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Abstract

Given that every integer is taken to the power of a fixed integer exponent k ≥ 2
and then these powers are reduced modulo a fixed integer n ≥ 2, denote the set
of resulting distinct remainders by Rk(n). In 2017, based on numerical evidence,
Richard Mathar posted a document and comments on the OEIS with a list of
conjectures that addressed the determination of the cardinalities of such sets in
various special cases. By modifying our recently published formula that counts
Rk(n) in essentially closed form, we prove all of Mathar’s conjectures.

1. General Formulas

Definition 1. Let n ≥ 2, k ≥ 2, and a be integers. Then a is a kth power residue

modulo n if there exists an integer x such that

xk ≡ a (mod n).

We denote the set of kth power residue classes by Rk(n).

It is a classic result that the counting function |Rk(n)| is multiplicative in n if k

is fixed; a proof is given in [5]. As such, it suffices to have a formula for |Rk(pm)|
for primes p and positive integers m. We published a formula for this as follows.

Definition 2. Let ε be the parity function, which is defined, for integers t, as

ε(t) =

{
0 if 2 | t
1 if 2 - t

.

Definition 3. Given a positive integer n and a prime p, the p-adic valuation of n

is the exponent of the highest power of p that divides n. It is denoted by νp(n).

For example, ν2(80) = 4.
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Theorem 1 ([5]). Let p be a prime, and k ≥ 2 and m ≥ 1 be integers. Let r be the

remainder of m upon division by k. Let

α =
p− 1

(k, p− 1)
,

β = (νp(k) + 1)(1− ε(k))(1− ε(p)) + νp(k)ε(p),

γ =

{
k if k | m
r if k - m

.

Then

|Rk(pm)| = α ·
(

pk

pβ+1
· p

m − pγ

pk − 1
+

⌈
pγ

pβ+1

⌉)
+ 1

= α ·
⌈

1

pβ+1
· p

m+k − pγ

pk − 1

⌉
+ 1,

where
pk

pβ+1
· p
m − pγ

pk − 1
in the first line is necessarily an integer, so it can be absorbed

into the ceiling function as shown in the second line. The formula correctly yields

pm in the k = 1 case as well.

Our proof of Theorem 1 in [5] is a generalization of Stangl’s methods in [6],

in conjunction with certain classical results. Another paper that addresses the

determination of |Rk(pm)| is by Maxim Korolev [3], who cites Ji Chungang [1]. Both

authors left their formulas as unclosed series and spread across several cases. Our

contribution was to close the sums using p-adic valuation and unify the disparate

cases by observing their overall similar structure.

The main new result of the current paper is the following modified formula.

Theorem 2. Let p,m, k, r, α, β, γ be as defined in Theorem 1. Then

|Rk(pm)| =


⌊
α·pm+k−β−1

pk−1

⌋
+ 1 if γ ≥ β + 1

⌊
α·pm+k−β−1

pk−1

⌋
+ α+ 1 if γ ≤ β

.

Note that, unlike Theorem 1, this formula only works for k ≥ 2, as it does not yield

pm for k = 1.

Proof. Suppose γ ≥ β + 1. By Theorem 1,

|Rk(pm)| − 1 = α ·
(
pk−β−1 · p

m − pγ

pk − 1
+ pγ−β−1

)
= α · p

m+k−β−1 − pγ−β−1

pk − 1

=
α · pm+k−β−1

pk − 1
− α · pγ−β−1

pk − 1
.
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This is equal to the left side |Rk(pm)| − 1, which is an integer. In general, we have

the following equivalences:

c− d = bcc ⇐⇒ c− 1 < c− d ≤ c ⇐⇒ 0 ≤ d < 1,

where we have used a characterization of the floor function from [2, p. 69]. Indeed,

using γ ≤ k and β ≥ 0, we find that

0 ≤ α · pγ−β−1

pk − 1
=

(p− 1) · pγ−β−1

(k, p− 1)(pk − 1)
≤ (p− 1) · pk−1

pk − 1
=
pk − pk−1

pk − 1
≤ 1.

On the far right, equality holds if and only if k = 1, which is excluded.

In the other case, suppose γ ≤ β. Then

|Rk(pm)| − 1 = α ·
(
pk−β−1 · p

m − pγ

pk − 1
+ 1

)
= α · p

m+k−β−1 − pγ+k−β−1

pk − 1
+ α

=
α · pm+k−β−1

pk − 1
− α · pγ+k−β−1

pk − 1
+ α.

Following the earlier logic, we use γ ≤ β to prove that

0 ≤ α · pγ+k−β−1

pk − 1
=

(p− 1) · pγ+k−β−1

(k, p− 1)(pk − 1)
≤ (p− 1) · pk−1

pk − 1
=
pk − pk−1

pk − 1
≤ 1.

Once again, equality on the far right does not hold due to k ≥ 2, so we have the

desired strict upper bound of 1.

2. Mathar’s Conjectures

In 2017, based on numerical verification, R. J. Mathar posted on the OEIS numerous

conjectures regarding counting power residues [4]. All of them may be resolved

using the results in the present paper (note that his notation slightly differs from

our chosen one).

• Conjectures 1-5 are simple consequences of the classical formulas for counting

the number of kth power residues modulo n that are coprime to n, so we will

not comment on them. The necessarily formulas were given a full exposition

in [5].

• Conjecture 6 is a recurrence relation for any prime p that may be rewritten

as

|Rk(pm)| − |Rk(pm−k)| = p ·
(
|Rk(pm−1)| − |Rk(pm−1−k)|

)
.

This is a direct result of applying Theorem 1 to all four terms and simplifying.
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• Conjecture 7 says that, if pm and k are coprime with any prime p (meaning

p - k), then

|Rk(pm)| =
⌊

p− 1

(k, p− 1)
· p

m+k−1

pk − 1

⌋
+ 1.

Here, β = 0 (because at least one of p or k must be odd, by their coprimality)

and 1 ≤ γ ≤ k, so β + 1 ≤ γ. Thus, the conjecture is a consequence of the

first case of Theorem 2.

• Conjecture 8 says that, taking k = p, we get

|Rp(pm)| =


⌊
(p−1)·pm+p−2

pp−1

⌋
+ 1 if m 6≡ 1 (mod p)

⌊
(p−1)·pm+p−2

pp−1

⌋
+ p if m ≡ 1 (mod p)

.

This is actually not true for p = 2, but it does work for odd primes p (the

omission of this restriction is likely a typographical error by Mathar). The

expressions are easy to get from Theorem 2. The conditions come from the

fact that β = 1, so the condition γ ≤ β is equivalent to γ = 1 since γ ≥ 1,

and γ = 1 if and only if m ≡ 1 (mod p).

• Nine more conjectural equations are given as equations 32-40, all of which may

be proven using Theorem 2 for specific k and specific p; we have independently

checked the details. These compute |Rk(pm)| for

(k, p) = (4, 2), (6, 2), (6, 3), (8, 2), (9, 3), (10, 2), (10, 5), (12, 2), (12, 3).

• Several sequences in the OEIS list {|Rk(n)|}∞n=1 for fixed k: squares are

in A000224, cubes in A046530, fourth powers in A052273, fifth powers in

A052274, sixth powers in A052275, seventh powers in A085310, eighth powers

in A085311, ninth powers in A085312, tenth powers in A085313, eleventh pow-

ers in A085314, and twelfth powers in A228849. There, Mathar conjectured

formulas for fourth powers

|R4(2m)| =


⌊

2m

24−1

⌋
+ 1 if 4 | m

⌊
2m

24−1

⌋
+ 2 if 4 - m

,

|R4(pm)| =
⌊

p− 1

(4, p− 1)
· p

m+3

p4 − 1

⌋
+ 1, odd primes p,
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and fifth powers

|R5(5m)| =


⌊
(5−1)·5m+3

55−1

⌋
+ 1 if m 6≡ 1 (mod 5),

⌊
(5−1)·5m+3

55−1

⌋
+ 5 if m ≡ 1 (mod 5)

,

|R5(pm)| =
⌊

p− 1

(5, p− 1)
· p

m+4

p5 − 1

⌋
+ 1, primes p 6= 5.

These are direct consequences of Theorem 2.

Theorem 1 and Theorem 2 are undoubtedly rich with other special cases that

can be computed, optimized for software implementation, and otherwise analyzed.
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