdots \binom{m}{m}} = \left[\binom{n-m+k}{k} \right]_{C_m}.$$

Consequently, every Pascal column C_m is a binomid sequence. That determinant formula is mentioned in [3, p. 164], referring to [24, p. 257]. Gessel and Viennot [11] found combinatorial interpretations for such Pascal determinants. In a recent exposition, Cigler [5] derives determinant expressions for entries of $\Delta(C_m)$, arrays that he calls "Hoggatt Triangles" following [9].

What about the Pascal rows? Tables 4 - 9 display the triangles for several rows $R_m(n) = \binom{m}{n-1}$.

Table 4: Triangle for $R_2(n) = \binom{2}{n-1}$.

Define the *Binomial Pyramid* to be the numerical array constructed by stacking the triangles built from Pascal Rows. That infinite pyramid has three faces with all outer entries equal to 1. The horizontal slice at depth m is $\Delta(R_m)$, the triangle made from Pascal Row m. Our numerical examples indicate that all entries are integers and the pyramid has three-fold rotational symmetry.

Removing one face (of all ones) from that pyramid exposes an infinite triangular face that is the original Pascal triangle. This is seen in the triangles $\Delta(R_m)$ displayed

 $^{^3\}mathrm{Netto}$ states that this determinant formula appeared in an 1865 work of v. Zeipel.

	0	1	2	3	4
0	1				
1	1	1			
2	1	3	1		
0 1 2 3 4	1	3	3	1	
4	1	1 3 3 1	1	1	1

Table 5: Triangle for $R_3(n) = \binom{3}{n-1}$.

	0	1	2	3	4	5
0	1					
1	1	1			1 1	
2	1	4	1			
3	1	6	6	1		
4	1	4	6	4	1	
5	1	1	1	1	1	1

Table 6: Triangle for $R_4(n) = \binom{4}{n-1}$.

	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	5	1				
3	1	10	10	1			
4	1	10	20	10	1		
5	1	5	10	10	5	1	
6	1	1	1 10 20 10 1	1	1	1	1

Table 7: Triangle for $R_5(n) = \binom{5}{n-1}$.

	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	6	1					
3	1	15	15	1				
4	1	20	50	20	1			
5	1	15	50	50	15	1		
6	1	6	15	20	15	6	1	
7	1	1	1	1	1	1	1	1

Table 8: Triangle for $R_6(n) = \binom{6}{n-1}$.

	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	7	1						
3	1	21	21	1					
4	1	35	105	35	1				
5	1	35	175	175	35	1			
6	1	21	105	175	105	21	1		
7	1	7	21	35	35	21	7	1	
8	1	1	1	1	1	1	1	1	1

Table 9: Triangle for $R_7(n) = \binom{7}{n-1}$.

above each Column 1 is a row of Pascal's triangle (by construction).

Listing Column 2 for those triangles displayed above yields

$$(1, 1), (1, 3, 1), (1, 6, 6, 1), (1, 10, 20, 10, 1),$$
 etc.

Those are exactly the rows of the binomid triangle for $T=C_2=(1,3,6,10,\ldots)$ displayed earlier! That is, removing two face-layers of the Binomial Pyramid exposes a triangular face that equals $\Delta(C_2)$, built from Pascal Column 2. This pattern continues: Each triangle $\Delta(C_m)$ appears as a slice of our Binomial Pyramid. We generalize those assertions here, and outline proofs in the next section.

Definition 4. For a sequence f, the Binomid Pyramid $\mathbb{BP}(f)$ is made by stacking the binomid triangles constructed from the rows of triangle $\Delta(f)$. Sequence f is binomid at level c if column c of $\Delta(f)$ is a binomid sequence.

By definition, f is binomid at every level if each column of $\Delta(f)$ is binomid. Equivalently, by Corollary 10 below, all entries of the pyramid $\mathbb{BP}(f)$ are integers.

Sequence $T=(1,3,6,10,15,\dots)$ is binomid at level 1. It is not binomid at level 2 since Column 2 of $\Delta(T)$ is $g=(1,6,20,50,105,\dots)$ and $\begin{bmatrix} 4\\2 \end{bmatrix}_g$ is not an integer.

Some sequences are binomid at level 2 but not at level 1. For instance, let f be the eventually constant sequence $f=(2^{a_n})$ where $a=(0,2,4,1,3,1,4,4,4,\ldots)$. It is not binomid because $\begin{bmatrix} 6 \\ 3 \end{bmatrix}_f = \frac{1}{2}$. We can see that Column 2 of $\Delta(f)$ is (2^{b_n}) where $b=(0,4,3,2,2,3,6,6,6,\ldots)$. Checking several cases shows that Column 2 is binomid.

Here are some examples that are fairly easy to verify.

Proposition 5. Continue with the notation used in Lemma 3.

- (a) Every divisor-chain is binomid at every level.
- (b) Suppose the integer sequence ψ is homomorphic. If f is binomid at level c, then so is $\psi \circ f$.

Proof. Statement (b) follows from Lemma 3(c). To prove (a), suppose f is a

divisor-chain. Column j of $\Delta(f)$ is defined as $C_j(n) = {n+j-1 \brack j}_f$. Since ${d \brack j}_f = \frac{f_d}{f_{d-j}} {d-1 \brack j}_f$ and $\frac{f_d}{f_{d-j}}$ is an integer whenever $0 \le j < d$, we conclude that C_j is a divisor-chain. Therefore C_j is binomid by Lemma 3(b).

As another motivating example, let $G_2(n) = 2^n - 1 = (1, 3, 7, 15, ...)$. The first few rows of its triangle are displayed in Table 10.

	0	1	2	3	4	5	6	
0	1							
1	1	1						
2	1	3	1					
3	1	7	7	1				
4	1	15	35	15	1			
5	1	31	155	155	31	1		
6	1	63	651	1395	651	63	1	
:	:	:	:	:	:	:	:	٠.

Table 10: Triangle for $G_2(n) = 2^n - 1$.

Let $G_q(n) = \frac{q^n-1}{q-1} = 1 + q + \dots + q^{n-1}$. The entries $\begin{bmatrix} n \\ k \end{bmatrix}_{G_q}$ in triangle $\Delta(G_q)$ are often called "q-nomial" (or Gaussian) coefficients and have appeared in many articles since Gauss [10] introduced them in 1808. For example see [19]. "Fibonomial" coefficients are the entries of $\Delta(F)$ where F is the Fibonacci sequence. As Lucas [22] and Carmichael [4] pointed out long ago, G_q and F are examples of Lucas sequences. Those are integer sequences L that satisfy a linear recurrence of order 2 and have L(0) = 0. Then L is a constant multiple of a sequence U in Definition 16. In Theorem VII of [4], Carmichael proved that every Lucas sequence is binomid.

Our Theorem 15 and Lemma 16 below show that every Lucas sequence is binomid at every level.

Remark 6. The definition of binomid sequences can be restated in additive form. Let $v_p(n)$ be the exponent of the prime p in n. That is, $n = \prod_n p^{v_p(n)}$.

- (i) Suppose $(a) = (a_1, a_2, ...)$ is a sequence of nonzero integers. Then (a) is binomid if and only if $(p^{v_p(a_n)})$ is binomid for every prime p.
- (ii) For an integer sequence $b = (b_1, b_2, \dots)$, define $s_b(n) = b_1 + \dots + b_n$. Suppose c > 1 is an integer. Then (c^{b_n}) is binomid if and only if $s_b(m) + s_b(n) \le s_b(m+n)$ for every $m, n \in \mathbb{Z}^+$.

Each property defined below has an additive version. But those reformulations do not seem to provide significantly better proofs of the theorems.

⁴Ballot [2] refers to entries of $\Delta(L)$ as "Lucanomial" coefficients.

2. Binomid Pyramids

For a sequence f, the Binomid Pyramid $\mathbb{BP}(f)$ is formed by stacking the binomid triangles of the row-sequences of the triangle $\Delta(f)$. In this section we verify that the binomid triangles for the column-sequences of $\Delta(f)$ appear by slicing that pyramid along planes parallel to a face.

The notation is chosen so that sequences begin with index 1. We often restrict attention to sequences f with $f_1 = 1$.

Definition 7. If f is a sequence pf nonzero integers, define the Row and Column sequences of its triangle $\Delta(f)$ by

$$R_m(N) = \begin{bmatrix} m \\ N-1 \end{bmatrix}_f$$
 and $C_j(N) = \begin{bmatrix} N+j-1 \\ j \end{bmatrix}_f$.

The row sequence R_m has only m+1 entries

$$R_m = \left(\begin{bmatrix} m \\ 0 \end{bmatrix}_f, \begin{bmatrix} m \\ 1 \end{bmatrix}_f, \begin{bmatrix} m \\ 2 \end{bmatrix}_f, \dots, \begin{bmatrix} m \\ m \end{bmatrix}_f \right),$$

with $R_m(N)$ undefined for N > m + 1. Assuming $f_1 = 1$, we find

$$R_0 = (1), R_1 = (1,1), R_2 = (1, f_2, 1), \dots, R_m = (1, f_m, \frac{f_m f_{m-1}}{f_2}, \dots, f_m, 1).$$

Column sequences are infinite, with entries

$$C_{j} = \left(\begin{bmatrix} j \\ j \end{bmatrix}_{f}, \begin{bmatrix} j+1 \\ j \end{bmatrix}_{f}, \begin{bmatrix} j+2 \\ j \end{bmatrix}_{f}, \ldots \right) = \left(1, f_{j+1}, \frac{f_{j+2}f_{j+1}}{f_{2}}, \ldots \right).$$

Note that $C_0 = (1, 1, 1, ...)$ and if $f_1 = 1$ then $C_1 = (1, f_2, f_3, ...) = f$.

For a finite sequence f, Lemma 8 shows that the triangle $\Delta(f)$ has rotational symmetry whenever f has left/right symmetry.

Lemma 8. Suppose $f = (f_1, f_2, ..., f_n)$ is a symmetric list of n terms; that is, $f_k = f_{n+1-k}$. Then the triangle $\Delta(f)$ has 3-fold rotational symmetry.

Proof. We need to show that Column c = Row n - c, whenever $0 \le c \le n$. The $(k+1)^{\text{st}}$ entries of C_c and R_{n-c} are

$$\begin{bmatrix} c+k \\ k \end{bmatrix}_f = \frac{f_{c+k}f_{c+k-1}\cdots f_{c+1}}{\langle k \rangle !_f} \quad \text{and} \quad \begin{bmatrix} n-c \\ k \end{bmatrix}_f = \frac{f_{n-c}f_{n-c-1}\cdots f_{n-c-k+1}}{\langle k \rangle !_f}.$$

By symmetry of f, those numerators are equal term by term

$$f_{c+k} = f_{n-c-k+1}, \quad f_{c+k-1} = f_{n-c-k+2}, \quad \dots, \quad f_{c+1} = f_{n-c}.$$

For the finite sequence above, the symmetry shows that $R_n = (1, 1, ..., 1)$, and every later row is undefined.

The Binomid Pyramid $\mathbb{BP}(f)$ in Definition 4 is built by stacking the triangles $\Delta(R_m)$. To show that the triangle $\Delta(C_j)$ appears as a slice of this pyramid, we must check that each row of $\Delta(C_j)$ equals a corresponding row and column of the horizontal slice $\Delta(R_m)$. Numerical observations indicate that

Row
$$n$$
 of $\Delta(C_2) = \text{Column 2 of } \Delta(R_{n+1}) = \text{Row } n$ of $\Delta(R_{n+1})$,
Row n of $\Delta(C_3) = \text{Column 3 of } \Delta(R_{n+2}) = \text{Row } n$ of $\Delta(R_{n+2})$.

The observed pattern provides the next result

Proposition 9. For a sequence f and every n and mRow n of $\Delta(C_m) = Column \ m$ of $\Delta(R_{n+m-1}) = Row \ n$ of $\Delta(R_{n+m-1})$.

Proof. Since R_k has k+1 terms, Lemma 8 shows

Column m of $\Delta(R_k) = \text{Row } k + 1 - m \text{ of } \Delta(R_k)$.

This proves the second equality in the statement of the Proposition. To complete the proof we will show ${n \brack k}_{C_m} = {n \brack k}_{R_{n+m-1}}$ for every n,k,m. Those two sequences are

 $C_m(N) = \begin{bmatrix} N+m-1 \\ m \end{bmatrix}_f$ and $R_{n+m-1}(N) = \begin{bmatrix} n+m-1 \\ N-1 \end{bmatrix}_f$.

Then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{C_m} = \frac{\begin{bmatrix} n+m-1 \\ m \end{bmatrix}_f \begin{bmatrix} n+m-2 \\ m \end{bmatrix}_f \cdots \begin{bmatrix} n+m-k \\ m \end{bmatrix}_f}{\begin{bmatrix} k+m-1 \\ m \end{bmatrix}_f \begin{bmatrix} k+m-2 \\ m \end{bmatrix}_f \cdots \begin{bmatrix} m \\ m \end{bmatrix}_f} \quad \text{and}$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_{R_{n+m-1}} = \frac{\begin{bmatrix} n+m-1 \\ n-1 \end{bmatrix}_f \begin{bmatrix} n+m-1 \\ n-2 \end{bmatrix}_f \cdots \begin{bmatrix} n+m-1 \\ n-k \end{bmatrix}_f}{\begin{bmatrix} n+m-1 \\ k-1 \end{bmatrix}_f \begin{bmatrix} n+m-1 \\ k-2 \end{bmatrix}_f \cdots \begin{bmatrix} n+m-1 \\ 0 \end{bmatrix}_f} .$$

The proof strategy is to substitute the f-factorial definitions for all those binomid coefficients and then simplify the fractions. We omit the details of this straightforward, but very long, calculation.

Proposition 9 verifies our earlier statement that slices parallel to a face in the pyramid $\mathbb{BP}(f)$ yield the binomid triangles for the columns of $\Delta(f)$.

Corollary 10. If f is a sequence on nonzero integers, then all columns of $\Delta(f)$ are binomid if and only if all rows of $\Delta(f)$ are binomid. Those conditions hold when f is binomid at every level, as in Definition 4.

Note. The 3-fold symmetry of $\Delta(R_m)$ (in Proposition 8) implies that the formula in Proposition 9 is equivalent to

$$\left[\begin{array}{c} n \\ k \end{array}\right]_{C_m} \ = \ \left[\begin{array}{c} k+m \\ m \end{array}\right]_{R_{n+m-1}},$$
 for every $n,k,$ and $m.$

3. Divisor-Product Sequences

Definition 11. For a sequence g, define sequence $\mathcal{P}(g)$ by $\mathcal{P}(g)(n) = \prod_{d|n} g(d)$. Sequence f is a divisor-product if $f = \mathcal{P}(g)$ for an integer sequence g.

That notation indicates that d runs over all the positive integer divisors of n. Cyclotomic polynomials provide motivation. Define the homogeneous polynomials $\Phi_n(x,y)$ in $\mathbb{Z}[x,y]$ by requiring

$$x^n - y^n = \prod_{d|n} \Phi_d(x, y).$$

For example,

$$\Phi_{1}(x,y) = x - y,
\Phi_{2}(x,y) = x + y,
\Phi_{3}(x,y) = x^{2} + xy + y^{2},
\Phi_{5}(x,y) = x^{2} + xy + y^{2},
\Phi_{6}(x,y) = x^{2} - xy + y^{2}.$$

Note that $\Phi_n(y,x) = \Phi_n(x,y)$ for every n > 1. Each (inhomogeneous) cyclotomic polynomial $\Phi_n(x) = \Phi_n(x,1)$ is monic of degree $\varphi(n)$ with integer coefficients.⁵

For example, the sequence $G_2=(2^n-1)=(1,3,7,15,31,63,127,255,\dots)$ is a divisor-product since it factors as

$$2^n - 1 = \prod_{d|n} \Phi_d(2),$$

and $(\Phi_n(2)) = (1, 3, 7, 5, 31, 3, 127, 17, 73, 11, ...)$ has integer entries. These sequences are "divisible" in the following sense.

Definition 12. An integer sequence is *divisible* if for $k, n \in \mathbb{Z}^+$

$$k \mid n$$
 implies $f(k) \mid f(n)$.

Such an f is called a divisibility sequence or a division sequence.

Lemma 13.

- (i) Every divisor-product is divisible.
- (ii) Let $G_{a,b}(n) = \frac{a^n b^n}{a b} = a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^n$. If a, b are integers, then $G_{a,b}$ is a divisor-product.
- (iii) For $c \in \mathbb{Z}$, the sequences $I = (n) = (1, 2, 3, \dots), \quad (c) = (c, c, c, \dots), \quad and \quad (c^n) = (c, c^2, c^3, \dots)$ are divisor-products.
- (iv) If (a_n) and (b_n) are divisor-products, then so is (a_nb_n) .

⁵Further information about $\Phi_n(x)$ appears in many number theory texts.

(v) Suppose the integer sequence ψ is homomorphic (as in Lemma 3). If f is a divisor-product then so is $\psi \circ f$.

Proof. Statement (i) follows from Definition 11. Furthermore, if f is a divisor-product and $d = \gcd(m, n)$, then $f(m)f(n) \mid f(mn)f(d)$. For (ii), set g(1) = 1 and $g(n) = \Phi_n(a, b)$ when n > 1. Then $G_{a,b}(n) = \prod_{d \mid n} g(d)$. This remains valid when

a=b provided that we set $G_{a,a}(n)=na^{n-1}$. To prove (iii), note that $I=G_{1,1}$ and apply (2). Explicitly, $I=\mathcal{P}(j)$ where

$$j(n) = \begin{cases} p & \text{if } n = p^k > 1 \text{ is a prime power,} \\ 1 & \text{otherwise.} \end{cases}$$

Sequence (c) equals $\mathcal{P}(\delta_c)$ where $\delta_c = (c, 1, 1, 1, ...)$. Also $(c^n) = \mathcal{P}(c^{\varphi(n)})$, where φ is the Euler function. To see why (iv) and (v) are true, check that $\mathcal{P}(gh) = \mathcal{P}(g)\mathcal{P}(h)$ and $\psi \circ \mathcal{P}(g) = \mathcal{P}(\psi \circ g)$.

For any sequence f with entries in \mathbb{Q}^{\times} , there exists a unique sequence g in \mathbb{Q} with $f = \mathcal{P}(g)$. The multiplicative version of the Möbius inversion formula provides an explicit formula for $g = \mathcal{P}^{-1}(f)$.

Lemma 14 (Möbius inversion). If f is a sequence of nonzero numbers then $f = \mathcal{P}(g)$ where

$$g(n) = \prod_{d|n} f(d)^{\mu(n/d)}.$$

The Möbius function $\mu(k)$ has values in $\{0,1,-1\}$. By definition, f is a divisor-product exactly when every g(n) is an integer. The additive form of Möbius inversion is discussed in many number theory texts. This multiplicative form is a variant mentioned explcitily in some textbooks⁶ and webpages.

In 1939, Ward [27] pointed out that divisor-product sequences are binomid. The following generalization is the major result of this article.

Theorem 15. A divisor-product sequence is binomid at every level.

Proof. If g is a sequence of nonzero integers, the theorem asserts that $\mathcal{P}(g)$ is binomid at every level. Equivalently, every entry of the pyramid $\mathbb{BP}(\mathcal{P}(g))$ is an integer. To prove this, consider a "generic" situation.

For a sequence $X = (x_1, x_2, x_3,...)$ of independent indeterminates, let $\mathbb{Z}[X]$ be the polynomial ring in those variables using integer coefficients. The theorem is reduced to the following statement:

Claim. Each entry of $\mathbb{BP}(\mathcal{P}(X))$ is a polynomial in $\mathbb{Z}[X]$.

For if this Claim is true, we may substitute g for X to conclude that each term in $\mathbb{BP}(\mathcal{P}(g))$ is in \mathbb{Z} , proving the theorem.

⁶One reference is section 9.2.4 of [8]. Also see the Wikipedia article on Möbius Inversion.

To begin the proving the Claim, note that each entry in the pyramid $\mathbb{BP}(\mathcal{P}(X))$ is a fraction involving products of terms $\binom{n}{k}_{\mathcal{P}(X)}$ for various n and k. Then it is a "rational monomial," a quotient of monomials involving the variables x_1, x_2, \ldots .

For real α , we write $\lfloor \alpha \rfloor$ for the "floor function," the greatest integer less than or equal to α . Note that

$$\langle n \rangle!_{\mathcal{P}(X)} = \prod_{j=1}^{n} \mathcal{P}(X)(j) = (x_{1})(x_{1}x_{2})(x_{1}x_{3})(x_{1}x_{2}x_{4})(x_{1}x_{5})(x_{1}x_{2}x_{3}x_{6}) \cdots$$

$$= x_{1}^{n} x_{2}^{\lfloor n/2 \rfloor} x_{3}^{\lfloor n/3 \rfloor} \cdots x_{n}^{\lfloor n/n \rfloor} = \prod_{r>0} x_{r}^{\lfloor n/r \rfloor}. \tag{1}$$

For each n, that infinite product (with r = 1, 2, 3, 4, ...) is actually finite because $\lfloor n/r \rfloor = 0$ when r > n. For rational monomial M and index r, write $v_r(M)$ for the exponent of x_r in the factorization of M. That is,

$$M = \prod_{r>0} x_r^{v_r(M)}.$$

Then $v_r(M) \in \mathbb{Z}$, and $v_r(M) = 0$ for all but finitely many r. Moreover, M is a polynomial exactly when $v_r(M) \geq 0$ for every index r.

Formula (1) shows that $v_r(\langle n \rangle!_{\mathcal{P}(X)}) = |n/r|$. Therefore the exponent

$$\delta_{m,r}(j) = v_r \left(\begin{bmatrix} m+j \\ m \end{bmatrix}_{\mathcal{P}(X)} \right)$$

has the simpler formula

$$\delta_{m,r}(j) = \left\lfloor \frac{m+j}{r} \right\rfloor - \left\lfloor \frac{m}{r} \right\rfloor - \left\lfloor \frac{j}{r} \right\rfloor.$$

We will see below that this quantity is either 0 or 1.

To prove that $\mathcal{P}(X)$ is binomid at every level, we need to show that for every m, the column sequence $C_m(n) = {m+n-1 \brack m}_{\mathcal{P}(X)}$ is binomid in $\mathbb{Z}[X]$. In other words, for every $n, a \in \mathbb{Z}^+$,

$$\begin{bmatrix} m \\ m \end{bmatrix}_{\mathcal{P}(X)} \cdot \begin{bmatrix} m+1 \\ m \end{bmatrix}_{\mathcal{P}(X)} \cdots \begin{bmatrix} m+n-1 \\ m \end{bmatrix}_{\mathcal{P}(X)}$$

divides

$$\begin{bmatrix} a+m \\ m \end{bmatrix}_{\mathcal{P}(X)} \cdot \begin{bmatrix} a+m+1 \\ m \end{bmatrix}_{\mathcal{P}(X)} \cdots \begin{bmatrix} a+m+n-1 \\ m \end{bmatrix}_{\mathcal{P}(X)}$$

in $\mathbb{Z}[X]$. The definition of $\delta_{m,r}(j)$ then shows that $\mathcal{P}(X)$ is binomid at level m if and only if for every $n, a, r \in \mathbb{Z}^+$,

$$\sum_{j=0}^{n-1} \delta_{m,r}(j) \le \sum_{j=a}^{a+n-1} \delta_{m,r}(j). \tag{2}$$

The formula $\delta_{m,r}(j) = \left\lfloor \frac{m+j}{r} \right\rfloor - \left\lfloor \frac{m}{r} \right\rfloor - \left\lfloor \frac{j}{r} \right\rfloor$, implies $\delta_{m+rs,r}(j) = \delta_{m,r}(j)$ for any $s \in \mathbb{Z}$. Then we may alter m to assume $0 \leq m < r$.

Similarly, $\delta_{m,r}(j+rs) = \delta_{m,r}(j)$. Then for fixed r, m, the value of $\delta_{m,r}(j)$ depends only on $(j \mod r)$. Consequently, any block of r consecutive terms in the sums in Inequality (2) yields the same answer, namely the sum over all values in $\mathbb{Z}/r\mathbb{Z}$. Then if $n \geq r$ we may cancel the top r terms of each sum in (2) and replace n by n-r. By repeating this process, we may assume $0 \leq n < r$.

For real numbers $\alpha, \beta \in [0, 1)$, a quick check shows that

$$\lfloor \alpha + \beta \rfloor - \lfloor \alpha \rfloor - \lfloor \beta \rfloor = \begin{cases} 1 & \text{if } \alpha + \beta \ge 1, \\ 0 & \text{if } \alpha + \beta < 1. \end{cases}$$

Express $j \equiv j' \pmod{r}$ where $0 \le j' < r$. Then since $0 \le m, n < r$, we find,

$$\delta_{m,r}(j) = \begin{cases} 1 & \text{if } m+j' \ge r, \\ 0 & \text{if } m+j' < r. \end{cases}$$

This says that the sequence $\delta_{m,r}$ begins with r-m zeros followed by m ones, and that pattern repeats with period r. For instance, when m=2 and r=6 the sequence is

$$\delta_{2,6} = (0,0,0,0,1,1,0,0,0,0,1,1,\ldots).$$

For such a sequence, it is not hard to see that for the sums of any "window" of n consecutive terms, the minimal value is provided by the n initial terms. This proves Inequality (2) and completes the proof of the theorem.

Further examples of divisor-products are provided by sequences that satisfy a linear recurrence of degree 2. The Fibonacci sequence and $(2^n - 1)$ are included in this class of "Lucas sequences."

Lemma 16. For $P, Q \in \mathbb{Z}$ not both zero, define the Lucas sequence $U = U_{P,Q}$ by setting U(0) = 0 and U(1) = 1, and requiring

$$U(n+2) = P \cdot U(n+1) - Q \cdot U(n)$$
 for every $n > 0$.

Then U is a divisor-product.

Proof. Factor $x^2 - Px + Q = (x - \alpha)(x - \beta)$ for $\alpha, \beta \in \mathbb{C}$. Then α, β are not both zero. Recall the following well-known formulas:

- If $\alpha \neq \beta$ then $U(n) = \frac{\alpha^n \beta^n}{\alpha \beta}$ for every $n \in \mathbb{Z}^+$,
- If $\alpha = \beta$ then $U(n) = n\alpha^{n-1}$ for every $n \in \mathbb{Z}^+$.

To verify those formulas, note that the sequences (α^n) and (β^n) satisfy the recurrence displayed in Lemma 16. Therefore every linear combination $(c\alpha^n + d\beta^n)$ also satisfies that recurrence. When $\alpha \neq \beta$, the stated formula has this form and matches U(n) for n = 0, 1. Induction shows that those quantities are equal for every n.

When $\alpha = \beta$ show that $\alpha \in \mathbb{Z}$ and use the same method to prove $U(n) = n\alpha^{n-1}$. In this case, U is a divisor-product since Lemma 13 implies that (n), (α^{n-1}) , and their product are divisor-products.

Suppose $\alpha \neq \beta$. Since $\alpha^n - \beta^n = \prod_{d|n} \Phi_d(\alpha, \beta)$ and $\Phi_1(\alpha, \beta) = \alpha - \beta$, then $U = \mathcal{P}(g)$ where

$$g(n) = \begin{cases} 1 & \text{if } n = 1, \\ \Phi_n(\alpha, \beta) & \text{if } n > 1. \end{cases}$$

Then U is a divisor-product provided g has integer values. Möbius (Lemma 14) implies that every g(n) is a rational number. Since α, β are algebraic integers and each Φ_n has integer coefficients, we know that g(n) is an algebraic integer. Therefore each $g(n) \in \mathbb{Z}$.

For the Fibonacci sequence $F = U_{1,-1}$, this lemma implies that $F = \mathcal{P}(b)$ where $b = (1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, \dots)$ is an integer sequence.

We end this section with a few more remarks about divisor-products.

The triangular number sequence T is binomid but not a divisor-product. In fact, T is not even divisible. The sequence $w = (1, c, c, c, c, c, \dots)$ is a divisor-chain, so it is binomid at every level by Lemma 5. But when c > 1 it is not a divisor-product since w_2w_3 does not divide w_1w_6 .

To see that divisibility does not imply binomid, suppose c > 1 and define $h(n) = \begin{cases} 1 & \text{if } n = 1, 5, 7, \\ c & \text{otherwise.} \end{cases}$ Then h is divisible. Since $h_1h_2h_3$ does not divide $h_5h_6h_7$, we see that h is not binomid.

It is curious that the Euler function $\varphi(n)$ is a divisor-product. Recall that φ is multiplicative: $\varphi(ab) = \varphi(a)\varphi(b)$ whenever a, b are coprime. Standard formulas imply that φ is divisible as in Definition 12. Then the next result applies to φ .

Proposition 17. Every multiplicative divisible sequence is a divisor-product.

Proof. If f is a sequence of nonzero integers, let $f = \mathcal{P}(g)$ for a sequence g in \mathbb{Q} . If f is multiplicative, then $g(n) = \begin{cases} \frac{f(p^m)}{f(p^{m-1})} & \text{if } n = p^m > 1 \text{ is a prime power,} \\ 1 & \text{otherwise.} \end{cases}$

If f is also divisible, every g(n) is an integer and f is a divisor-product. \Box

⁷To avoid theorems about algebraic integers, we may use the theory of symmetric polynomials. If $p \in \mathbb{Z}[x,y]$ and p(x,y) = p(y,x), then $p \in \mathbb{Z}[\sigma_1,\sigma_2]$, where $\sigma_1 = x+y$ and $\sigma_2 = xy$ are the elementary symmetric polynomials. Note that $\sigma_1(\alpha,\beta) = \alpha + \beta = P$ and $\sigma_2(\alpha,\beta) = \alpha\beta = Q$.

Remark 18. Suppose $f = \mathcal{P}(g)$ is a divisor-product with f(1) = 1. Then:

- (1) f is multiplicative if and only if g(n) = 1 whenever n is not a prime power;
- (2) f is homomorphic if and only if g(n) = 1 whenever n is not a prime power and $g(p^m) = g(p)$ for every prime power $p^m > 1$;
- (3) f is a GCD sequence (see Definition 19 below) if and only if g(m) and g(n) are coprime whenever $m \nmid n$ and $n \nmid m$.

Property (3) was pointed out in [6].

4. Related Topics

4.1. GCD Sequences

We use notation motivated by lattice theory:

$$a \wedge b = \gcd(a, b)$$
 and $a \vee b = \operatorname{lcm}(a, b)$.

Those operations are defined on \mathbb{Z} , except that $0 \wedge 0$ is undefined.

Definition 19. An integer sequence f is a GCD sequence if

$$f(m \wedge n) = f(m) \wedge f(n)$$
 for every $m, n \in \mathbb{Z}^+$.

Using earlier notation, this says that for every m, n with $d = \gcd(m, n)$ we have:

$$gcd(f_m, f_n) = f_d.$$

Other authors use different names for sequences with this property. Hall [14] and Kimberling [18] calls them *strong divisibility* sequences. Granville [13] considers sequences that satisfy a linear recurrence, and refers to those with this GCD property as *strong LDS's* (linear division sequences). Knuth and Wilf [19] use the term *regularly divisible*. Dziemiańczuk and Bajguz [6] call them *GCD-morphic* sequences.

Examples of GCD sequences include the Fibonacci sequence and $(a^n - b^n)_{n \ge 1}$ for integers $a \ne b$. More generally, Carmichael [4] proved in 1913 that every Lucas sequence (as in Lemma 16) is GCD.

In 1936 Ward [25] used prime factorizations to prove that every GCD sequence is binomid, a result also proved in [19]. Here is a stronger result.

Theorem 20. Every GCD sequence is a divisor-product.

This result and Theorem 15 imply that GCD sequences are binomid at every level. The proof of Theorem 20 is not included here. Kimberling [18] proved it by showing that Möbius Inversion (Lemma 14) applied to a GCD sequence always produces

integers. The proof by Dziemiańczuk and Bajguz [6] is quite different. A third argument can be given by first reducing to the case of sequences of type $f(n) = c^{a(n)}$.

If f and g are GCD sequences, then so are $f \wedge g$ and $f \circ g$. For instance, when F is the Fibonacci sequence, we find that $(2^{F_n} - 1)_{n \geq 1}$ is a GCD sequence. This sequence was mentioned in [1].

4.2. ComboSum Sequences

An inductive proof that all binomial coefficients $\binom{n}{k}$ are integers uses the formula

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

We extend that recurrence formula to our context. Other authors have pointed out some of these ideas, as seen in [15], [21], and [7].

Lemma 21. For a sequence f of nonzero numbers, suppose $1 \le k \le n$. If $f_{n+1} = uf_{n-k+1} + vf_k$ for some u and v, then $\begin{bmatrix} n+1 \\ k \end{bmatrix}_f = u \cdot \begin{bmatrix} n \\ k \end{bmatrix}_f + v \cdot \begin{bmatrix} n \\ k-1 \end{bmatrix}_f$.

Proof. Given $\frac{f_{n+1}}{f_k f_{n-k+1}} = u \cdot \frac{1}{f_k} + v \cdot \frac{1}{f_{n-k+1}}$, multiply by $\frac{\langle n \rangle !_f}{\langle k-1 \rangle !_f \langle n-k \rangle !_f}$ to obtain the stated conclusion.

Definition 22. An integer sequence f is a ComboSum sequence if for every m, n

$$f_m \wedge f_n \mid f_{m+n}$$
.

By elementary number theory, that condition is equivalent to saying

$$f_{m+n} = u \cdot f_m + v \cdot f_n$$
 for some $u, v \in \mathbb{Z}$.

Certainly any GCD sequence is a ComboSum. In particular, the Lucas sequences $U_{P,Q}$ have the ComboSum property.

Proposition 23. Every ComboSum sequence is binomid.

Proof. If f is a ComboSum and 0 < k < n, then $f_{n+1} = uf_{n-k+1} + vf_k$, for some $u, v \in \mathbb{Z}$, and Lemma 21 applies. An inductive proof shows that f is binomid. \square

Every ComboSum sequence is divisible. For when m = n, Definition 22 implies f(n) | f(2n). An inductive argument shows that f(n) | f(kn) for every $k \in \mathbb{Z}^+$. Sequence $(1, 2, 2, 2, \ldots)$ is a ComboSum sequence that is not a divisor-product.

Open Question 24. Must a ComboSum sequence be binomid at every level?

4.3. Polynomial Sequences

A polynomial $f \in \mathbb{C}[x]$ is called *integer-valued* if $f(n) \in \mathbb{Z}$ for every n = 1, 2, 3, ... Which integer-valued polynomials provide sequences that satisfy the various conditions discussed above?

Proposition 25. If f is an integer-valued polynomial such that $f(n) \mid f(2n)$ for infinitely many $n \in \mathbb{Z}^+$, then $f(x) = bx^d$ for some $b, d \in \mathbb{Z}$ with $d \geq 0$.

We omit the proof. This result helps determine all the polynomial sequences that are divisible. It is more difficult to determine which polynomials are binomid.

Recall that the Pascal column polynomial $C_m(x) = {x+m-1 \choose m}$ is integer-valued, degree m, and $C_m(1) = 1$. By Theorem 15, C_m is binomid.

For $m \in \mathbb{Z}^+$ consider $H_m(x) = \binom{mx}{m}$. Then $H_m(x)$ is an integer-valued polynomial of degree m, and $H_m(1) = 1$. It is straightforward to verify that $\langle n \rangle !_{H_m} = \frac{(mn)!}{(m!)^n}$, so that $\begin{bmatrix} n \\ k \end{bmatrix}_{H_m} = \binom{mn}{mk}$. Since binomial coefficients are integers, H_m is binomid.

Theorem 26. Let f be a binomid polynomial sequence with f(1) = 1. If $\deg(f) \leq 2$ then f is one of 1, x, $\binom{x+1}{2}$, x^2 , $\binom{2x}{2}$.

The proof involves many details and will appear in a separate paper. Higher degree cases seem much more difficult.

Open Problem 27. Find all binomid polynomial sequences of degree 3.

4.4. Linear Recurrences

Suppose f is an integer sequence satisfying a linear recurrence of order 2:

$$f(n+2) = P \cdot f(n+1) - Q \cdot f(n) \text{ for every } n \ge 1,$$
 (3)

where $P, Q \in \mathbb{Z}$. Suppose the associated polynomial is

$$p(x) = x^2 - Px + Q = (x - \alpha)(x - \beta), \text{ for } \alpha, \beta \in \mathbb{C}.$$

If f(0) = 0 then f is a constant multiple of sequence $U_{P,Q}$ of Lemma 16, and f enjoys most of the properties mentioned above. It is divisible, a divisor-product, a GCD sequence, a ComboSum, and is binomid at every level.

If $f(0) \neq 0$, can f still satisfy some of those properties? If Q = 0 then f satisfies a recurrence of order 1: f(n+1) = Pf(n) for $n \geq 2$. Then f(n) has the form $a \cdot P^{n-1}$ (for $n \geq 2$) and it is not hard to determine which of those properties f satisfies. We assume below that $Q \neq 0$.

For sequences f satisfying a linear recurrence (of any order), Kimberling [17] proved that if f is a GCD sequence with $f(0) \neq 0$, then f must be periodic. For the order 2 case, all the periodic GCD sequences are listed in [16]. The next result uses a much weaker hypothesis.

Proposition 28. Suppose f satisfies Recurrence (3) above, and $Q \cdot f(0) \neq 0$. If f is divisible, then α/β is a root of unity.

Proof Outline. If a divisibility sequence f satisfies a linear recurrence, Hall [14] noted that every prime factor of any f(n) also divides $Q \cdot f(0)$. (In fact, for an order 2 recurrence $f(n) \mid Q^n \cdot f(0)$ for every n.) Then the set of all f(n) involves only finitely many different prime factors.

Ward [28] showed that if f is non-degenerate (meaning that α/β is not a root of unity), then the values f(n) involve infinitely many prime factors. This completes the proof.

A version of this proposition is valid for all linearly recurrent sequences, not just those of order 2. To prove this, apply the generalization of Ward's Theorem established by Laxton [20].

Proposition 28 can be used to make a complete list of divisible sequences that satisfy an order 2 recurrence. In addition to the Lucas sequences and exponential sequences, there are a few periodic cases with periods 1, 2, 3, 4 or 6. It is worth noting that A. Granville [13] has studied dvisible sequences in much greater depth.

In summary, among all sequences f satisfying Recurrence (3), we can list all those that are GCD, or divisor-product, or ComboSum, since each of those properties implies divisibility. The situation is more difficult for binomid sequences.

Open Questions 29.

- (1) Which sequences f satisfying Recurrence (3) are binomid? If such f is binomid (or binomid at every level), must f be divisible?
- (2) What if we allow sequences satisfying a linear recurrence of order > 2?

Recall that the sequence $T(n) = \binom{n+1}{2}$ is binomid, but is not divisible and is not binomid at level 2. This T satisfies a linear recurrence of order 3 with polynomial $p(x) = (x-1)^3$.

Acknowledgments. It is a pleasure to thank Jim Fowler, Paul Pollack, Zev Rosengarten, and the anonymous referee for their helpful comments and suggestions.

References

- G. L. Alexanderson and L. F. Klosinski, A Fibonacci analogue of Gaussian binomial coefficients, Fibonacci Quart. 12 (2) (1974), 129-132.
- [2] C. Ballot, The congruence of Wolstenholme and generalized binomial coefficients related to Lucas sequences, J. Integer Seq. 18 (2015), Article 15.5.4.
- [3] B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993.

- [4] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. of Math. (2) **15** (1913/14), 30-70.
- [5] J. Cigler, Pascal's triangle, Hoggatt matrices, and analogous constructions, preprint, https//arxiv.org/abs/2103.01652.
- [6] M. Dziemiańczuk and W. Bajguz, On GCD-morphic sequences, (2008), IeJNART Volume (3), September (2009), 33-37, preprint, http//arxiv.org/abs/0802.1303.
- [7] M. Dziemiańczuk, A combinatorial interpretation of the Lucas-nomial coefficients in terms of tiling of rectangular boxes, J. Comb. Math. Comb. Computing 88 (2014), 225-235.
- [8] J.-P, Escofier, Galois Theory, Springer-Verlag, New York, (Graduate Texts in Mathematics 204), 2001.
- [9] D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, *Fibonacci Quart.* **27** (1988), 160-168.
- [10] C. F. Gauss, Summatio quarundam serierum singularium, Commentationes societatis regiæ scientiarum Gottingensis recentiore 1 (1808), 147–186. Reprinted in Gauss's Werke 2 (1863), 9–45. (esp. pp. 16-17)
- [11] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58(3) (1985), 300-321.
- [12] H. W. Gould, The bracket function and Fontené-Ward generalized binomial coefficients with applications to Fibonomial coefficients, Fibonacci Quart. 7 (1969), 23–40, 55.
- [13] A. Granville, Classifying linear division sequences, preprint, https://arxiv.org/abs/2206. 11823.
- [14] M. Hall, Divisibility sequences of third order, Amer. J. Math. 58 (1936), 577-584.
- [15] V. E. Hoggatt Jr., Fibonacci numbers and generalized binomial coefficients, Fibonacci Quart. 5 no. 4 (1967), 383–400.
- [16] P. Horak and L. Skula, A characterisation of the second-order strong divisibility sequences, Fibonacci Quart. 23 (1985), 126-132.
- [17] C. Kimberling, Strong divisibility sequences with nonzero initial term, Fibonacci Quart. 16 (1978), 541-544.
- [18] C. Kimberling, Strong divisibility sequences and some conjectures, Fibonacci Quart. 17 (1979), 13-17.
- [19] D. E. Knuth and H. S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989), 212–219.
- [20] R. R. Laxton, On a problem of M. Ward, Fibonacci Quart. 12 (1974), 41-44.
- [21] N. A. Loehr and C. D. Savage, Generalizing the combinatorics of binomial coefficients via ℓ-nomials, Integers 10 (2010), 531-558.
- [22] É. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240 and 289-321.
- [23] The Online Encyclopedia of Integer Sequences.
- [24] E. Netto, Lehrbuch der Combinatorik, Leipzig, B. G. Teubner, 1901.

- [25] M. Ward, Note on divisibility sequences, Bull. Amer. Math. Soc. 42 (1936), 843-845.
- [26] M. Ward, A calculus of sequences, Amer. J Math. 58 (1936), 255-266.
- [27] M. Ward, A note on divisibility sequences, Bull. Amer. Math. Soc. 45 (1939), 334-336.
- [28] M. Ward, Prime divisors of second order recurring sequences, $\it Duke~Math.~J.~{\bf 21}$ (1954), 607-614.