SUMS OF DISTINCT POLYNOMIAL RESIDUES

Carrie Finch-Smith
Department of Mathematics, Washington and Lee University, Lexington, Virginia, finchc@wlu.edu
Joshua Harrington
Department of Mathematics, Cedar Crest College, Allentown, Pennsylvania
joshua.harrington@cedarcrest.edu
Tony W. H. Wong
Department of Mathematics, Kutztown University of Pennsylvania, Kutztown, Pennsylvania
wong@kutztown.edu

Received: 4/11/23, Accepted: 8/12/23, Published: 8/25/23

Abstract

Let $p \geq 5$ be a prime. In 1801, Gauss proved that the sum of distinct quadratic residues modulo p is congruent to 0 modulo p. A study by Stetson in 1904 showed that the sum of distinct triangular residues modulo p is congruent to $-1 / 16$ modulo p. Both of these results were extended in 2017 by Gross, Harrington, and Minott, who studied the sum of distinct quadratic polynomial residues modulo p. In this article, we determine the sum of distinct cubic polynomial residues modulo p and prove a conjecture of Gross, Harrington, and Minott. We further consider the sum of distinct residues modulo p for polynomials of higher degree.

1. Introduction

Throughout this paper, let $p \geq 5$ be a prime, and let $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$. In 1801, Gauss [1] proved that the sum of distinct quadratic residues modulo p is congruent to 0 modulo p. Then in 1904, Stetson [4] showed that the sum of distinct triangular residues modulo p is congruent to $-1 / 16$ modulo p. Both of these results were extended by Gross, Harrington, and Minott [2] in 2017, who considered the sum of distinct s-gonal numbers, and more generally the sum of distinct quadratic polynomial residues, modulo p.

For every polynomial $f \in \mathbb{Z}_{p}[x]$, we define

$$
\mathfrak{R}(f)=\left\{f(x) \in \mathbb{Z}_{p}: x \in \mathbb{Z}_{p}\right\}
$$

and define

$$
S(f)=\sum_{y \in \mathfrak{R}(f)} y
$$

To generalize the results of Gauss and Stetson, Gross, Harrington, and Minott provided the following theorem.

Theorem 1 ([2]). Let $f(x)=a x^{2}+b x+c \in \mathbb{Z}_{p}[x]$ be a quadratic polynomial. If $a \neq 0$, then

$$
S(f)=-\frac{b^{2}-4 a c}{8 a}
$$

In this article, we provide a formula for $S(f)$ when $f \in \mathbb{Z}_{p}[x]$ is a cubic polynomial, thus proving a conjecture of Gross, Harrington, and Minott. We then discuss $S(f)$ when $f \in \mathbb{Z}_{p}[x]$ has degree larger than 3 , with a special emphasis on certain families of cyclotomic polynomials.

2. Determining $S(f)$ for Cubic Polynomials

We begin this section with the following lemma.
Lemma 1. Let $h \in \mathbb{Z}_{p}[x]$ be an odd polynomial, i.e., $h(-x)=-h(x)$. Let $g(x)=$ $h(x)+k$, where $k \in \mathbb{Z}_{p}$. Then

$$
S(g) \equiv|\Re(g)| \cdot k(\bmod p)
$$

Proof. Suppose $y \in \mathfrak{R}(h) \backslash\{0\}$. Then there exists an $x \in \mathbb{Z}_{p}$ such that $h(x)=y$. Since h is an odd polynomial, we have $h(-x)=-h(x)=-y$. Thus, $-y \in \mathfrak{R}(h)$. Since $p>2$, we have $y \neq-y$. It follows that $S(h)=0$. Now, suppose $z \in \mathfrak{R}(g)$. Then $z=y+k$ for some $y \in \mathfrak{R}(h)$. Hence, $S(g)$ is given by

$$
\sum_{z \in \mathfrak{R}(g)} z=\sum_{y \in \mathfrak{R}(h)}(y+k)=\sum_{y \in \mathfrak{R}(h)} y+\sum_{y \in \mathfrak{R}(h)} k \equiv|\mathfrak{R}(h)| \cdot k \equiv|\mathfrak{R}(g)| \cdot k(\bmod p) .
$$

In 1908, von Sterneck [3] proved that for all $x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \in \mathbb{Z}_{p}[x]$ such that $a_{1}^{2} \neq 3 a_{2}$,

$$
\begin{equation*}
\left|\mathfrak{R}\left(x^{3}+a_{1} x^{2}+a_{2} x+a_{3}\right)\right|=\frac{2 p+\left(\frac{p}{3}\right)}{3} \tag{1}
\end{equation*}
$$

where $\left(\frac{p}{3}\right)$ is the Legendre symbol. With von Sterneck's result and Lemma 1, we can now prove our main result.

Theorem 2. Let $f(x)=a x^{3}+b x^{2}+c x+d \in \mathbb{Z}_{p}[x]$ be a cubic polynomial. If $a \neq 0$, then

$$
S(f)= \begin{cases}\frac{27 a^{2} d-9 a b c+2 b^{3}}{81 a^{2}} & \text { if } b^{2} \neq 3 a c \text { and } p \equiv 1(\bmod 6) \\ -\frac{27 a^{2} d-9 a b c+2 b^{3}}{81 a^{2}} & \text { if } b^{2} \neq 3 a c \text { and } p \equiv 5(\bmod 6) \\ \frac{2\left(27 a^{2} d-9 a b c+2 b^{3}\right)}{81 a^{2}} & \text { if } b^{2}=3 a c \text { and } p \equiv 1(\bmod 6) \\ 0 & \text { if } b^{2}=3 a c \text { and } p \equiv 5(\bmod 6)\end{cases}
$$

Proof. We begin by letting $g(x)=f(x-b /(3 a)) / a$, i.e.,

$$
g(x)=x^{3}+\left(\frac{3 a c-b^{2}}{3 a^{2}}\right) x+\frac{27 a^{2} d-9 a b c+2 b^{3}}{27 a^{3}} .
$$

Notice that the coefficients of g are well-defined in \mathbb{Z}_{p} since $p \geq 5$. Therefore, $S(g)$ is defined, and it can easily be seen that $S(f)=a \cdot S(g)$. Thus, we will study $S(g)$ to obtain the proof.

Since $g(x)=h(x)+k$, where

$$
h(x)=x^{3}+\left(\frac{3 a c-b^{2}}{3 a^{2}}\right) x
$$

is an odd polynomial and

$$
k=\frac{27 a^{2} d-9 a b c+2 b^{3}}{27 a^{3}}
$$

we have from Lemma 1 that $S(g)=|\Re(g)| \cdot k$.
If $3 a c-b^{2} \neq 0$, then Equation (1) implies

$$
|\mathfrak{R}(g)|=\frac{2 p+\left(\frac{p}{3}\right)}{3} \equiv \begin{cases}1 / 3 \quad(\bmod p) & \text { if } p \equiv 1(\bmod 6) \\ -1 / 3 \quad(\bmod p) & \text { if } p \equiv 5(\bmod 6)\end{cases}
$$

Otherwise, if $3 a c-b^{2}=0$, then $g(x)=x^{3}+k$ and

$$
\begin{aligned}
|\mathfrak{R}(g)| & = \begin{cases}(p+2) / 3 & \text { if } p \equiv 1(\bmod 6) \\
p & \text { if } p \equiv 5(\bmod 6)\end{cases} \\
& \equiv \begin{cases}2 / 3(\bmod p) & \text { if } p \equiv 1(\bmod 6) \\
0 \quad(\bmod p) & \text { if } p \equiv 5(\bmod 6)\end{cases}
\end{aligned}
$$

The theorem follows since $S(f)=a \cdot S(g) \equiv a \cdot|\mathfrak{R}(g)| \cdot k(\bmod p)$.

3. Addressing $S(f)$ for Polynomials of Degree Greater than 3

Theorems 1 and 2 provide formulae for calculating $S(f)$ when f is a quadratic polynomial or cubic polynomial, respectively. A natural direction for further study is to consider $S(f)$ for quartic or higher degree polynomials $f \in \mathbb{Z}_{p}[x]$. Preliminary work in this direction suggests that $|\mathfrak{R}(f)|$ plays an important role in understanding $S(f)$. Unfortunately, the study of $|\mathfrak{R}(f)|$ seems very limited; interested readers are referred to Sun's article for results concerning $|\mathfrak{\Re}(f)|$ for quartic polynomials f [5]. Nonetheless, in this section, we study $S(f)$ for certain families of polynomials of arbitrarily high degree.

A polynomial $f \in \mathbb{Z}_{p}[x]$ is called a permutation polynomial if $\mathfrak{R}(f)=p$. Clearly, for an odd prime p, if f is a permutation polynomial, then $S(f)=0$. The following lemma shows that the converse of this statement is not true.

Lemma 2. For a positive integer r,

$$
S\left(x^{r}\right)= \begin{cases}1 & \text { if }(p-1) \mid r \\ 0 & \text { otherwise }\end{cases}
$$

Proof. For a positive integer r, let $g_{r} \in \mathbb{Z}_{p}[x]$ with $g_{r}(x)=x^{r}$. Recall that $\mathfrak{R}\left(g_{r}\right) \backslash$ $\{0\}$ forms a group under multiplication with $\left|\mathfrak{R}\left(g_{r}\right) \backslash\{0\}\right|=(p-1) / \operatorname{gcd}(p-1, r)$. Thus, if $p-1$ divides r, then $\left|\mathfrak{R}\left(g_{r}\right) \backslash\{0\}\right|=1$. We then deduce that $\mathfrak{R}\left(g_{r}\right)=\{0,1\}$ and $S\left(g_{r}\right)=1$. On the other hand, if $p-1$ does not divide r, then $\mathfrak{R}\left(g_{r}\right) \backslash\{0\}$ contains an element $\beta \neq 1$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ be the elements of $\mathfrak{R}\left(g_{r}\right) \backslash\{0\}$. Since $\mathfrak{R}\left(g_{r}\right) \backslash\{0\}$ forms a group under multiplication,

$$
S\left(g_{r}\right)=0+\alpha_{1}+\alpha_{2}+\cdots+\alpha_{t}=\beta \cdot 0+\beta \cdot \alpha_{1}+\beta \cdot \alpha_{2}+\cdots+\beta \cdot \alpha_{t}=\beta \cdot S\left(g_{r}\right)
$$

Since $\beta \neq 1$, we deduce that $S\left(g_{r}\right)=0$.
For the rest of this article, let $g_{r} \in \mathbb{Z}_{p}[x]$ such that $g_{r}(x)=x^{r}$. The next theorem determines $S(f)$ for a particular class of binomials $f \in \mathbb{Z}_{p}[x]$.

Theorem 3. Let $f(x)=a x^{r}+b \in \mathbb{Z}_{p}[x]$. Then

$$
S(f)= \begin{cases}a+2 b & \text { if }(p-1) \mid r \\ b\left(\frac{p-1}{\operatorname{gcd}(r, p-1)}+1\right) & \text { otherwise }\end{cases}
$$

Proof. Let α be the generator of the multiplicative group $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$. Then the
order of α^{r} is $\operatorname{ord}_{p}\left(\alpha^{r}\right)=(p-1) / \operatorname{gcd}(r, p-1)$. By Lemma 2,

$$
\begin{aligned}
S(f) & =a \cdot S\left(g_{r}\right)+b \cdot\left(\operatorname{ord}_{p}\left(\alpha^{r}\right)+1\right) \\
& = \begin{cases}a \cdot 1+b \cdot(1+1) & \text { if }(p-1) \mid r \\
a \cdot 0+b \cdot\left(\operatorname{ord}_{p}\left(\alpha^{r}\right)+1\right) & \text { otherwise }\end{cases} \\
& = \begin{cases}a+2 b & \text { if }(p-1) \mid r \\
b \cdot\left(\operatorname{ord}_{p}\left(\alpha^{r}\right)+1\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Let $\Phi_{n}(x) \in \mathbb{Z}_{p}[x]$ denote the n-th cyclotomic polynomial. Recall that $\Phi_{2^{t}}(x)=$ $x^{2^{t-1}}+1$. Thus, letting $a=b=1$ and $r=2^{t-1}$ in Theorem 3 yields the following corollary.

Corollary 1. Let j be an integer such that $2^{j} \|(p-1)$. Then

$$
S\left(\Phi_{2^{t}}\right)= \begin{cases}3 & \text { if }(p-1) \mid 2^{t-1} \\ \frac{p-1}{2^{\min \{t-1, j\}}}+1 & \text { otherwise }\end{cases}
$$

The following lemma is an easy exercise in elementary number theory, and can by verified by considering the multiplicative group \mathbb{Z}_{p}^{*}.

Lemma 3. Let q be a prime and let j satisfy $q^{j} \|(p-1)$. For every integer $t \geq j$,

$$
\mathfrak{R}\left(g_{q^{t}}\right)=\mathfrak{R}\left(g_{q^{j}}\right) .
$$

Consequently, for all $h \in \mathbb{Z}_{p}[x]$,

$$
S\left(h \circ g_{q^{t}}\right)=S\left(h \circ g_{q^{j}}\right)
$$

Remark 1. Lemma 3 shows that for all $h \in \mathbb{Z}_{p}[x], S\left(h \circ g_{q^{t}}\right)=S(h)$ for any positive integers t and prime q with $\operatorname{gcd}(q, p-1)=1$. In combination with Theorems 1 and 2 , if $\operatorname{gcd}(q, p-1)=1$ and $f=h \circ g_{q^{t}}$, where $\operatorname{deg}(h) \in\{2,3\}$, we can determine $S(f)$ as $S(h)$.

To make use of Lemma 3 in studying $S\left(\Phi_{n}\right)$, we present the following well-known cyclotomic identity.

Lemma 4. For any prime q and positive integer n divisible by $q, \Phi_{q n}=\Phi_{n} \circ g_{q}$.
The following theorem is an immediate consequence of Lemmas 3 and 4.
Theorem 4. Let q be a prime and let j satisfy $q^{j} \|(p-1)$. Then for any positive integer m not divisible by q and integer $t>j$,

$$
S\left(\Phi_{q^{t} m}\right)=S\left(\Phi_{q^{j+1} m}\right)
$$

4. Concluding Remarks

In their article, Gross, Harrington, and Minott gave the following conjecture.
Conjecture 1. Let $f(x)=a x^{3}+b x^{2} \in \mathbb{Z}_{p}[x]$. If $a \neq 0$, then

$$
S(f)= \begin{cases}\frac{2 b^{3}}{81 a^{2}} & \text { if } p \equiv 1(\bmod 6) \\ -\frac{2 b^{3}}{81 a^{2}} & \text { if } p \equiv 5(\bmod 6) .\end{cases}
$$

Theorem 2 of this paper proves Conjecture 1 and generalizes it to all cubic polynomials.

Although it would be nice to obtain a theorem analogous to Theorems 1 and 2 for quartic or higher degree polynomials, such a result seems beyond our reach. For instance, let $f_{c}(x)=x^{4}+c x^{2} \in \mathbb{Z}_{p}[x]$. In view of Theorems 1 and 2 , it is natural to conjecture that $S\left(f_{c}\right)$ is a polynomial of c. However, for selected primes p, when we apply the method of successive differences on the sequence $\left(S\left(f_{c}\right)\right)_{c=1}^{p-1}$, the resulting sequences do not become constant after several iterations, indicating that the conjecture fails.

In the following, we provide a conjecture related to $S\left(f_{c}\right)$.
Conjecture 2. Let $\mathcal{S}=\left\{S\left(f_{c}\right): c \in \mathbb{Z}_{p}\right\}$. If $p>5$, then

$$
\mathcal{S}= \begin{cases}\mathbb{Z}_{p} & \text { if } p \equiv 3(\bmod 4) \text { and }-1 \in \mathcal{S} \\ \mathfrak{R}\left(g_{2}\right) & \text { if } p \equiv 3(\bmod 4) \text { and }-1 \notin \mathcal{S}, \\ & \quad \text { or } p \equiv 1(\bmod 4) \text { and }-1 \in \mathcal{S} \\ \mathfrak{R}\left(g_{4}\right) & \text { if } p \equiv 5(\bmod 8) \text { and }-1 \notin \mathcal{S} \\ \mathfrak{R}\left(g_{2}\right) \backslash \mathfrak{R}\left(g_{4}\right) & \text { if } p \equiv 1(\bmod 8) \text { and }-1 \notin \mathcal{S} .\end{cases}
$$

Furthermore, $S\left(f_{8}\right)=1$ if $p \equiv 3(\bmod 4)$.
Theorem 5. Let $f(x)=\sum_{\ell=0}^{k} a_{\ell} x^{m_{\ell}} \in \mathbb{Z}_{p}[x]$, where $0<m_{0}<m_{1}<m_{2}<$ $\cdots<m_{k}$ and $a_{\ell} \neq 0$ for all $0 \leq \ell \leq k$. Let $\delta>1$ be a common factor of $\left\{m_{\ell}-m_{0}: 1 \leq \ell \leq k\right\}$ such that $\operatorname{gcd}\left(\delta, m_{0}\right)=1$ and $\delta \mid(p-1)$. Then $S(f)=0$.

Proof. Since $m_{0}>0, f(0)=0 \in \mathfrak{R}(f)$. Let α be a generator of \mathbb{Z}_{p}^{*}, and let $\omega=\alpha^{\frac{p-1}{\delta}}$. For each $0 \leq i \leq \frac{p-1}{\delta}-1$, let $\mathfrak{C}_{i}=\left\{f\left(\alpha^{i} \omega^{j}\right): 0 \leq j \leq \delta-1\right\}$. Note that

$$
\begin{aligned}
f\left(\alpha^{i} \omega^{j}\right) & =\alpha^{i m_{0}} \omega^{j m_{0}} \sum_{i=0}^{k} a_{\ell} \alpha^{i\left(m_{\ell}-m_{0}\right)} \omega^{j\left(m_{\ell}-m_{0}\right)} \\
& =\alpha^{i m_{0}} \omega^{j m_{0}} \sum_{i=0}^{k} a_{\ell} \alpha^{i\left(m_{\ell}-m_{0}\right)} \\
& =\omega^{j m_{0}} f\left(\alpha^{i}\right),
\end{aligned}
$$

since $\omega^{m_{\ell}-m_{0}}=\alpha^{\frac{p-1}{\delta}\left(m_{\ell}-m_{0}\right)}=1$. Together with the condition that $\operatorname{gcd}\left(\delta, m_{0}\right)=1$, it follows that for each $0 \leq i \leq \frac{p-1}{\delta}-1$, the elements of \mathfrak{C}_{i} are all distinct unless $f\left(\alpha^{i}\right)=0$, and the sum of the elements of \mathfrak{C}_{i} is

$$
\sum_{j=0}^{\delta-1} \omega^{j m_{0}} f\left(\alpha^{i}\right)=f\left(\alpha^{i}\right) \sum_{j=0}^{\delta-1} \omega^{j m_{0}}=f\left(\alpha^{i}\right) \sum_{j=0}^{\delta-1} \omega^{j}=0
$$

since $\delta-1>0$. Finally, since $\mathfrak{R}(f)=\{0\} \cup \bigcup_{i=0}^{\frac{p-1}{\delta}-1} \mathfrak{C}_{i}$, and \mathfrak{C}_{i} and $\mathfrak{C}_{i^{\prime}}$ are either equal or disjoint for any $0 \leq i<i^{\prime} \leq \frac{p-1}{\delta}-1$, we conclude that $S(f)=0$.

For example, if $p=71$, then it follows that $S\left(a_{3} x^{62}+a_{2} x^{42}+a_{1} x^{22}+a_{0} x^{2}\right)=0$ by taking $\delta=5$ in Theorem 5. By taking $\delta=3$, we have the following corollary.

Corollary 2. Let $f(x)=x^{4}+d x \in \mathbb{Z}_{p}[x]$. If $p \equiv 1(\bmod 3)$, then $S(f)=0$.
Proposition 1. Let $f_{d}(x)=x^{4}+d x \in \mathbb{Z}_{p}[x]$. If $p \equiv 2(\bmod 3)$, then $S\left(f_{d}\right)=$ $d^{\frac{4}{3}} S\left(f_{1}\right)$.

Proof. Note that if $p \equiv 2(\bmod 3)$, then $x \mapsto x^{3}$ forms a permutation on \mathbb{Z}_{p}. Hence, every element $d \in \mathbb{Z}_{p}$ has a unique cube root $d^{\frac{1}{3}} \in \mathbb{Z}_{p}$. If $d \in \mathbb{Z}_{p}^{*}$, then $x \mapsto d^{\frac{1}{3}} x$ induces a permutation on \mathbb{Z}_{p}, so

$$
\mathfrak{R}\left(f_{d}\right)=\left\{f_{d}\left(d^{\frac{1}{3}} x\right): x \in \mathbb{Z}_{p}\right\}=\left\{d^{\frac{4}{3}}\left(x^{4}+x\right): x \in \mathbb{Z}_{p}\right\}=\left\{d^{\frac{4}{3}} f_{1}(x): x \in \mathbb{Z}_{p}\right\}
$$

Furthermore, $x \mapsto d^{\frac{4}{3}} x$ also forms a permutation on \mathbb{Z}_{p}, so $\mathfrak{R}\left(f_{d}\right)=\left\{d^{\frac{4}{3}} y: y \in\right.$ $\left.\mathfrak{R}\left(f_{1}\right)\right\}$, implying that $S\left(f_{d}\right)=d^{\frac{4}{3}} S\left(f_{1}\right)$. Finally, if $d=0$, then by Theorem 3 , $S\left(f_{0}\right)=0$, which is equal to $0^{\frac{4}{3}} S\left(f_{1}\right)$.

Conjecture 3. Let $f(x)=x^{4}+c x^{2}+e \in \mathbb{Z}_{p}[x]$. Then

$$
S(f)= \begin{cases}\frac{-9 c^{2}+40 e}{64} & \text { if } p \equiv 1(\bmod 8) \text { and } c \text { is a quadratic residue in } \mathbb{Z}_{p} \\ \frac{-c^{2}+40 e}{64} & \text { if } p \equiv 1(\bmod 8) \text { and } c \text { is a quadratic nonresidue in } \mathbb{Z}_{p} \\ \frac{-7 c^{2}+56 e}{64} & \text { if } p \equiv 3(\bmod 8) \text { and } c \text { is a quadratic residue in } \mathbb{Z}_{p} \\ \frac{c^{2}-8 e}{64} & \text { if } p \equiv 3(\bmod 8) \text { and } c \text { is a quadratic nonresidue in } \mathbb{Z}_{p} \\ \frac{-c^{2}+8 e}{64} & \text { if } p \equiv 5(\bmod 8) \text { and } c \text { is a quadratic residue in } \mathbb{Z}_{p} \\ \frac{-9 c^{2}+72 e}{64} & \text { if } p \equiv 5(\bmod 8) \text { and } c \text { is a quadratic nonresidue in } \mathbb{Z}_{p} \\ \frac{c^{2}+24 e}{64} & \text { if } p \equiv 7(\bmod 8) \text { and } c \text { is a quadratic residue in } \mathbb{Z}_{p} \\ \frac{-7 c^{2}+24 e}{64} & \text { if } p \equiv 7(\bmod 8) \text { and } c \text { is a quadratic nonresidue in } \mathbb{Z}_{p} .\end{cases}
$$

References

[1] C. Gauss, Disquisitiones Arithmeticae, Lipsiae : In commissis apud Gerh. Fleischer, Jun., 1801.
[2] S. Gross, J. Harrington, and L. Minott, Sums of polynomial residues, Irish Math. Soc. Bull. 79 (2017), 31-37.
[3] R. D. von Sterneck, Über die Anzahl inkongruenter Werte, die eine ganze Funktion dritten Grades annimmt, Sitzungsber. Akad. Wiss. Wien (2A) 114 (1908), 711-717.
[4] O. Stetson, Triangular residues, Amer. Math. Monthly 11 (1904), 106-107.
[5] Z.-H. Sun, On the number of incongruent residues of $x^{4}+a x^{2}+b x$ modulo p, J. Number Theory 119 (2006), 210-241.

