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Abstract

We derive two continued fractions M(q) and N(q) of order sixteen connected with
the Ramanujan-Göllnitz-Gordon continued fraction. We obtain theta-function iden-
tities of M(q) and N(q) and prove general theorems for the explicit evaluations of
M(±q) and N(±q). As applications, we show that color partition identities can
be obtained from the theta-function identities of M(q) and N(q). Some matching
coefficients arising from the continued fractions M(q) and N(q) are also offered.

1. Introduction

Throughout the paper, for any complex numbers a and q, define the q-product

(a; q)∞ as

(a; q)∞ :=

∞∏
t=0

(
1− aqt

)
, |q| < 1. (1)

For brevity, we will write

(a1; q)∞(a2; q)∞(a3; q)∞ · · · (am; q)∞ = (a1, a2, a3, · · · , am; q)∞ .

Ramanujan’s general theta-function f(a, b) [5, p. 34] is defined as

f(a, b) =

∞∑
t=−∞

at(t+1)/2bt(t−1)/2, |ab| < 1. (2)
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The Jacobi triple product identity [5, p. 35, Entry 19] can be expressed in terms of

f(a, b) as

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞ = (−a,−b, ab; ab)∞. (3)

Three important special cases of f(a, b) are the theta-functions φ(q), ψ(q) and f(−q)
[5, p. 36, Entry 22 (i)-(iii)] given by

φ(q) := f(q, q) =

∞∑
t=−∞

qt
2

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
, (4)

ψ(q) := f(q, q3) =

∞∑
t=0

qt(t+1)/2 =
(q2; q2)2∞
(q; q)∞

, (5)

f(−q) := f(−q,−q2) =

∞∑
t=−∞

(−1)tqt(3t−1)/2 = (q; q)∞, (6)

respectively. Ramanujan also defined the function χ(q) [5, p. 36, Entry 22(iv)] as

χ(q) = (−q; q2)∞. (7)

For convenience, we will write

fn := f(−qn) = (qn; qn)∞.

To prove our results, we need the following lemmas.

Lemma 1 ([1, p. 39, Entry 24]). We have

φ(q) =
f52
f21 f

2
4

, φ(−q) =
f21
f2
, ψ(q) =

f22
f1
, ψ(−q) =

f1f4
f2

,

f(q) =
f32
f1f4

, χ(q) =
f22
f1f4

, χ(−q) =
f1
f2
.

Lemma 2 ([13, (1.9.4)]). The following 2-dissection of φ(q) holds:

1

f21
=

f58
f52 f

2
16

+ 2q
f24 f

2
16

f52 f8
.

Ramanujan made remarkable contributions in the field of q-continued fractions.

One of the interesting continued fractions is the Ramanujan-Göllnitz-Gordon con-

tinued fraction H(q), recorded by Ramanujan on page 299 of his second notebook

[15] and given by

H(q) := q1/2
(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

= q1/2
f(−q,−q7)

f(−q3,−q5)
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=
q1/2

1 + q +
q2

1 + q3 +
q4

1 + q5 + · · ·

|q| < 1. (8)

The second equality of (8) follows from the first equality and (3). Göllnitz [11] and

Gordon [12], independently, rediscovered and proved (8). Andrews [2] proved (8)

as a corollary of a more general result. An alternative proof of (8) was also given

by Ramanathan [14]. Ramanujan offered two other identities [15, p. 299] for H(q),

namely,
1

H(q)
−H(q) =

φ(q2)

q1/2ψ(q4)
(9)

and
1

H(q)
+H(q) =

φ(q)

q1/2ψ(q4)
. (10)

Proofs of (9) and (10) can be found in [5, p. 221]. The identities (9) and (10)

also follow as special cases of identities established in [8]. Chan and Huang [7]

found many identities involving the continued fraction H(q) and evaluated explicitly

H(e−π
√
n/2) for several positive integers n. Vasuki and Srivatsa Kumar [18] also

established new modular relations for H(q). Baruah and Saikia [4] established some

general theorems for the explicit evaluations of H(q) and evaluated some values.

Closely related to the Ramanujan-Göllnitz-Gordon continued fraction H(q) are

the continued fractions M(q) and N(q) of order sixteen, which are defined, respec-

tively, as

M(q) := q3/2
(q, q15; q16)∞
(q7, q9; q16)∞

= q3/2
f(−q,−q15)

f(−q7,−q9)

=
q3/2(1− q)

(1− q4) +
q4(1− q3)(1− q5)

(1− q4)(1 + q8) +
q4(1− q11)(1− q13)

(1− q4)(1 + q16) + · · ·

(11)

and

N(q) := q1/2
(q3, q13; q16)∞
(q5, q11; q16)∞

= q1/2
f(−q3,−q13)

f(−q5,−q11)

=
q1/2(1− q3)

(1− q4) +
q4(1− q)(1− q7)

(1− q4)(1 + q8) +
q4(1− q9)(1− q15)

(1− q4)(1 + q16) + · · ·

. (12)

In fact, the continued fractions M(q) and N(q) are special cases of the following

general continued fraction recorded by Ramanujan [5, p. 24, Entry 12] in his note-

book: Suppose that a, b and q are complex numbers with |ab| < 1 and |q| < 1, or
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that a = b2m+1 for some integer m. Then

(a2q3; q4)∞(b2q3; q4)∞
(a2q; q4)∞(b2q; q4)∞

=
1

1− ab+
(a− bq)(b− aq)

(1− ab)(q2 + 1) +
(a− bq3)(b− aq3)

(1− ab)(q4 + 1) + · · ·

.

(13)

To obtain M(q) and N(q), we replace q by q4 in (13), then set {a = q3/2, b = q5/2}
and {a = q1/2, b = q7/2}, simplify using (3) and employ the results (q17; q16)∞ =

(q; q16)∞/(1−q) and (q19; q16)∞ = (q3; q16)∞/(1−q3), respectively. It is noteworthy

that the continued fractions H(q2), M(q) and N(q) are continued fractions of order

sixteen.

Vanitha [17] studied the 2-, 4-, 8-, and 16-dissections of the continued fraction

M(q) and its reciprocal, and also studied signs and the periodic nature of the

coefficients in the power series expansion. Vanitha [17] also gave combinatorial

interpretations of the coefficients in the power series expansion of M(q) and its

reciprocal. Surekha [16] obtained 2-, 4-, 8-, and 16-dissections of the continued

fraction N(q) and its reciprocal, and also studied signs and the periodic nature of

the coefficients in the power series expansion.

In this paper, we are concerned with the theta-function identities, explicit values,

partition-theoretic results, and some matching coefficients of the continued fractions

M(q) and N(q). Even though Ramanujan’s theta-function identities are mainly

employed to prove our results, it is important to note that some of the identities

of M(q) and N(q) may also be obtained from the more general identities and q-

difference equations established in [8, 9, 10].

In Section 2, we prove some theta-function identities for M(q) and N(q). We also

prove identities connecting the continued fraction H(q) with M(q) and N(q). In

Section 3, we establish general theorems for the explicit evaluations of M(±q) and

N(±q) with examples. In Section 4, we demonstrate that color partition identities

can be obtained from theta-function identities of M(q) and N(q) by deriving a color

partition identity. Finally, in Section 5, we derive some matching coefficient results

arising from the continued fractions M(q) and N(q).

2. Theta-Function Identities for M(q) and N(q)

In this section, we prove some theta-function identities for the continued fractions

M(q) and N(q), and identities connecting M(q) and N(q) with the continued frac-

tion H(q).
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Theorem 3. We have

(i)
1

M(q)
−M(q) =

φ(q4)
(
φ(q) + φ(q2)

)
2q3/2ψ(q8)ψ(q4)

,

(ii)
1

M(q)
−M(q) =

φ(q4)

qψ(q8)

1

H(q)
,

(iii)
1

N(q)
−N(q) =

φ(q4)
(
φ(q)− φ(q2)

)
2q3/2ψ(q8)ψ(q4)

,

(iv)
1

N(q)
−N(q) =

φ(q4)

qψ(q8)
H(q),

(v)
1

M(q)
+M(q) =

φ(−q4)f(q3, q5)

q3/2ψ(q8)f(−q,−q7)

=
φ(−q4)ψ(q4)ψ(q)

q1/2φ(−q8)ψ(q8)

(
2

ψ(−q2)(φ(q2)− φ(q4))

)1/2

,

(vi)
1

N(q)
+N(q) =

φ(−q4)f(q, q7)

q1/2ψ(q8)f(−q3,−q5)

=
φ(−q4)ψ(q4)ψ(q)

q1/2φ(−q8)ψ(q8)

(
2

ψ(−q2)(φ(q2) + φ(q4))

)1/2

,

(vii)

(
1

M(q)
−M(q)

)(
1

N(q)
−N(q)

)
=

φ2(q4)

q2ψ2(q8)
=

(
1

H(q2)
−H(q2)

)2

,

(viii)

(
1

M(q)
−M(q)

)
+

(
1

N(q)
−N(q)

)
=

φ(q4)φ(−q2)ψ(q)

q3/2ψ(q8)ψ(q4)ψ(−q)
,

(ix)

(
1

M(q)
−M(q)

)
−
(

1

N(q)
−N(q)

)
=

φ(q4)φ(q2)

q3/2ψ(q8)ψ(q4)
,

(x)

(
N−1(q)−N(q)

)
(M−1(q)−M(q))

=
φ(q)− φ(q2)

φ(q) + φ(q2)
= H2(q),

(xi)

(
N−1(q) +N(q)

)
(M−1(q) +M(q))

=

(
φ(q2)− φ(q4)

φ(q2) + φ(q4)

)1/2

= H(q2),

(xii)

(
1

M(q)
+M(q)

)(
1

N(q)
+N(q)

)
=

φ2(−q4)ψ(q)

q2ψ2(q8)ψ(−q)
.

Proof. From (11), we obtain

1√
M(q)

−
√
M(q) =

f(−q7,−q9)− q3/2f(−q,−q15)√
q3/2f(−q,−q15)f(−q7,−q9)

. (14)

From [5, p. 46, Entry 30 (ii) and (iii)], we note that

f(a, b) = f(a3b, ab3) + af(b/a, a5b3). (15)
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Setting a = −q3/2 and b = q5/2 in (15), we obtain

f(−q3/2, q5/2) = f(−q7,−q9)− q3/2f(−q,−q15). (16)

Employing (16) in (14), we find that

1√
M(q)

−
√
M(q) =

f(−q3/2, q5/2)√
q3/2f(−q,−q15)f(−q7,−q9)

. (17)

Similarly, from (11), we deduce that

1√
M(q)

+
√
M(q) =

f(−q7,−q9) + q3/2f(−q,−q15)√
q3/2f(−q,−q15)f(−q7,−q9)

. (18)

Employing (15) with a = q3/2 and b = −q5/2 in (18), we obtain

1√
M(q)

+
√
M(q) =

f(q3/2,−q5/2)√
q3/2f(−q,−q15)f(−q7,−q9)

. (19)

Combining (17) and (19), we arrive at

1

M(q)
−M(q) =

f(−q3/2, q5/2)f(q3/2,−q5/2)

q3/2f(−q,−q15)f(−q7,−q9)
. (20)

Again, from [5, p. 46, Entry 30 (i),(iv)], we note that

f(a, ab2)f(b, a2b) = f(a, b)ψ(ab) (21)

and

f(a, b)f(−a,−b) = f(−a2,−b2)φ(−ab). (22)

Setting {a = −q, b = −q7} and {a = −q, b = −q3} in (21) and using (5), we obtain

f(−q,−q15)f(−q7,−q9) = f(−q,−q7)ψ(q8) (23)

and

f(−q,−q7)f(−q3,−q5) = f(−q,−q3)ψ(q4) = ψ(−q)ψ(q4), (24)

respectively. Also, setting a = −q3/2 and b = q5/2 in (22), we obtain

f(−q3/2, q5/2)f(q3/2,−q5/2) = f
(
−q3,−q5

)
φ(q4). (25)

Employing (23) and (25) in (20), we obtain

1

M(q)
−M(q) =

f(−q3,−q5)φ(q4)

q3/2f(−q,−q7)ψ(q8)
. (26)
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Again, employing (24) in (26), we arrive at

1

M(q)
−M(q) =

f2(−q3,−q5)φ(q4)

q3/2ψ(q8)ψ(q4)ψ(−q)
. (27)

From [5, p. 51] (with q by −q), we note that

φ(q) + φ(q2) =
2f2(−q3,−q5)

ψ(−q)
(28)

and

φ(q)− φ(q2) =
2qf2(−q,−q7)

ψ(−q)
. (29)

Combining (28) and (27), we arrive at (i). Employing (8) in (26), we arrive at (ii).

Proceeding as in the proofs of (i) and (ii), and using (29), we arrive at (iii) and (iv),

respectively.

Squaring (19), we obtain

1

M(q)
+M(q) =

f2(q3/2,−q5/2)

q3/2f(−q,−q15)f(−q7,−q9)
− 2. (30)

From [5, p. 46, Entry 30 (v),(vi)], we note that

f2(a, b) = f(a2, b2)φ(ab) + 2af(b/a, a3b)ψ(a2b2). (31)

Setting a = q3/2 and b = −q5/2 in (31), we obtain

f2(q3/2,−q5/2) = f(q3, q5)φ(−q4) + 2q3/2f(−q,−q7)ψ(q8). (32)

Employing (23) and (32) in (30) and simplifying, we arrive at the first equality of

(v). Simplifying the first equality can be expressed as

1

M(q)
+M(q) =

f(q, q3)ψ(q4)φ(−q4)

q3/2f(−q2,−q14)ψ(q8)φ(−q8)
. (33)

Replacing q by q2 in (29), we obtain

f(−q2,−q14) =

(
ψ(−q2)

(
φ(q2)− φ(q4)

)
2q2

)1/2

. (34)

Employing (5) and (34) in (33), we arrive at the second equality of (v). Proof of

(vi) is identical to the proof of (v), so we omit it. Combining (v) and (vi), we obtain

(xi) and (xii). Proofs of (vii), (viii), (ix), and (x) follow from (i) and (ii).
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Theorem 4. Let n be a positive integer. Then

(i) Mn(q)Mn(−q) =
{

Mn(q2), if n ≡ 0 (mod 4)
−Mn(q2), if n ≡ 2 (mod 4),

(ii) Nn(q)Nn(−q) =
{ Nn(q2), if n ≡ 0 (mod 4)
−Nn(q2), if n ≡ 2 (mod 4).

Proof. From (11), we obtain

Mn(q)Mn(−q) = (−1)3n/2q3n
fn(−q,−q15)

fn(−q7,−q9)
× fn(q, q15)

fn(q7, q9)
. (35)

Setting {a = q, b = q15} and {a = q7, b = q9} in (22), we find that

f(q, q15)f(−q,−q15) = f(−q2,−q30)φ(−16) (36)

and

f(q7, q9)f(−q7,−q9) = f(−q14,−q18)φ(−16), (37)

respectively.

Employing (36) and (37) in (35), we obtain

Mn(q)Mn(−q) = (−1)3n/2q3n
fn(−q2,−q30)

fn(−q14,−q18)
(38)

= (−1)3n/2Mn(q2).

Now the desired result follows from (38) and noting the fact that 3n/2 is even if

n ≡ 0 (mod 4) and odd if n ≡ 2 (mod 4). The proof of (ii) is identical to the proof

of (i), so we omit it.

3. Explicit Evaluation of M(±q) and N(±q)

In this section, we give general theorems for the explicit evaluations of M(q), N(q),

M2(−q) and N2(−q) by the method of parametrization. We will use the parameter

s4,n defined by

s4,n =
f(q)√

2q1/8f(−q4)
, (39)

where n is a positive real number. The parameter s4,n is the particular case k = 4 of

the parameter sk,n defined by Berndt [6, p. 9, (4.7)]. Baruah and Saikia [4] proved

the following formula for the explicit evaluation of H(q) [4, p. 275, Theorem 3.1]:

H(e−π
√
n/4) = −s24,n +

√
s44,n + 1. (40)

Baruah and Saikia [4] calculated many values of the parameter s4,n to evaluate

explicit values of H(q) by appealing to (40).
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Theorem 5. If U(q) = H(q2)H(q) and V (q) = H(q2)/H(q), then

(i)
1

M(q)
−M(q) =

1

U(q)
− V (q),

(ii)
1

N(q)
−N(q) =

1

V (q)
− U(q).

Proof. Employing (9) in Theorem 3(iii) and (iv), we arrive at (i) and (ii), respec-

tively.

From the above theorem, it is clear that if we know the values of H(q) and H(q2),

we can easily evaluate U(q) and V (q), and hence the explicit values of M(q) and

N(q) can be evaluated by solving the corresponding quadratic equations. For that,

we have Theorem 6, which follows from (40) and the definitions of U(q) and V (q).

Theorem 6. We have

(i) U(e−π
√
n/4) =

(
−s24,4n +

√
s44,4n + 1

)(
−s24,n +

√
s44,n + 1

)
,

(ii) V (e−π
√
n/4) =

(
−s24,4n +

√
s44,4n + 1

)
/
(
−s24,n +

√
s44,n + 1

)
.

Remark 1. From Theorem 6, it is easily seen that to evaluate the explicit values

of U(e−π
√
n/4) and V (e−π

√
n/4), it is sufficient to know the values of s4,n and s4,4n.

Baruah and Saikia [4] evaluated explicit values of the parameters s4,n and s4,4n
for n = 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15, 16, 18, 25, and 36. For example, employing the

values s4,1 = 2−5/16(1+
√

2)1/4 and s4,4 = 21/8 in Theorem 6(i) and (ii), we evaluate

U(e−π/4) =

(
−21/4 +

√
1 +
√

2

)(√
1 +
√

2 + 25/4 −
√

1 +
√

2

25/8

)
and

V (e−π/4) =
25/8

(
−21/4 +

√
1 +
√

2
)

√
1 +
√

2 + 25/4 −
√

1 +
√

2
,

respectively.

Next, employing above values of U(e−π/4) and V (e−π/4) in Theorem 5(i) and

(ii), and solving the resulting equations, we evaluate

M(e−π/4) =
−27/8 +

√
2(1 + 21/4)(1 +

√
2−

√
1 +
√

2)

1 + 21/4 −
√

1 +
√

2
(41)

and

N(e−π/4) =
−29/8 + 27/8

√
1 +
√

2

−1 + 21/4 −
√

1 +
√

2
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−

√
2(1 + 3 · 21/4 +

√
2 + 23/4 − (3 + 21/4)

√
1 +
√

2)

−1 + 21/4 −
√

1 +
√

2
, (42)

respectively.

Similarly, with the help of the Theorem 5 and Theorem 6, and the values s4,4 =

21/8 and s4,16 = (1 +
√

2)1/2, we evaluate

M(e−π/2) =
1 +
√

2−
√

4 + 4 ·
√

2− 25/4
√

1 +
√

2

21/4 −
√

1 +
√

2
(43)

and

N(e−π/2) =
−1−

√
2 +

√
4 + 4 ·

√
2 + 25/4

√
1 +
√

2

21/4 +
√

1 +
√

2
. (44)

Theorem 7. We have

(i) M2(−q) = −M
2(q2)

M2(q)

(ii) N2(−q) = −N
2(q2)

N2(q)

Proof. Setting n = 2 in Theorem 4 (i) and (ii), we arrive at (i) and (ii), respectively.

Remark 2. From Theorem 7, it is obvious that if we know the explicit values of

M(q2) and M(q) (or N(q2) and N(q)), then explicit values of M2(−q) (or N2(−q))
can be evaluated. For example, employing the values of M(e−π/2) and M(e−π/4)

from (41) and (43) in Theorem 7(i), we evaluate

M2(−e−π/4) = − (λ1/λ2)
2 ·

(
1 + 21/4 −

√
1 +
√

2

21/4 −
√

1 +
√

2

)2

, (45)

where

λ1 = 1 +
√

2−

√
4 + 4 ·

√
2− 25/4

√
1 +
√

2

and

λ2 = −27/8 +

√
2(1 + 21/4)

(
1 +
√

2−
√

1 +
√

2

)
.

Similarly, employing the values of N(e−π/2) and N(e−π/4) from (42) and (44) in

Theorem 7(ii), we obtain

N2(−e−π/4) = − (λ3/λ4)
2 ·

(
−1 + 21/4 −

√
1 +
√

2

21/4 +
√

1 +
√

2

)2

, (46)
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where

λ3 = 1 +
√

2−

√
4 + 4 ·

√
2 + 25/4

√
1 +
√

2

and

λ4 = 29/8 + 27/8
√

1 +
√

2 +

√
2

(
1 + 3 · 21/4 +

√
2 + 23/4 − (3 + 21/4)

√
1 +
√

2

)
.

4. Color Partition Identities

In this section, we see that color partition identities can be obtained from the theta-

function identities ofM(q) andN(q) established in Theorem 3. We demonstrate this

by deriving a color partition identity from Theorem 3(iv). Similarly, color partition

identities can be obtained from remaining theta-function identities of Theorem 3.

First, we define the partition and the color partition of a positive integer. A

partition of a positive integer n is a non-increasing sequence of positive integers,

called parts, whose sum equals n. For example, n = 3 has three partitions, namely,

3, 2 + 1, 1 + 1 + 1. If p(n) denotes the number of partitions of n, then p(3) = 3.

The generating function for p(n) due to Euler is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
. (47)

An r-color partition of a positive integer n is a partition in which each part appears

in r distinct colors. For any positive integer n and r, let Cr(n) denote the number

of partitions of n with each part having r distinct colors. For example, if each part

of a partition of 3 has 2 colors, say white (indicated by the suffix w) and black

(indicated by the suffix b), then the number of 2-color partitions of 3 is 10, namely,

3w, 3b, 2w + 1w, 2w + 1b, 2b + 1w, 2b + 1b, 1w + 1w + 1w, 1w + 1w +

1b, 1w + 1b + 1b, 1b + 1b + 1b. The generating function of Cr(n) is given by

∞∑
n=0

Cr(n)qn =
1

(q; q)r∞
. (48)

For positive integers s,m and r,

1

(qs; qm)r∞
(49)

is the generating function of the number of partitions of n with parts congruent to

s modulo m and each part having r colors. For example, if s1 and s2 are positive

integers, then
1

(qs1 ; qm)r∞(qs2 ; qm)r∞
=

1

(qs1 , qs2 ; qm)r∞
(50)
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is the generating function of the number of partitions of positive integer with parts

congruent to s1 or s2 modulo m and each part having r colors. Here we use the

notation

(qr±; qm) := (qr, qm−r; qm)∞, (51)

where r and m are positive integers and r < m.

Theorem 8. Let C1(n) denote the number of partitions of n into parts congruent

to ±1,±3, ±7 or ±8 (mod 16) such that the parts congruent to ±3 and ±8

(mod 16) have 2 colors. Let C2(n) denote the number of partitions of n into parts

congruent to ±1, ±5, ±7 or ±8 (mod 16) such that parts congruent to ±5 and ±8

(mod 16) have 2 colors. Let C3(n) denote the number of partitions of n into parts

congruent to ±3, ±4 or ±5 (mod 16) with 2 colors.

Then for any integer n ≥ 1,

C1(n)− C2(n− 1)− C3(n) = 0. (52)

Proof. Employing (4), (5), (8) and (12) in Theorem 3(iv), we obtain

(q5±; q16)∞
(q3±; q16)∞

− q (q3±; q16)∞
(q5±; q16)∞

− (q1±,7±; q16)∞(q8±; q16)2∞
(q3±,5±; q16)∞(q4±; q16)2∞

= 0. (53)

Dividing (53) by (q1±,3±,5±,7±; q16)∞(q8±, q16)2∞, we obtain

1

(q1±,7±; q16)∞(q3±,8±; q16)2∞
− q

(q1±,7±; q16)∞(q5±,8±; q16)2∞
=

1

(q3±,4±,5±; q16)2∞
.

(54)

The above quotients of (54) represent the generating functions for C1(n), C2(n)

and C3(n), respectively. Hence, (54) is equivalent to

∞∑
n=0

C1(n)qn − q
∞∑
n=0

C2(n)qn −
∞∑
n=0

C3(n)qn = 0, (55)

where we set C1(0) = C2(0) = C3(0) = 1. Equating coefficients of qn on both sides

of (55), we obtain the desired result.

Example: The following table illustrates the case n = 3 in Theorem 8:

C1(3) = 3 C2(2) = 1 C3(3) = 2

3r 1 + 1 3r

3g 3g

1 + 1 + 1
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5. Matching Coefficients

In this section, we offer matching coefficient results arising from the theta-function

identities of the continued fractions M(q) and N(q) with their reciprocals. Recently,

Baruah and Das [3] established several matching coefficient results for the series

expansion of certain q-products and their reciprocals. We first give the definition

of the matching coefficients from [3].

For any two power series
∑∞
n=0 Cnq

n and
∑∞
n=0Dnq

n, if for some positive inte-

gers s, t and k, and non-negative integers u and v, C(sn + u) = ±kD(tn + v), for

all n ≥ 0, then the two power series are said to have matching coefficients.

Theorem 9. If

q3/2M(q) = q3
(q, q15; q16)∞
(q7, q9; q16)∞

=

∞∑
n=0

anq
n

and

q3/2
1

M(q)
=

(q7, q9; q16)∞
(q, q15; q16)∞

=

∞∑
n=0

a′nq
n,

then

a4n+3 = a′4n+3.

Proof. Employing (11) and Lemma 1 in Theorem 3(i), we obtain

(q7, q9; q16)∞
q3/2(q, q15; q16)∞

− q3/2 (q, q15; q16)∞
(q7, q9; q16)∞

=
f52 f

4
8

2q3/2f21 f
3
4 f

4
16

+
f44 f

2
8

2q3/2f22 f
4
16

. (56)

Multiplying both sides of (56) by 2q3/2 and then employing Lemma 2, we obtain

2
(q7, q9; q16)∞
(q, q15; q16)∞

− 2q3
(q, q15; q16)∞
(q7, q9; q16)∞

=
f52 f

4
8

f34 f
4
16

(
f58

f52 f
2
16

+ 2q
f24 f

2
16

f52 f8

)
+
f44 f

2
8

f22 f
4
16

. (57)

Simplifying (57), we obtain

2

∞∑
n=0

a′nq
n − 2

∞∑
n=0

anq
n =

f98
f34 f

6
16

+ 2q
f38
f4f216

+
f44 f

2
8

f22 f
4
16

. (58)

Extracting the terms involving q2n+1, dividing by q and then replacing q2 by q, we

obtain
∞∑
n=0

a′2n+1q
n −

∞∑
n=0

a2n+1q
n =

f34
f2f28

. (59)

The right hand side of (59) contains no term involving q2n+1, so extracting terms

involving q2n+1, dividing by q and replacing q2 by q, we obtain

∞∑
n=0

a′4n+3q
n −

∞∑
n=0

a4n+3q
n = 0. (60)

Equating the coefficients of qn, we obtain the desired result.
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The proof of Theorem 10 is similar to the proof of Theorem 9 and follows from

(12), Lemma 1, Lemma 2 and Theorem 3(iii).

Theorem 10. If

q3/2N(q) = q2
(q3, q13; q16)∞
(q5, q11; q16)∞

=

∞∑
n=0

bnq
n

and

q3/2
1

N(q)
= q

(q5, q11; q16)∞
(q3, q13; q16)∞

=

∞∑
n=0

b′nq
n,

then

b4n+3 = b′4n+3.
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