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Abstract

The Bulgarian Solitaire rule induces a finite dynamical system on the set of integer
partitions of n. Brandt characterized and counted all cycles in its recurrent set for
any given n, with orbits parametrized by necklaces of black and white beads. How-
ever, the transient behavior within each orbit has been almost completely unknown.
The only known case is when n =

(
k
2

)
is a triangular number, in which case there is

only one orbit. Eriksson and Jonsson gave an analysis for convergence of the struc-
ture as k grows, and to what extent the limit coincides with the finite case for each
k. In this article, we generalize the convergent structure for orbits of the Bulgarian
Solitaire system for any n. For necklaces of the form (BW )k = BWBW · · · , we
give the precise limit of the generating functions as k grows. For other necklaces,
we prove that the generating functions are rational and provide a bound for their
denominator and numerator degrees.

1. Introduction to the Bulgarian Solitaire System

The game of Bulgarian Solitaire (BS) was introduced by Martin Gardner in 1983

(see Hopkins [8] for the full story). The original game starts with 45 cards divided

into a number of piles. Now keep repeating the Bulgarian Solitaire moves: in each

turn, take one card from each pile and form a new pile. The game ends when the

sizes of the piles are not changed by performing the moves. Surprisingly, it turns

out that regardless of the initial state of the game, it must end in a finite number

of moves at the state with one pile of one card, one pile of two cards, . . . , and one

pile of nine cards. The rule was then generalized for any n as the BS operation β

on the set of partition P(n) := {λ = (λ1, λ2, . . . , λm) : length l(λ) = m,λ1 ≥ λ2 ≥
. . . ≥ λm > 0 are integers, λ1 + · · ·+λm = n}. The operation λ→ β(λ) is described

as follows: in each step, take one from each part, form a new part, and put the
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parts in weakly decreasing order. In addition, the game can be described in terms

of Young diagrams. That is, in each turn, remove the longest column and reinsert

it as a new row into the diagram. An example is shown in Figure 1.

β

Figure 1: The BS operation on Young diagram β((5, 2, 2)) = (4, 3, 1, 1).

The BS has been an interesting structure for mathematicians. There have been

many variations of the system, such as Carolina Solitaire, in which compositions are

considered instead of partitions [4]. Other variations and generalizations in 3D and

stochastic settings were also described by Drensky in [4]. Recent advances in the

topic include the limiting shape of the stochastic BS and birth-death processes (see

[6]), the enumeration of the Garden of Eden states, which are the configurations

with no predecessors (see [9]), and its connection to the sum of the distinct parts

congruent to r modulo m of partitions of n (see [12]). Moreover, the promotion

sorting (see [3]) concerned an analogue to a classical question about the furthest

states of the BS system from the recurrent cycles, which was answered by Igusa [10]

and Etienne [7]. However, what happens between the Garden of Eden states and

the recurrent cycles has been almost completely unknown.

The game graph of the BS system is a directed graph whose vertices are partitions

of n with directed edges connecting λ to β(λ). Some examples of BS game graphs

are given in Figure 2 and Figure 3.

As in any finite dynamical system, that is, any self-map β : X → X on a finite set

X, the elements in any orbit O under repeated application of β eventually lead to a

recurrent cycle C ⊂ O, consisting of the elements λ in O having λ = βm(λ) for some

m ≥ 1. When β is the BS map, these recurrent cycles were analyzed by Brandt [2]

in terms of objects called necklaces. A necklace N of black and white beads is an

equivalence class of sequences of letters {B,W} under cyclic rotation. We call N a

primitive necklace if it cannot be written as a concatenation N = P k = PP · · ·P of

copies of another necklace P . We will reserve P for primitive necklaces. We also say

a binary sequence encodes a necklace class N if the sequence represents an element

of the class N when we assign 1 for B and 0 for W . Brandt [2] showed there is a

bijection
O : {necklaces} −→ {BS orbits}

N 7−→ ON
that maps a necklace to the orbit of the BS system which has the unique recurrent
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(3, 2, 1)

(4, 2)

(3, 1, 1, 1)

(2, 2, 2)

(3, 3)

(4, 1, 1)

(2, 2, 1, 1)

(5, 1)

(2, 1, 1, 1, 1) (6)

(1, 1, 1, 1, 1, 1)

Figure 2: BS game graph for n = 6.

cycle CN represented by the necklace. Specifically, if the necklace N is of length

m, a partition λ is in the corresponding recurrent cycle CN if its difference labelling

from the staircase ∆m−1 = (m− 1, . . . , 1, 0), defined as

λ− = λ−∆m−1, (1)

encodes the necklace class N . Figure 4 and Figure 5 illustrate the bijection.

We will also be interested in the non-recurrent elements λ in ON , and the distri-

bution of the following level statistic on the orbit:

level(λ) := min{m ∈ {0, 1, 2, . . .} : βm(λ) ∈ CN}.

Our main results concern its generating function, which is defined as the following

polynomial in Z[x]:

DN (x) :=
∑
λ∈ON

xlevel(λ).

Note that Brandt’s bijection implies that the BS system on P(n) for n =
(
k+1
2

)
has only one orbit OWk+1 with the recurrent set CWk+1 = {∆k}. Thus, the game

graph OWk+1 turns out to be a tree, rooted at the vertex ∆k, and for any partition

λ ∈ OWk+1 , the statistic level(λ) is the distance in the tree from λ to the staircase

∆k. Eriksson and Jonsson prove [5] that, in the limit as k grows, the sequence



INTEGERS: 23 (2023) 4

(3, 3, 1, 1)

(4, 2, 2)

(5, 3)

(4, 1, 1, 1, 1)

(2, 2, 2, 2)

(6, 1, 1)

(2, 2, 1, 1, 1, 1)

(3, 2, 2, 1) (4, 2, 1, 1)

(4, 3, 1)(3, 3, 2)

(4, 4)

(5, 1, 1, 1)

(2, 2, 2, 1, 1)

(5, 2, 1)

(3, 2, 1, 1, 1) (6, 2)

(3, 1, 1, 1, 1, 1) (7, 1)

(2, 1, 1, 1, 1, 1, 1) (8)

(1, 1, 1, 1, 1, 1, 1, 1)

Figure 3: The BS game graph for n = 8.

of level sizes of OWk converges to the subsequence of evenly-indexed Fibonacci

numbers (F2d)
∞
d=0, with the generating function

HW (x) := lim
k→∞

DWk(x) =
(1− x)2

1− 3x+ x2
.

Eriksson and Jonsson also showed that for OWk+1 , the sizes of levels 0, 1, . . . , bk2 c in

the BS game tree coincide with those of an object that they called the quasi-infinite

game tree after pruning an appropriate branch (described later in the next section).

We generalize this, describing the limit of the level sizes for arbitrary n, with the

following two main results.

Theorem 1.1. There is a power series HBW (x) in Z[[x]] such that

lim
k→∞

D(BW )k = HBW (x).

Moreover, HBW (x) is a rational function, given by

HBW (x) =
(x− 1)2(3x+ 2)

x3 − 3x2 − x+ 1

= 2 + x+ 3x2 + 7x3 + 15x4 + 33x5 + 71x6 + 155x7 + 335x8 + · · · .

Theorem 1.2. For primitive necklaces P with |P | ≥ 3, there is a power series

HP (x) in Z[[x]] such that the sequence of generating functions (DPk)∞k=0 converges

to HP (x) coefficient-wise. Moreover, HP (x) is a rational function, whose denomi-

nator is a polynomial of degree at most |P |, and whose numerator is a polynomial

of degree at most 2|P |.
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CWWW =




CBWW =

 , ,



CBBW =

 , ,


Figure 4: The map O for necklaces of length 3, which are WWW (non-primitive) and
BWW,BBW (primitive).

C(BW )2 =

 ,


Figure 5: The map O for non-primitive necklaces of length 4. The recurrent set in
O(BW )2 has only 2 elements, shown above.

2. The Quasi-infinite BS Tree and Forest

Definition 1 (reversed BS rule). The forward BS map λ 7→ β(λ) has (partially

defined) reverse maps, which we will denote by λ
j−→ Rj(λ), for which β(Rj(λ)) = λ.

They are described as follows:

• For Young diagrams: take out the jth row if it is no shorter than the number

of rows minus 1 and insert it again as the leftmost column.

• For a partition λ: take a part λj ≥ l(λ)−1, then distribute it into other parts,

one for each.

For example, (4, 2, 2)
1−→ (3, 3, 1, 1) and (4, 2, 2)

2−→ (5, 3). Figure 6 illustrates the

reverse rule.
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1

2

Figure 6: Reverse BS on a Young diagram.

We also use 0 as a result of an invalid move, that is, the removed row is too short

to be the leftmost (longest) column. Obviously, if λ is a partition, Rj(λ) is valid (or

legal) if and only if λj ≥ l(λ)− 1 and we display λj in brackets, as 〈λj〉. If λ ∈ ON
where N is a necklace of length m, then its difference labelling λ− is defined the

same as in Equation (1). Also, if λj is bracketed, so is (λ−)j .

Example 1 (bracketing rule). In OW 4 in Figure 2 we have(〈3〉
〈2〉
1

)−
=

〈0〉
〈0〉
0
0

and

(
〈5〉
〈1〉

)−
=

〈2〉
〈−1〉
−1
0

.

In the left orbit O(BW )2 of Figure 3, we have

(〈4〉
〈2〉
〈2〉

)−
=

〈1〉
〈0〉
〈1〉
0

and

〈4〉11
1


−

=

〈1〉
−1
0
1

.

Note that a staircase has 0 as its last part while a partition requires all parts

to be positive. Also, a difference labelling does not necessarily have positive parts.

The inverse is denoted by

µ+ = µ+ ∆m−1,

where µ is a difference labelling in the orbit ON , and µ+ must be an ordinary

partition. For example, the inverses for difference labelings in Example 1 are〈0〉〈0〉0
0


+

=
〈3〉
〈2〉
1

and

 〈2〉〈−1〉
−1
0


+

=
〈5〉
〈1〉.
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The reversed BS rule reverses all the arrows in ON for some necklace N to get

the digraph Oop
N . A (reverse BS) playing sequence σ from λ is a sequence of parts

that are consecutively played legally starting from λ. We use Rσ(λ) to represent

the result of performing σ from λ.

Example 2 ((reverse BS) playing sequence). When reversing all the arrows in

Figure 2 and Figure 3, we get OopW 4 , Oop(BW )2 and OopBBWW , respectively. A playing

sequence from (3, 2, 1) in OopW 4 is [121] and R[121]((3, 2, 1)) = (2, 1, 1, 1, 1). A playing

sequence from (3, 3, 1, 1) in Oop(BW )2 can be [1111 . . .], where R[12t]((3, 3, 1, 1)) =

(3, 3, 1, 1) and R[12t+1]((3, 3, 1, 1)) = (4, 2, 2) for any nonnegative integer t.

For any primitive necklace P of length p, there are p elements in the recurrent set

CPk for any k. We consider the difference labellings of the elements in the recurrent

set CP , which are {0, 1}-vectors of length p that encode necklace class P . Their

playable parts are bracketed following specific rules given in Section 4. Let that set

be

CP = {γ(t) ∈ CP : R1(γ(t)) = γ(t+1), 1 ≤ t ≤ p and γ(p+1) ≡ γ(1)}.

Example 3. The recurrent set for the necklace BWW is

CBWW = {BWW,WWB,WBW} =

{〈1〉
〈0〉
0
,
〈0〉
0
1
,
〈0〉
〈1〉
0

}
.

For some vector α, we will use αk for the concatenation

α
...
α

of k blocks α. Brandt’s

bijection [2] maps necklace P k to the orbit whose recurrent cycle CPk = {(γ(t))k :

γ(t) ∈ CP }. We also use C+
Pk := {α+ : α ∈ CPk} for the ordinary recurrent set (whose

elements are the same as those of CPk but their playable parts are bracketed). The

bracketing rule for this set will be discussed in Section 4.

With the definition of the reversed rule in hand, we now discuss Eriksson and

Jonsson’s quasi-infinite game tree FW for orbits Oop
Wk . Figure 7 displays some

initial difference reversed BS game graphs up to some levels and Figure 8 is the

quasi-infinite game tree FW . After pruning the branch formed by playing sequences

[1 . . .] and adding a self-cycle to the root, we can see the coincidence between the

quasi-infinite tree and the finite trees up to some levels.

Recall that CWk = {(0)k}. FW starts at
〈0〉
〈0〉 which represents all bracketed parts

in the roots of any trees Oop
Wk for k ≥ 2. The rules for

i−→ in the quasi-infinite game

tree [5, Section 3] are described below:

1. Delete the bracketed ith part.

2. Increase all parts above it by 1 and make them bracketed.
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〈0〉

1

〈0〉
〈0〉

〈1〉
−1

−1
0
1

2

1

1 〈0〉
〈0〉
0

〈1〉
〈0〉
−1

〈0〉
−1
0
1

〈−1〉
0
1

. . .

〈2〉
−1
−1

−1
−1
...

〈3〉
−2
−1

. . .

2

1

1

2

1
2

1

〈0〉
〈0〉
0
0

〈1〉
〈0〉
0
−1

〈0〉
0
−1
0
1

〈0〉
−1
0
1

. . .

〈2〉
〈0〉
−1
−1

〈0〉
−1
−1
0
...

〈3〉
−1
−1
−1

. . .

〈2〉
〈1〉
−2
−1

〈1〉
−2
−1
...

〈3〉
−2
−1
0

. . .

2

1

1

2

1 2

3

1
2

1

Figure 7: Difference reversed BS game graph for n =
(
k+1
2

)
with k = 1, 2, 3, 4 up to level

b k+1
2
c+ 1.

3. Bracket the new ith part (if there is one) if it differs by at most 1 from the

old one.

4. If a zero was played, add zeros at the end so that there are two, and make

them bracketed.

Eriksson and Jonsson [5] showed Oop
W∞ = limm→∞Oop

Wm . Generalizing that idea,

we will build a P-quasi-infinite forest FP consisting of t trees denoted G1, . . . , Gp,

with Gt rooted at γ(t) ∈ CP . The remaining vertices of Gt are generated from γ(t)

by applying the reverse BS operations Ri in all possible ways, and modifying the

parts according to rules described in the next section. An example is the BWWW -

quasi-infinite forest in Figure 9.

Let d(λ, γ(t)) be the length of the reversed playing sequence from γ(t) to λ. Let
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〈0〉
〈0〉

1

〈0〉
〈0〉

. . .

2

〈1〉
〈0〉
〈0〉

1

〈0〉
0

〈0〉
〈0〉

. . .

2

〈2〉
〈0〉
〈0〉

1

0
0

2

〈3〉
〈0〉
〈0〉

. . .

3

〈3〉
〈1〉
〈0〉
〈0〉

. . .

3

〈2〉
〈1〉
〈0〉
〈0〉

1

〈1〉
0
0

. . .

2

〈3〉
〈0〉
〈0〉

. . .

3

〈3〉
〈2〉
〈0〉
〈0〉

. . .

4

〈3〉
〈2〉
〈1〉
〈0〉
〈0〉

. . .

Figure 8: The quasi-infinite game tree FW .

gt(x) be the generating functions by level sizes (the growth function) of Gt, that is,

gt(x) :=
∑
λ∈Gt

xd(λ,γ
(t)).

We will show later that OopP∞ = limk→∞ OopPk is the quasi-infinite forest FP
after pruning the branches formed by playing sequences [1 . . .] and adding arrows

γ(t)
1−→ γ(t+1) to make the roots a recurrent cycle. In fact, up to level k, the finite

digraph Oop
Pk coincides with the limit digraph OopP∞ .

3. The Rules for Producing the Forest FP

The idea for the P-quasi-infinite forest is that each root γ(t) is actually an infinite

periodic binary vector whose consecutive segments (γ
(t)
mp+1, . . . , γ

(t)
(m+1)p) of length

p each form a copy of γ(t). The reason for this beginning will be explained in the
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G1

〈0〉
0
0
1

〈0〉
〈0〉
〈1〉
0

1

. . .

G2

〈0〉
〈0〉
〈1〉
0

〈0〉
〈1〉
0
0

1

. . .

〈1〉
〈1〉
〈0〉
0
0

2/3

〈1〉
0
0
0

1

〈0〉
0
0
1

1

〈2〉
〈0〉
0
0
1

2

. . .

〈2〉
〈2〉
〈0〉
〈0〉
〈1〉
0

3

. . .

G3

〈0〉
〈1〉
0
0

〈1〉
〈0〉
0
0

1/2

. . .

G4

〈1〉
〈0〉
0
0

〈0〉
0
0
1

1

. . .

〈2〉
〈0〉
〈0〉
〈1〉
0

2

0
0
1
0

1

〈3〉
〈0〉
〈1〉
0
0

2

. . .

〈3〉
〈1〉
〈1〉
〈0〉
0
0

3

. . .

Figure 9: The BWWW quasi-infinite forest. The bold entries are γ(t) for some t.

next section. This infinite vector guarantees that we will not encounter negative

parts in difference labellings when performing the Rj operations as in the finite

cases. However, we cannot write out infinite-length vectors for the elements in the

forest. Instead, we start with only one block and add more blocks as one goes

further down the tree Gt and applies the operators Rj . In fact, each segment

(γ
(t)
mp+s, . . . , γ

(t)
(m+1)p+s−1) is a copy of the root γ(t+s) for any nonegative integers

m, s.

In this section, for a vector λ = (λ1, . . . , λm) and j ≤ k, we write λ[j : k] =

(λj , . . . , λk). Also, we use λ[: j] = λ[1 : j] and λ[j :] = (λj , . . . , λm).

As part of the rules, we will want to maintain the property that every λ in the

forest FP has a tail (the final segment of length p) exactly matching one of the

roots γ(t), although the subscript t may not match the subscript t′ of the tree Gt′

which contains λ. Assume in the rules below that λ’s tail matches the root γ(t).

Below are the three rules for λ
i−→ Ri(λ) (or λ

i/i+1−−−→ Ri(λ)) in the tree Gt in

the general quasi-infinite forest — that is, λi (respectively, both λi and λi+1) is

bracketed and Ri (respectively, either Ri or Ri+1) is played.
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1. If λi is in the tail (among the lowest p parts), append to λ so that λ[i :] = γ(s)

for some (unique) s. Replace λ[i :] by γ(s+1) and bracket the tail as in the

root γ(s+1).

2. Otherwise, delete λi. If
λi

λi+1
=

s
s+ 1

, playing either Ri or Ri+1 has the same

result, so we label the play by
i/i+1−−−→ and apply Ri+1. Bracket the new ith part

(if there is one) if it differs by at most 1 from λi. If there are two consecutive

entries
s

s+ 1
and s is bracketed, so is s+ 1.

3. Increase all entries λ[: (i− 1)] by 1 each, and bracket them.

Here is an example of these rules in the BWWW quasi-infinite forest from Fig-

ure 9.

Example 4. Let λ =

〈2〉
〈0〉
〈0〉
〈1〉
0

. The bold parts are γ(2).

• If we play λ
3−→ R3(λ), Rule 1 is applied as follows:

Step 1: Note that λ3 is among the last 4 parts. We append to λ −→

〈2〉
〈0〉
〈0〉
〈1〉
0
0

, so that

λ[3 :] = γ(3), the next root.

Step 2: Replace the tail γ(3) by γ(4) and bracket as in γ(4):

〈2〉
〈0〉
〈0〉
〈1〉
0
0

−→

〈2〉
〈0〉
〈1〉
〈0〉
0
0

.

Step 3: Add 1 to each part in λ[: 2] to get R3(λ) =

〈3〉
〈1〉
〈1〉
〈0〉
0
0

.

• If we play λ
1−→ R1(λ), Rule 2 is applied. Note that λ1 is not among the last 4

parts, so Rule 2 applies to obtain R1(λ) =

0
0
1
0

, because the new first part, 0, differs

from λ1 by 2.
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4. Explanations for the Rules of the General Forest for Primitive Neck-
laces |P | ≥ 3

We wish to explain why the rules in Section 3 for constructing the (quasi-infinite)

forest FP from the recurrent set CP actually produce a forest which is the limiting

digraph limk→∞Oop
Pk (after pruning the branches whose playing sequences are [1 . . .]

and adding arrows γ(t)
1−→ γ(t+1) to form the recurrent cycle CP ). To this end, we

answer some questions below about the construction. In this section, if no further

information is given, the statements relate to the forest. Also, the notion λ =
µ
ν

means the concatenation of either two partitions or two difference labelings µ and

ν. For a partition or a difference labeling λ and an integer h, we write λ + h =

(λ1 +h, . . . , λm+h). Obviously, if λ is a difference labeling then (λ+h)+ = λ+ +h.

The first question is how to bracket the roots γ(t) of the tree Gt, even though

they are infinite vectors. The following proposition shows that bracketing them as

in the recurrent set of the orbit OP still makes sense.

Proposition 1. For any primitive necklace P of length at least 3 and any k, el-

ements in the recurrent set CPk restricted to the first p parts are identical (with

brackets). Moreover, only the first 3 parts can be bracketed.

Proof. Recall that for a partition λ in the reverse BS system, λj is playable if and

only if λj ≥ l(λ)−1. If λ ∈ C+
Pk , it must have the form λ = ∆kp−1+(γ(t))k for some

t. Then l(λ) ≥ kp− 1, and thus, λj is playable if and only if λj = kp− j+ (γ(t))kj ≥
kp− 2. The latter is equivalent to 1 ≥ (γ(t))kj ≥ j− 2. Hence, j ≤ 3. Therefore, the

bracketed parts in elements of the recurrent set CPk are all among the first 3 ≤ p

parts, and our proposition is verified.

Example 5. The recurrent sets in the finite reverse BS graphsOop
BWW andOop

(BWW )2

are

C+BWW =

{
〈3〉
〈1〉,
〈2〉
1
1
,
〈2〉
〈2〉

}
and CBWW =

{〈1〉
〈0〉
0
,
〈0〉
0
1
,
〈0〉
〈1〉
0

}
,

C+(BWW )2 =


〈6〉
〈4〉
3
3
1

,

〈5〉
4
4
2
1
1

,

〈5〉
〈5〉
3
2
2


and C(BWW )2 =



〈1〉
〈0〉
0
1
0
0

,

〈0〉
0
1
0
0
1

,

〈0〉
〈1〉
0
0
1
0


.

Their difference labellings, including their brackets, are identical if we restrict them

to the first 3 parts.



INTEGERS: 23 (2023) 13

Remark 1. Moreover, as we restrict the roots to their first p parts, we only need

to know how to bracket the recurrent cycle CP . A partition λ ∈ CP (that is, λ− is

one of the roots) possesses the following properties for their first three parts:

• The part λ1 is always bracketed, because λ1 ≥ p− 1 ≥ l(λ)− 1.

• There are two cases for λ2:

– If λ−2 = 1 then it is bracketed, because then λ2 = (p− 2) + 1 = p− 1 ≥
l(λ)− 1.

– If λ−2 = 0 then it is bracketed only if λ−p = 0, since then λ2 = p − 2 =

l(λ)− 1.

• The part λ3 can only be bracketed if λ−3 = 1 and λ−p = 0, since then λ3 =

(p− 3) + 1 = p− 2 = l(λ)− 1.

The next question is about the bracketing rules after playing a part from an

element in the forest. Recall that due to the rules of the forest, each element has

its length p tail matching γ(t) for some t. Hence, we treat the cases where we play

a part in the tail or above the tail separately as Rule 1 and Rule 2 in Section 3.

Before discussing the bracketing rules, we prove a general property:

Claim 4.1. In a difference labelling λ, there are no triples j1 < j2 < j3 such that

λj1 < λj2 < λj3 . This assertion is still true for any finite Oop
Pk where k ≥ j3.

Proof. Suppose there is such triple, then λj3 ≥ 2, which means some part lower

than λj3 has already been played. But during any play, the amounts added to λj1
and λj2 are at least the amount added to λj3 . Since λj3 was either 0 or 1 in the

root of the tree containing λ, the part λj1 was negative at the start. We obtain a

contradiction.

Corollary 1. A similar argument to the proof above shows that if λj < λj+1 then

λj+1 − λj = 1.

Now we explain how to change the bracketing in λ in the forest after we play a

part above the tail γ(t).

Proposition 2. Let λ be a difference labelling in OopN . If a part λj is playable,

let ψ = Rj(λ). Then ψj is playable if and only if |λj − λj+1| ≤ 1. Moreover, if

λj ≥ λj+1, any parts ψs where s ≥ j + 3 are not playable. Otherwise λj + 1 = λj+1

and any parts ψs where s ≥ j + 4 are not playable.

Proof. For the first statement, we consider Λ = λ+. Since playing parts other than

Λj and Λj+1 does not affect the gap between them, we only consider the moment

when performing Rj . The result is a partition Λ with Λj parts. Thus, a part is
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playable in the state Rj(λ) if and only if its size is at least Λj − 1. Because Rj
adds one to every other part, and the difference labeling is obtained by subtracting

a staircase, which yields λj−λj+1 = (Λj−Λj+1)−1, we obtain the first statement.

Now if λj ≥ λj+1, let |N | = m where we subtract ∆m−1 to get the difference

labellings. Then ψ = Rj(λ) has m − j + λj parts. Note that ψj+3 = λj+4. By

Claim 4.1, we see that λj+4 ≤ max{λs : j ≤ s ≤ j + 3}. By Corollary 1, that

maximum is at most λj + 1. Thus,

ψ+
j+3 = m− j − 3 + λj+4 ≤ m− 2− j + λj = l(ψ)− 2.

Thus, ψj+3 is not playable and neither are the later parts. Moreover, ψ+
j+1 =

m − j − 1 + λj+2 ≥ m − j + λj − 1 if and only if λj+2 ≥ λj . Similarly, ψj+2 is

playable if and only if λj+3 ≥ λj + 1. Hence, λj+3 = λj + 1.

Otherwise λj+1 − λj = 1, adding a staircase we get λ+j = λ+j+1, and thus we can

play Rj+1 instead of Rj .

Proposition 2 explains the Rule 2 of the forest. Moving on, we explain how a part

in the “tail” γt is played, provided that the multiple k (in the necklace N = P k) is

large enough.

Proposition 3. Assume that λ =

α

γ(t)

γ(t)

β

is a difference labelling in Oop
Pk , where α, β

are some difference labellings, that l(α) = a and that λa+1 is playable. Then

Ra+1(λ) =

α+ 1

γ(t+1)

γ(t)[2 :]
β′

(2)

and the γ(t+1) segment is bracketed similarly to the root.

Proof. We have l(γ(t)) = p and note that β is not necessarily non-negative. Let

n = pk − 1. The partition corresponding to λ is

Λ = λ+ = λ+ ∆n

of length l ≥ a+ 2p. So λa+1 is playable if and only if Λa+1 = γ
(t)
1 + n− a ≥ l− 1.

The latter condition is equivalent to 1 ≥ γ(t)1 ≥ l−n+a−1. Playing λa+1 adds 1 to

each of the entries of both α+ and α, erases λa+1 and keeps the rest of λ, and thus

we obtain Equation (2). Let Ψ = Ra+1(Λ) and ψ = Ra+1(λ), so l(Ψ) = γ
(t)
1 +n−a.

Now, in the root γ(t+1), the part γ
(t+1)
j is bracketed if and only if

γ
(t+1)
j + (p− j) ≥

{
p− 1 if γ

(t)
1 = 1

p− 2 if γ
(t)
1 = 0

,
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and thus γ
(t+1)
j ≥ j−2+γ

(t)
1 . We show that the same jth part of the γ(t+1) segment

is bracketed in ψ. Actually, that part is ψa+j , and

Ψa+j = γ
(t+1)
j + n− a− j + 1 ≥ γ(t)1 + n− a− 1 = l(Ψ)− 1.

This concludes the proof.

Proposition 4. Let λ = Rσ((γ(t))k), for some (γ(t))k in CPk and some arbitrary

playing sequence σ of length l. If k is large enough, then λ is of the form

λ =

α

γ(s)

γ(s)

β

for some 1 ≤ s ≤ p and l(α) + 1 ≥ σl. Moreover, α is determined uniquely for

all large k including the brackets, and if Rule 1 applies to Rσl
then the first γ(s) is

bracketed similarly to the root γ(s) as in Remark 1.

Proof. Take k ≥ l + 2, and we start with

(γ(t))k =
γ(t)

γ(t)

β

=

γ
(t)
1

γ(t+1)

γ(t+1)

β′

=

γ
(t)
1

γ
(t)
2

γ(t+2)

γ(t+2)

β′′

,

in which at most 3 first parts are playable by Proposition 1. In each play, if Rule 1

applies, then Proposition 3 guarantees the next state has the same form as in the

proposition, because in each play we only lose at most 1 block of γ(s) for some s.

Otherwise, Rule 2 applies which does not change the tail (consisting of blocks of

γ(s)). Proposition 2 shows that Rule 2 also determines the playable parts in the

next state. The conclusion follows for all trees rooted at (γ(t))h for h ≥ k, since σ

only takes place in the first k blocks.

The last question is why we can represent the infinite-vector elements of the

forest with finite prefixes. In other words, we can restrict the infinite vector to

some finite prefix without losing any playable parts.

We defined earlier that OopP∞ = limk→∞ OopPk . Because of Proposition 4, we see

that for a playing sequence σ and k large enough, the elements λh = Rσ((γ(t))h) for

h ≥ k share the same prefix λ =
α

γ(s) as in the statement of the proposition. Thus,

we can represent all those λh’s by that prefix λ in OopP∞ . Actually, λ is in the form

λ =

α

γ(s)

γ(s)

...

,
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so that Rule 1 works for playing a part in the ”tail” of λ. Rule 2 also works since

each element λ has a tail of length p ≥ 3, and by Proposition 2, the number of new

bracketed parts is at most 3, and thus the lower parts are not affected.

The conclusion of this section is that the finite reverse BS forest Oop
Pk coincides

with the infinite digraph OopP∞ obtained from the forest FP (by modifying any

branch of FP as in Section 1) up to at least level k. Therefore, we confirm that

OopP∞ = limk→∞ OopPk .

5. Limiting Level Sizes of Oop
(BW )k

as k Grows

5.1. The Quasi-infinite Forest FBW

We first analyze P = BW . The exception in this case is that the root
〈1〉
〈0〉 ∈ CBW we

defined in Section 1 does not reflect all the playable parts in C+
(BW )k

for k ≥ 2 (e.g.,

〈3〉
〈2〉
〈1〉
0

). However,
〈1〉
〈0〉
〈1〉

does, by the same argument as in Proposition 1 in Section 4.

Thus, we build the forest FBW as in Figure 10 following the rules given in Section 3,

except that the roots are γ(1) =
〈0〉
〈1〉 and γ(2) =

〈1〉
〈0〉
〈1〉

.

5.2. Proof of Theorem 1.1

Let g(x) be the generating function for the level sizes of FBW . Then g(x) =

g1(x) + g2(x). Starting from γ(1), we play R1/2 (the only playable part) and get

back to the root γ(2). Thus, the level generating functions of the two trees satisfy

g1(x) = 1 + xg2(x). (3)

As a reminder, if we have
〈0〉
〈1〉 in a difference λ, adding a staircase makes their

values the same. Thus, playing either of them results in the same element. To

represent this move in a playing sequence, we will use the vertex with 〈0〉 on it.

Moreover, we use the notation Rσ for playing sequences in the quasi-infinite game

graph similarly to the normal BS game graph, e.g., R[222]

(〈1〉
〈0〉
〈1〉

)
=

〈4〉
〈1〉
〈0〉
〈1〉

.

Similar to Jonsson and Eriksson’s paper [5, Proposition 3.1, p. 4], we have the

following proposition.
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G1

〈0〉
〈1〉

1/2

〈1〉
〈0〉
〈1〉

. . . . . .

G2

〈1〉
〈0〉
〈1〉

1

〈0〉
〈1〉

. . .

2/3

〈2〉
〈1〉
〈0〉
〈1〉

1

〈1〉
0
1

1

〈0〉
〈1〉

. . .

2

〈3〉
〈0〉
〈1〉

1

0
1

2/3

〈4〉
〈1〉
〈0〉
〈1〉

. . .

3/4

〈3〉
〈2〉
〈1〉
〈0〉
〈1〉

1

〈2〉
1
0
1

. . .

2

〈4〉
〈1〉
0
1

. . .

3

〈4〉
〈3〉
〈0〉
〈1〉

. . .

4/5

〈4〉
〈3〉
〈2〉
〈1〉
〈0〉
〈1〉

. . .

Figure 10: The BW -quasi-infinite FBW .

Proposition 5. The tree G2 rooted at γ(2) =
〈1〉
〈0〉
〈1〉

has the following properties.

(i) Once R1 is played, only R1 can be played (until γ(1) =
〈0〉
〈1〉 or a leaf is reached).

(ii) For r ≥ 2, the playing sequence [234 . . . r1r] leads to γ(1).

Proof.

(i) When we play R1, if the second part differs from the first part by at least 2,

nothing is bracketed in the next state, and thus we reach the leaf. Otherwise,

according to the Rule 3, either we reach the root
〈0〉
〈1〉 if the second and third
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parts are
0
1

or the only bracketed part in the next state is the first part.

(ii) It is easy to see that

R[23...r]

(〈1〉
〈0〉
〈1〉

)
=

〈r〉
〈r − 1〉

...
〈1〉
〈0〉
〈1〉

.

Thus, playing [1r] consecutively deletes the first r rows and reaches
〈0〉
〈1〉. From

Property (i), we see that this is the only way to get back to the roots.

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. We begin by using Proposition 5 to construct the growth

function, or the generating function of g2 by its level sizes. Table 1 shows var-

ious playing sequences and their contributions to the generating function g2(x),

explained below. We use [≥ t] to denote the set of playing sequences with entries

no less than t, including the empty sequence.

Sequence Contribution Sequence Contribution
[1 . . .] xg1 [2[≥ 2]] xg2

[212 . . .] x3g1 [2[≥ 2]1] x2g2
[2313 . . .] x5g1 [23[≥ 3]12] x4g2
[23414 . . .] x7g1 [234[≥ 4]13] x6g2

Table 1: Growth function for tree G2.

By Proposition 5 (ii), the sequences [23 . . . r1r] lead to the root of G1, so each of

them contribute the whole G1 tree at level 2r − 1, that is, x2r−1g1(x). This is also

true for playing sequence [1], since R1

(〈1〉
〈0〉
〈1〉

)
=
〈0〉
〈1〉.

Next, if we play R2, we reach

〈2〉
〈1〉
〈0〉
〈1〉

=
〈2〉
γ2

. Thus, if we leave the top part untouched,

which means we only play parts of indices greater or equal than 2, then we have a

subtree that is isomorphic to G2. The isomorphism is defined by excluding the top

part. Thus, sequences [2[≥ 2]] contribute xg2. Similarly with [23 . . . r[≥ r]1r−1],
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each contributes x2r−2g2, since

R[23...r] (γ2) =

〈r〉
〈r − 1〉

...
〈1〉
〈0〉
〈1〉

=

〈r〉
〈r − 1〉

...
γ2

.

If we play [23 . . . r[≥ r]], the top r− 1 rows above
〈1〉
〈0〉
〈1〉

are always playable due to

Rule 2. Thus, the playing sequences [23 . . . r[≥ r]1s] with any s ≤ r − 1 are legal.

For each r ≥ 2, we only count for [23 . . . r[≥ r]1r], since if s < r, [23 . . . r[≥ r]1s] are

counted as [23 . . . s[≥ s]1s]. Hence, the type [23 . . . r[≥ r]1r−1] contributes x2r−2g2.

Hence, we obtain

g2(x) = 1 + (x+ x3 + · · · )g1(x) + (x+ x2 + x4 + · · · )g2(x)

= 1 + (x+ x3 + · · · ) + (x+ 2x2 + 2x4 + · · · )g2(x)

=

(
1 +

x

1− x2

)
+ xg2(x) +

2x2

1− x2
g2(x),

where in the second equality we substitute g1(x) using Equation (3). Therefore

g2(x) =
−x2 + x+ 1

x3 − 3x2 − x+ 1
.

From this one concludes, again using Equation (3), that

g(x) = g1(x) + g2(x) = (1 + xg2(x)) + g2(x) = 1 + (1 + x)g2(x)

=
−3x2 + x+ 2

x3 − 3x2 − x+ 1
=

(1− x)(3x+ 2)

x3 − 3x2 − x+ 1
.

However, we desire the generating function for the level sizes of Oop
(BW )k

in the

limit as k →∞. As constructed, our quasi-infinite forest has an entire copy of itself

after playing R1, giving rise to the left branch [1 . . .], which we wish to disregard.

Letting HBW (x) denote the height generating function for the rest of the quasi-

infinite forest, that is, the two roots and the elements in the branch [2 . . .], one then

has

g(x) = xg(x) +HBW (x).

Therefore,

HBW (x) = (1− x)g(x) =
(1− x)2(3x+ 2)

x3 − 3x2 − x+ 1
.

Thus, to complete the proof of Theorem 1.1, it only remains to show that the level

sizes of Oop
(BW )k

actually converge to the coefficients given by HBW (x). This is a

consequence of Theorem 5.1.
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Theorem 5.1. The finite reverse BS graph Oop
(BW )k+1 coincides at least up to level

k with the BW quasi-infinite forest after removing its branch [1 . . .].

Proof. For each k, to get to level k in the quasi-infinite forest, there are at most k

times that we change the tail
〈0〉
〈1〉 to

〈1〉
〈0〉
〈1〉

, which means we add at most k blocks
〈0〉
〈1〉.

Thus, if we start with the root

〈1〉
〈0〉
〈1〉(
0
1

)k−1
0

, we do not need to add new parts until using

up those k blocks of
0
1
. Moreover, it is easy to confirm that the rule of bracketing

makes sense if k is large enough. This implies the coincidence of the quasi-infinite

forest with the finite graph.

In the next section, similar arguments are used to prove the limiting behavior of

BS orbits of primitive necklaces of length at least 3.

6. The Limiting Generating Function for General Oop
Pk by Level Sizes

In this section, we prove our second main theorem, Theorem 1.2, from the Intro-

duction. We also recall the following claim that was mentioned in Section 4.

Claim 6.1. Each γ(t) ∈ CP has at most 3 playable parts. Moreover, if γ
(t)
p = 1,

then γ
(t)
2 is playable if and only if γ

(t)
2 = 1.

The next claim points out a “special” element in the recurrent set.

Claim 6.2. For any primitive necklace P of length at least 3, there is at least one

γ(t) ∈ CP of the form

〈σ〉
0
...

, where σ ∈ {0, 1}.

Proof. There are two cases to consider.

1. The necklace P has two consecutive black beads, which means that any γ(t) ∈ CP
has either two consecutive 1′s, or a 1 at the top and a 1 at the bottom. There

exists a γ(t) of the form

1
0
...
1

, or else P = Bp (all black beads) not primitive. Thus,
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γ
(t)
1 + p − 1 = p > p − 1 = l(γ(t)) − 1, so it is playable. Moreover, Claim 6.1

admits that γ
(t)
2 is not playable.

2. The necklace P has two consecutive white beads. In this case we consider

γ(t) =

0
0
...
1

.

Thus, γ
(t)
1 is playable and Claim 6.1 admits that γ

(t)
2 is not playable.

The third claim regards a special situation that separates types of playing se-

quences.

Claim 6.3. Let S be the subtree S of the forest FP which is rooted at the element

λ =

λ[: j]
〈λj+1〉

0
...

=
α

γ(t) =

α
〈σ〉
0
...
1

where α = λ[: j] has αj ≥ 1, with σ ∈ {0, 1} and

〈σ〉
0
...
1

= γ(t) chosen as in Claim 6.2.

Then S has growth function

h(x) = A(x) +B(x)gt(x)

where A,B ∈ Z[x] are of degree at most j.

Proof. If 〈σ〉 is bracketed, any parts of α are bracketed, due to Rule 3. Since

λj = αj ≥ 1 > 0 = λj+2 and σ is the only playable part in the segment γ(t), by the

proof of Proposition 2 and Rule 1, the part λj+2 = γ
(t)
2 = 0 cannot be playable any

time before σ is played, and the same for any entries below it. Let δ be a playing

sequence starting at λ. Let indδσ(t) be the index of σ in Rδ[:(t−1)](λ). We have two

cases to consider.

1. Play λ
δ−→ Rδ(λ) where δi ≤ indδσ(i) for all i. Clearly, l(δ) ≤ j because we delete

the played entry in each operation, by Rule 2. Let A(x) be the growth function

for this set of elements obtained from performing such playing sequences.

2. Part σ is played at some time; assume λ
δ−→ Rδ(λ) where δi = indδσ(i). Because

αj ≥ 1, the Rule 3 confirms that in any states before playing Rδi , the immediate
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part above the tail segment γ(t) is at least 1. Hence, Rδ[:i](λ) results in
β

γ(t+1), in

which the lowest part of β is at least 2 and we claim that β has j − i + 1 parts.

The reason for this claim is because we erase one part of α each time we play

δ[: (i− 1)]. Thus, playing any parts of β cannot make the 0 at the top of γ(t+1)

playable due to Rule 2. From there, if any δi+s < δi for some s > 0, that is, a

part of the segment β is played, then any parts below β are not playable. Thus,

the rest of the playing sequence δ only plays parts of β and leads to a leaf.

The playing sequences δ in this case take i − 1 levels to reach γ(t). From then,

playing [≥ δi] forms a copy of γ(t), while playing entries of β at any time reaches

a leaf in at most j − i + 1 plays. Finally, these playing sequences contribute

B(x)gt(x) for B ∈ Z[x] of degree j.

Proof of Theorem 1.2. We only need to connect the dots by proving that every

branch of the tree Gs rooted at γ(s) will eventually hit the element of the form λ

as in Claim 6.3. In CP , one cycles the positions of the 1’s to obtain the successive

elements γ(s), so in any Gs with s 6= t, the first part γ
(t)
1 is at some position γ

(s)
j+1

(1 ≤ j ≤ p − 1). We can append some entries at the end of γ(s) so that the tail is

γ(t). Hence the Claim 6.3 applies, with j at most p− 1.

Furthermore, gt(x) = 1 + xgt+1(x) because γ
(t)
1 is the only playable part in γ(t).

Now there are polynomials K,L of degree at most p− 1 satisfying

gt+1(x) = K(x)+L(x)gt(x) = K(x)+L(x)(1+xgt+1(x)) = K(x)+L(x)+xL(x)gt+1,

implying there are polynomials P,Q of degree at most p such that

gt+1(x) =
M(x)

N(x)
.

Then gt(x) is rational with denominator of degree at most p and numerator of

degree at most p+ 1. Specifically,

gt(x) =
N(x) + xM(x)

N(x)
.

Any other gs(x) where s 6∈ {t, t+ 1} is of the form

gs(x) = A(x) +B(x)gt(x) =
AN +BN + xBM

N
,

where A,B are polynomials of integer coefficients of degree at most p−2. Thus, any

such gs is rational with denominator of degree at most p and numerator of degree

at most 2p − 1. Let g be the growth function of the P quasi-infinite forest, then

g =
∑p
s=1 gs is rational with denominator Q(x) and numerator of degree at most

2p− 1.
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Now we want to discard a copy of the forest coming from the branches [1 . . .] in

each tree Gs to get the limit generating function HP of OopP∞ . Thus,

g(x) = HP (x) + xg(x),

and then

HP (x) = (1− x)g(x),

which is a rational function with denominator of degree at most p and numerator

of degree at most 2p.

7. Further Discussion and Conjectures on the Finite BS Systems

The precise limiting generating functions HBWW and HBBW were computed in de-

tail in the author’s bachelor thesis [13, Section 5]. The limiting generating functions

for primitive necklaces of greater length can be easily computed in that fashion. Be-

low are some of them that were computed by hand:

HBWW (x) = HBBW (x) = (1− x)
x3 − 3x2 − 4x− 3

2x3 + x2 − 1
,

HBWWW (x) = (1− x)
x5 + 8x4 − 3x3 − 8x2 − 6x− 4

6x4 + 4x3 + x2 − 1
,

HBBBW (x) = (1− x)
2x5 + 8x4 − 5x3 − 10x2 − 7x− 4

6x4 + 4x3 + x2 − 1
,

HBBWW (x) = (1− x)
x5 + 4x4 − 3x3 − 6x2 − 6x− 4

3x4 + 2x3 + x2 − 1
,

HBWWWW (x) = (1− x)
2x6 + 16x5 − 12x4 − 23x3 − 16x2 − 8x− 5

12x5 + 8x4 + 2x3 − 1
.

They led us to conjecture in addition to Theorem 1.2 that the denominator degree

of HP is exactly |P |.
Another interesting question about the BS dynamical system is the sizes of the

orbits, which are parametrized by necklaces as discussed in Section 1. Recall that

if N = P k for some primitive necklaces P of length p, an element λ in the recurrent

set CPk is of the form λ = (γ(t))k + ∆pk−1 for some γ(t) ∈ CP . Since the number

of 1’s in γ(t) is equal to the number of black beads in N , we have that the size of

the partition n that the BS operation acts on is

n =

(
pk

2

)
+ k ·#black beads of P.

As we know, when N = W k, the orbit OWk is actually the whole BS system

on the partition set P
((
k
2

))
. The author’s bachelor thesis [13] computed the sizes
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of orbits parametrized by necklaces of the form (BW )k, (BBW )k and (BWW )k.

One of the results involves the sequence of Chebyshev polynomials of the first kind

{Tk(x)}∞k=0 evaluated at x = 2, which satisfies the recurrent formula

T0(2) = 1

T1(2) = 2

Tk(2) = 4Tk−1(2)− Tk−2(2) for k ≥ 2.

The results are the theorem below.

Theorem 7.1 (Pham [13]). For each k = 1, 2, . . ., one has∣∣O(BW )k
∣∣ = Tk(2)∣∣O(BWW )k
∣∣ = 5k∣∣O(BBW )k
∣∣ = 7 · 5k−1.

We also conjectured that orbits parametrized by P k for primitive necklaces P of

length greater than 3 grow geometrically as well. Some data for primitive necklaces

of length 4 and 5 are given in [13, Section 3.1].

Conjecture 1. For any primitive necklace P with |P | ≥ 3, there is an integer cP
such that for k ≥ 2,

|OPk | = (cP )k−1|OP |.

Moreover, when P ′ is obtained from P by reversing the letters of P swapping black

beads to white beads and vice versa, then cP = cP ′ .

Acknowledgement. We thank Son Nguyen for his revision regarding the dual

necklace P ′ by swapping the beads in Conjecture 1.
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