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Abstract

If A and B are sets of integers, then a bijection f : A → B is called a coprime
mapping if a and f(a) are coprime for all a ∈ A. The existence of coprime mappings
between intervals of positive integers has been well studied. Here we extend this
study to coprime mappings between intervals of Gaussian integers on lines in the
complex plane. We give simple necessary and sufficient conditions that such a line L
must satisfy to guarantee that, for all n ∈ N, a coprime mapping exists between any
two contiguous intervals on L consisting of n Gaussian integers. For lines L where
these conditions are not met, we conjecture that there is a bound BL such that if
n > BL, then a coprime mapping exists between any two contiguous intervals of
length n on L, and find such bounds for certain infinite families of lines. Finally, we
consider coprime mappings on lines over other imaginary quadratic fields of class
number one, and generalize the necessary and sufficient conditions for the existence
of coprime mappings between contiguous intervals to these lines.

1. Introduction

Around 1960, D. J. Newman conjectured that if n is a positive integer and B is

an interval of length n that consists of positive integers, then a bijection f from
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[1, n] to B exists with the property that a and f(a) are coprime for all a ∈ [1, n]

(here the integer interval notation [a, b] denotes the set {k ∈ Z| a ≤ k ≤ b}).
Such a bijection is called a coprime mapping. In 1963, Daykin and Baines [3]

investigated the existence of coprime mappings between contiguous intervals, and

proved Newman’s conjecture in the special case where B = [n+ 1, 2n]. Pomerance

and Selfridge [9] proved Newman’s conjecture in its entirety in 1980. More recently,

Robertson and Small [10] extended their result and determined when a coprime

mapping exists from A = [1, n] or A = {1, 3, 5, . . . , 2n− 1} to a set of n integers in

arithmetic progression.

Note that in all the results mentioned above, the set A consists of either the first

n integers or the first n odd integers, so in particular 1 ∈ A in all cases. If 1 6∈ A,

then a coprime mapping may or may not exist from A to an interval B of the same

length, even if A and B are contiguous. The simplest example is that no coprime

mapping exists from A = {2, 3, 4} to B = {5, 6, 7} since 6 shares a common divisor

with every element in A. Very recently, Bohman and Peng [2] proved that if A is an

interval of length n ≥ 4 and n ∈ A, then a coprime mapping always exists from A

to the contiguous interval of length n, and thus resolved a conjecture of Larsen et

al. [5]. More generally, they consider non-contiguous intervals and show that there

is a positive constant C such that if n is sufficiently large, m > exp(C(log log n)2),

and A,B ⊂ [1, n] are intervals of length 2m, then there is a coprime mapping from

A to B. Recently, Pomerance [8] improved their result and showed that there is a

positive constant c such that the result holds for m > c(log n)2. In both cases, the

authors gave an application of their coprime mapping theorem to the lonely runner

conjecture.

We extend the study of coprime mapping from the rational integers on the real

line to the Gaussian integers on other lines in the complex plane. Following Gethner,

Wagon, and Wick [4], we call a line in the complex plane a Gaussian line if it

contains two, and hence infinitely many, Gaussian integers. Since the Gaussian

integers have the unique factorization property, we can ask when a coprime mapping

exists between two contiguous intervals of Gaussian integers on a Gaussian line. We

show that in some ways the situation is nicer for the Gaussian integers than for the

rational integers. In particular, there are infinitely many Gaussian lines for which

a coprime mapping exists between any two contiguous intervals of the same length

that consist of consecutive Gaussian integers on the line, so regardless where the

first interval starts or its length. We give easy to check necessary and sufficient

conditions that a Gaussian line must satisfy in order for this property to hold

(Theorem 5), then generalize this result to lines over other imaginary quadratic

fields whose integer rings have the unique factorization property (Theorem 11).

An outline of the paper and other results is as follows. In Section 2, we discuss

Gaussian lines. Many of the properties of the rational integers on the real line ex-

tend to the set of Gaussian integers on a Gaussian line, including the periodicity
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of divisibility, the Chinese remainder theorem, the existence of arbitrarily long se-

quences of composites, and the property of being a Pillai sequence (see [4, 6, 7]),

but in this section we just focus on the properties and notation used to extend ques-

tions about coprime mappings to Gaussian lines. All of the results in Section 2 are

proven in [6] and [7], but are included here for the convenience of the reader. Our

main theorem in Section 3 (Theorem 5) provides necessary and sufficient conditions

that a Gaussian line must satisfy in order for coprime mappings to exist between

any two contiguous intervals on L of length n, for all n ∈ N. For n ≥ 2, our proof

requires that between n and 2n there exists integers of the form 2t and 3r7spt,

where p = 11 or p = 17. The existence of such integers is also proven in Section 3.

In Section 4, we show that if the necessary and sufficient conditions are not met

for a Gaussian line L, then in certain cases there is a bound BL such that coprime

mappings exists between any two contiguous intervals on L of any length n > BL.

We conjecture that such a bound BL exists for all Gaussian lines L. Along the

way, we use the explicit upper and lower bounds given by Bennett et al. [1] for the

number of primes in a bounded arithmetic progression, to show that if n ≥ 13, then

there exists a prime p ≡ 3 (mod 4) such that n < p ≤ 1.5n. Finally, in Section 5, we

discuss extending this work to other imaginary quadratic fields whose integer rings

are unique factorization domains and provide the analogous necessary and sufficient

conditions for a coprime mapping to always exist between contiguous intervals on

lines in this more general setting.

2. Gaussian Lines

In this section, we provide the definitions and results involving Gaussian lines that

we use to extend questions about coprime mappings to these lines. These results

are included for the convenience of the reader and are stated without proof (see [6]

and [7] for the proofs).

We begin with notation involving the Gaussian integers Z[i]. The unit group of

the Gaussian integers is {±1,±i}, so two Gaussian integers, α and β, are associates

if and only if α = ±β or α = ±iβ. The norm of the Gaussian integer α = x + iy

is defined by N(α) = α · α = x2 + y2 ∈ Z, where the “bar” denotes complex

conjugation. The ring Z[i] is a unique factorization domain, and this gives the

Gaussian integers a well-defined notion of primality. To avoid confusion, we use

the terminology rational prime for a prime in the rational integers Z, and Gaussian

prime for a prime in Z[i]. Recall that the Gaussian primes can be classified in terms

of the factorization of the rational primes p as follows:

1. If p = 2, then p ramifies in Z[i]. Specifically, 2 = −i(1 + i)2, so 1 + i is a

Gaussian prime of norm 2.
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2. If p ≡ 1 (mod 4), then p = πp·πp splits as a product of two conjugate Gaussian

primes of norm p that are not associates in Z[i].

3. If p ≡ 3 (mod 4), then p is inert in Z[i] and has norm p2.

Every Gaussian prime is an associate of one of the Gaussian primes described above.

If π is a Gaussian prime then we say π lies over p if π divides the rational prime p,

in which case we often write πp for π.

Turning to Gaussian lines, we first recall from [7] that a Gaussian line L can be

uniquely defined by two Gaussian integers, α0 = a + bi and δ = c + di, as follows.

Let α0 be the Gaussian integer on L of minimum norm, and if there are two such

integers, let α0 be the one with the larger real part. If L is vertical, then take δ = i.

Otherwise, let α1 be the Gaussian integer on L closest to α0 (so N(α1 − α0) is

minimal) and with Re(α1) > Re(α0). In this case, take δ = α1−α0 = c+di. Then,

c and d are coprime (by the choice of α1) and c ≥ 0. Note that α0 is on the line

L, but δ is not, provided α0 6= 0. Moreover, the Gaussian integers on L are exactly

the Gaussian integers

αk = α0 + δk,

where k ∈ Z (see [7, Lemma 1]). Although we use the terminology of a line, we

are essentially interested in the arithmetic progression α0, α1, α2, . . . of Gaussian

integers with common difference δ.

Gaussian lines provide a way of thinking about contiguous intervals of Gaussian

integers and of studying coprime mappings on these intervals. Certainly, if all

the Gaussian integers on the line share a common Gaussian prime divisor, then

a coprime mapping does not exist between any pair of intervals on the line. We

call a Gaussian line primitive if it contains two coprime Gaussian integers, which

happens if and only if α0 and δ are coprime in Z[i]. Thus, we are interested in

the existence of coprime mappings on contiguous intervals of Gaussian integers on

primitive Gaussian lines.

From now on, assume that L is a primitive Gaussian line with α0 and δ defined

as above. We also define a rational integer ∆ associated to L by

∆ = ad− bc.

Then, ∆ = 0 if and only if L is the real line Im(z) = 0 or the imaginary line

Re(z) = 0, which holds if and only if α0 = 0 (see [7, Lemma 2]). Note that ∆ can

be obtained from any Gaussian integer on L, not just from α0. Namely, if α = x+yi

is a Gaussian integer on L, then α = α0 + nδ for some n ∈ Z. Thus, x = a + nc

and y = b+ nd, and so xd− yc = ad− bc = ∆.

Together, ∆ and δ enable us to easily determine if a given Gaussian prime divides

some Gaussian integer on L. Define the prime set of L, denoted P(L), to be the set

of Gaussian primes that divide some Gaussian integer on L. The following theorem
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provides a simple test for whether a rational or non-rational Gaussian prime occurs

in P(L).

Theorem 1 ([7, Theorems 4 and 5]). Let L be a primitive Gaussian line.

(a) If p ∈ Z is a rational prime, then p ∈ P(L) if and only if p | ∆.

(b) If π ∈ Z[i] is a non-rational Gaussian prime, then π ∈ P(L) if and only if

π - δ.

Notice that if L is not the real or imaginary line (so ∆ 6= 0), then it follows

from Theorem 1 that there are only finitely many rational primes p that divide

some Gaussian integer on L. It also follows that the prime set P(L) contains at

least one Gaussian prime lying over p for every rational prime p ≡ 1 (mod 4) since

no rational integer divides δ = c + di (otherwise c and d would not be coprime as

required). Specifically, for every rational prime p ≡ 1 (mod 4), if p does not divide

N(δ), then P(L) contains exactly two non-associate Gaussian primes lying over p,

and if p divides N(δ) then it contains exactly one such prime. Both of these facts

are important in our later work and serve to distinguish the set of Gaussian integers

on a Gaussian line from set of rational integers on the real line.

The set of Gaussian integers on a primitive Gaussian line shares several properties

with the set of rational integers on the real line (see [4, 6, 7]). The two main

shared properties important here are the periodicity of divisibility and the Chinese

remainder theorem. The Gaussian line analogies to these two theorems are stated

below. Note, however, that the theorems below are really special cases of the

theorems in [7] since here they are stated in terms of Gaussian prime divisors rather

than in terms of all Gaussian integer divisors.

Theorem 2 ([7, Theorem 3]). Let L be a primitive Gaussian line and πp be a Gaus-

sian prime that lies over the rational prime p. Suppose πp divides some Gaussian

integer αt on L. Then πp also divides the Gaussian integer αk on L if and only if

k ≡ t (mod p).

Theorem 3 ([7, Theorem 8]). Let L be a primitive Gaussian line. Also, let

b1, b2, . . . , bk be rational integers (not necessarily distinct) and πp1 , πp2 , . . . , πpk be

Gaussian primes in the prime set P(L) of L that lie over distinct rational primes

p1, p2, . . . , pk, respectively. Then there is a unique rational integer t modulo the

product p1p2 · · · pk such that

πp1 | αt+b1 , πp2 | αt+b2 , . . . , πpk | αt+bk .

Another useful theorem says that if you want a Gaussian line such that certain

Gaussian primes divide specified elements on the line and certain Gaussian primes

do not divide any elements on the line, then you are in luck — there are infinitely

many such lines as long as your desired requirements don’t violate the periodicity

of divisibility described in Theorem 2.
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Theorem 4 ([6, Theorem 4]). Let k,m ∈ Z, with 1 ≤ k ≤ m. Also, let b1, b2, . . . , bk
be rational integers (not necessarily distinct) and πp1 , πp2 , . . . , πpm be Gaussian

primes that lie over distinct rational primes p1, p2, . . . , pm, respectively. Then there

are infinitely many primitive Gaussian lines L that satisfy both of the following

properties:

(a) πj divides αbj on L for 1 ≤ j ≤ k;

(b) πj 6∈ P(L) for k < j ≤ m.

We will use this theorem, along with the definitions and other results in this section,

in our study of coprime mappings on Gaussian lines.

3. Coprime Mappings between Contiguous Intervals

The main theorem in this section (Theorem 5) provides necessary and sufficient

conditions that a Gaussian line must satisfy in order for a coprime mapping to exist

between any two contiguous intervals of the same length that consist of Gaussian

integers on the line. The idea is that a primitive Gaussian line will have this property

if certain small Gaussian prime divisors are not in the prime set of the line.

We begin with three preliminary lemmas about the existence of powers of small

primes between n and 2n for n ≥ 2. These lemmas are used to construct the coprime

mappings used to prove Theorem 5.

Lemma 1. Let n ≥ 2 be an integer. Then there exists a positive integer x such

that n ≤ 2x < 2n.

Proof. Let n ≥ 2. Then 2m < n ≤ 2m+1 for some m ∈ Z. Multiplication by 2 gives

n ≤ 2m+1 < 2n, so we may take x = m+ 1.

Lemma 2. Let n ≥ 2, n 6= 10, be an integer. Then there exists non-negative

integers x and y such that n ≤ 3x7y < 2n.

Proof. The lemma does not hold for n = 10, but one can easily verify that it holds

for 2 ≤ n ≤ 27, n 6= 10. Thus, let n ≥ 28 and m = 3s7t be the largest integer of this

form that is strictly smaller than n. If t = 0, then m = 3s and s ≥ 3 since n ≥ 28.

Thus, m < 3s−372 < 2m since 1 < 49/27 < 2, so we may take x = s− 3 and y = 0

in this case. Similarly, if t > 0, then m < 3s+27t−1 < 2m since 1 < 9/7 < 2, so

we may take x = s + 2 and y = t − 1 in this case. Then we have m < 3x7y < 2m

in both cases. In addition, we have n ≤ 3x7y since m < 3x7y and m = 3s7t is the

largest integer of this form that is strictly less than n. Thus,

n ≤ 3x7y < 2m < 2n,

as needed.
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Notice that when n = 10, we have n ≤ p < 2n for p = 11, 19. Thus, the next

lemma is immediate.

Lemma 3. Let n ≥ 2 be an integer and p = 11 or 19. Then there exist non-negative

integers x, y, and z such that n ≤ 3x7ypz < 2n.

We are now ready to give necessary and sufficient conditions for a coprime map-

ping to exist between any two contiguous intervals of Gaussian integers on a prim-

itive Gaussian line L. The main idea is that such a mapping will always exist if

there are some small Gaussian primes that are not in the prime set of the line. By

Theorem 1, this condition can be stated in terms of the divisors of δ and ∆. We give

both formulations below. For k, s ∈ Z, k < s, we extend the rational integer inter-

val notation and use the notation [αk, αs] to denote the interval {αk, αk+1, . . . , αs}
of Gaussian integers on L, and simply call it an interval on L. In particular, for

n ∈ N, the intervals [αk, αk+n−1] and [αk+n, αk+2n−1] both have length n and are

contiguous.

Theorem 5. Let L be a primitive Gaussian line and P(L) be its prime set. Then

a coprime mapping

f : [αk, αk+n−1]→ [αk+n, αk+2n−1] (1)

exists for all k ∈ Z and all n ∈ N if and only if at least one of the following three

conditions holds:

1. the Gaussian prime 1 + i is not in P(L) (i.e., 1 + i divides δ);

2. none of 3, 7, or 11 are in P(L) (i.e., ∆ is not divisible by 3, 7, or 11);

3. none of 3, 7, or 19 are in P(L) (i.e., ∆ is not divisible by 3, 7, or 19).

Proof. Let L be a primitive Gaussian line and k ∈ Z. We first suppose that one

of the three conditions in the theorem holds and use strong induction to show that

a coprime mapping f as in (1) exists for all n ∈ N. The key is that if αs and αt
are Gaussian integers on L, then by Theorem 2 the only possible common Gaussian

prime divisors of αs and αt lie over rational primes that divide t − s. Thus, we

construct f such that if f(αs) = αt, then t− s is only divisible by Gaussian primes

not in P(L).

First suppose 1+ i 6∈ P(L). Then P(L) does not contain a prime of norm 2, so αs
and αt are coprime over Z[i] whenever t−s is a power of 2. Let n ∈ N. If n = 1, then

a coprime mapping f as in (1) exists since any two consecutive Gaussian integers

on L are coprime by Theorem 2. Suppose such a coprime mapping f exists for all

1 ≤ n < m, for some integer m ≥ 2. Consider n = m. By Lemma 1, there is an

integer x such that m ≤ 2x < 2m. Define f on the interval [αk, αk+2m−2x−1] to

[αk+2x , αk+2m−1] by

f(αj) = αj+2x , k ≤ j ≤ k + 2m− 2x − 1.
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If m = 2x then we have defined a coprime mapping f as in (1) as needed. Otherwise,

it remains to show we can define f from [αk+2m−2x , αk+m−1] to [αk+m, αk+2x−1].

Such a coprime mapping exists by our induction hypothesis since these intervals

are contiguous and have length 2x −m, which is smaller than m. Thus, a coprime

mapping f as in (1) exists for n = m, and by induction for all n ∈ N.

Now suppose 3, 7, p 6∈ P(L), where p = 11 or 19. Follow the strong induction

proof above with Lemma 3 instead of Lemma 1 to show a coprime mapping f as

in (1) exists for all n ∈ N. The only difference here is that for n = m we we get

non-negative integers x, y, and z such that m ≤ 3x7ypz < 2m. Then f is defined

from [αk, αk+2m−3x7ypz−1] to [αk+3x7ypz , αk+2m−1] by

f(αj) = αj+3x7ypz , k ≤ j ≤ k + 2m− 3x7ypz − 1,

and on [αk+2m−3x7ypz−1, αk+m−1] to the contiguous interval [αk+m−1, αk+3x7ypz−1]

by the induction hypothesis. Again this is a coprime mapping since for all j, the

only possible common Gaussian prime divisors of αj and αj+3x7ypz are 3, 7, or p,

none of which are in P(L). Thus, a comprime mapping f as in (1) exists when

n = m, and by induction it exists for all n ∈ N.

For the converse, we must show that if none of the three conditions in the theorem

is satisfied, then there is a k ∈ Z and an n ∈ N such that no coprime mapping f as

in (1) exists. This is divided into three cases. In each case, we give one value of n

and infinitely many k ∈ Z for which a coprime mapping f as in (1) does not exist.

Case 1: Suppose 1 + i, 3 ∈ P(L). By Theorem 3, there is a j ∈ Z such that 1 + i

and 3 both divide αj . Thus, let n = 2 and take any k ≡ j (mod 6). No coprime

mapping exists between [αk, αk+1] and [αk+2, αk+3] since, by Theorem 2, 1 + i is a

common divisor of αk and αk+2, and 3 is a common divisor of αk and αk+3.

Case 2: Suppose 1 + i, 7 ∈ P(L). Since 5 is split in Z[i], we also have π5 ∈ P(L),

for some Gaussian prime π5 lying over 5 (see the remark following Theorem 1). By

Theorem 3, there is a j ∈ Z such that 1 + i, π5, and 7 all divide αj . Thus, let n = 4

and take any k ≡ j (mod 70). No coprime mapping exists between [αk, αk+3] and

[αk+4, αk+7] since again αk shares a common Gaussian prime divisor with every

element of [αk+4, αk+7]. Indeed, by Theorem 2, 1 + i divides αk, αk+4, and αk+6;

π5 divides αk and αk+5; and 7 divides αk and αk+7.

Case 3: Suppose 1 + i, 11, 19 ∈ P(L). We also have π5, π13, π17 ∈ P(L), for some

Gaussian primes lying over 5, 13, and 17, respectively. By Theorem 3, there is a

j ∈ Z such that 1 + i, π5, 11, π13, π17, and 19 all divide αj . Thus, let n = 10

and take any k ≡ j (mod 461,890), since 461,890 = 2 · 5 · 11 · 13 · 17 · 19. Then no

coprime mapping exists from [αk, αk+9] to [αk+10, αk+19] since αk shares a common

Gaussian prime divisor with every element of [αk+10, αk+19] by the same argument

as in Case 2.

It follows from Theorem 5, for example, that if L is a primitive Gaussian line
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with ∆ = 1 or such that ∆ is only divisible by primes p ≡ 1 (mod 4), then a coprime

mapping exists between any two contiguous intervals on L of the same length. In

both cases the prime set P(L) of L does not contain any primes p ≡ 3 (mod 4),

so the last two conditions of Theorem 5 are both satisfied. By contrast, the next

theorem shows that if P(L) contains 1+i and every prime p ≡ 3 (mod 4), p ≤ m, for

some m ∈ N, then for all 1 < n < m, there are infinitely many contiguous intervals

on L of length n such that no coprime mapping exists between the two intervals.

Theorem 6. Let m be a positive integer. There are infinitely many Gaussian lines

L with the property that for every integer n with 1 < n < m, there are infinitely

many integers k such that no coprime mapping

f : [αk, αk+n−1]→ [αk+n, αk+2n−1] (2)

exists. In particular, no such coprime mapping exists for infinitely many values of

k if P(L) contains 1 + i and every prime p ≡ 3 (mod 4), p ≤ m.

Proof. Let m be a positive integer. By Theorem 4, there are infinitely many

primitive Gaussian lines whose prime set P(L) contains 1 + i and every prime

p ≡ 3 (mod 4), p ≤ m. Let L be one of these lines. Then, by the remark following

Theorem 1, P(L) contains a Gaussian prime πp lying over p for every rational prime

p ≤ m. By Theorem 3, there are infinitely many integers t such that πp divides the

Gaussian integer αt on L for all p ≤ m.

Let n ∈ Z satisfy 1 < n < m. The interval At,n = [αt−(n−2), αt+1] consists of n

consecutive Gaussian integers on L, including αt. The contiguous interval of length

n on L is Bt,n = [αt+2, αt+n+1]. No coprime mapping from At,n to Bt,n exists since

αt shares a common Gaussian prime divisor with every element of Bt,n. Indeed, for

all 2 ≤ j ≤ n + 1 there is a rational prime p ≤ m that divides j, so the Gaussian

prime πp is a common divisor of αt and αt + j by Theorem 2. Thus, we may take

k = t− (n− 2) in (2) for each of the infinitely many possible t.

4. Coprime Mappings between Long Intervals

In the previous section, we gave necessary and sufficient conditions that a Gaussian

line L must satisfy in order for a coprime mapping to exist between any two con-

tiguous intervals on L of the same length. For lines where these conditions are not

satisfied (e.g., the lines described in Theorem 6), it is natural to ask if there is a

bound BL such that a coprime mapping exists between any two contiguous intervals

on L of length n ≥ BL. We investigate this question in this section. We prove that

if all the primes p ≡ 3 (mod 4) in the prime set of L are smaller than 100, then

such a bound BL exists and we may take BL = 102. Our proof uses the explicit

bounds given by Bennett et al. [1] for the number of primes occurring in bounded
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arithmetic progressions to show that for every integer n ≥ 13, there exists a prime

p ≡ 3 (mod 4) that satisfies n < p ≤ 1.5n. It is plausible that such a bound BL
similarly exists for all Gaussian lines.

Let L be a primitive Gaussian line different from the real or imaginary line (so

∆ 6= 0). By Theorem 1, there are only finitely rational primes p ≡ 3 (mod 4) in the

prime set P(L) of L. That is, there are only finitely many inert prime in P(L). We

first observe that if p is an inert prime and p 6∈ P(L), then for any k ∈ Z a coprime

mapping

f : [αk, αk+n−1]→ [αk+n, αk+2n−1] (3)

exists if n = p or n = p − 1. Indeed, if n = p, then f defined by f(αj) = αj+p,

k ≤ j ≤ k + n − 1, is a coprime mapping since, by Theorem 2, the only possible

common prime divisor of αj and αj+p is p and p 6∈ P(L). Similarly, if n = p−1, then

f defined by f(αj) = αj+p, k ≤ j ≤ k + n − 2 and f(αk+n−1) = αk+n is coprime

since any two consecutive Gaussian integers on a Gaussian line are coprime.

To construct a coprime mapping as in (3) for other values of n, we would similarly

like to send each αj , k ≤ j ≤ n− 1, to αj+p for some inert prime p 6∈ P(L), perhaps

with different primes p used for different values of j. Our next lemma clarifies this

strategy.

Lemma 4. Let L be a primitive Gaussian line and n be a positive integer. If there

is a bijection

g : {0, 1, . . . , n− 1} → {n, n+ 1, . . . , 2n− 1}

such that for all j ∈ {0, 1, . . . , n − 1}, every prime divisor p of g(j) − j satisfies

p ≡ 3 (mod 4) and p 6∈ P(L), then a coprime mapping exists between any two

contiguous intervals on L of length n.

Proof. Let k ∈ Z. Suppose there is a bijection g as described in the lemma. Then

f : [αk, αk+n−1]→ [αk+n, αk+2n−1]

defined by

f(αk+j) = αk+g(j), 1 ≤ j ≤ n− 1,

is a coprime mapping by Theorem 2.

To construct coprime mappings between long contiguous intervals on a Gaussian

line L, we want a sufficient number of primes p ≡ 3 (mod 4) not in P(L) so that the

bijections as in Lemma 4 exist. It is helpful to use the following theorem, which is

a consequence of the work of Bennett et al. [1].

Theorem 7. If n ≥ 13, then there exists a prime p ≡ 3 (mod 4) such that

n < p ≤ 1.5n.
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Proof. We wrote a program in Python to verify the theorem for 13 ≤ n ≤ 800. So

assume n > 800. Let π(x; 4, 3) denote the number of primes less than or equal to x

that are congruent to 3 modulo 4. It immediately follows from Corollary 1.6 in [1]

that

π(1.5n; 4, 3)− π(n; 4, 3) >
1.5n

2 ln(1.5n)
− n

2 ln(n)

(
1 +

5

2 ln(n)

)
,

where ϕ is Euler’s totient function. Note that ln(1.5n) = ln(1.5)+ln(n) < 1.07 ln(n),

since ln(1.5)/(0.07) < ln(800) ≤ ln(n) for all n ≥ 800. Thus, for all n ≥ 800, we

have

π(1.5n; 4, 3)− π(n; 4, 3) >
n

2

(
1.5

1.07 ln(n)
− 1

ln(n)

(
1 +

5

2 ln(800)

))
>

n(1.40− 1.38)

2 ln(n)

> 0.

Since the difference π(1.5n; 4, 3)−π(n; 4, 3) is an integer, it follows that there must

be at least one prime p ≡ 3 (mod 4) with n < p ≤ 1.5n.

We now use the strategy for constructing coprime mapping given in Lemma 4,

together with Theorem 7 and induction, to prove that for certain families of lines

where the conditions of Theorem 5 are not met, coprime mappings still exist between

all sufficiently long contiguous intervals on these lines. To fix ideas, we first consider

all Gaussian lines L for which all the primes p ≡ 3 (mod 4) in P(L) are smaller than

10. Then, we extend the analysis to lines for which all the primes p ≡ 3 (mod 4)

in P(L) are smaller than 100. In both cases, we let BL = q − 1, where q is the

smallest prime larger than 10 (or 100) that is congruent to 3 modulo 4, and prove

that a coprime mapping exists between any two contiguous intervals on L of length

n ≥ BL.

Theorem 8. Let L be a primitive Gaussian line such that every prime p ≡ 3 (mod 4)

in P(L) is smaller than 10. If n ≥ 10, then a coprime mapping exists between any

two contiguous intervals on L of length n.

Proof. Let L be a primitive Gaussian line such that every prime p ≡ 3 (mod 4) in

P(L) is smaller than 10. Let k ∈ Z. To prove Theorem 8, it follows from Lemma 4

that it is sufficient to show that for all n ≥ 10, there is a bijection

g : {0, 1, . . . , n− 1} → {n, n+ 1, . . . , 2n− 1} (4)

such that for all j ∈ {0, 1, . . . , n − 1}, every prime divisor p of g(j) − j satisfies

p ≡ 3 (mod 4) and p > 10. We use complete induction to prove such a bijection g

exists for all n ≥ 10. An example of such a bijection for the base cases 10 ≤ n ≤ 15

is given in Table 1.
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n g : {0, 1, . . . , n− 1} → {n, n+ 1, . . . , 2n− 1}

10 g(j) =

{
j + 11, if 0 ≤ j ≤ 8;

10, if j = 9.

11 g(j) = j + 11 for all 0 ≤ j ≤ 10.

12 g(j) =

{
23, if j = 0;

j + 11, if 1 ≤ j ≤ 11.

13 g(j) =


j + 23, if 0 ≤ j ≤ 2;

j + 11, if 3 ≤ j ≤ 11;

13, if j = 12.

14 g(j) =


j + 19, if j = 0 or j = 8;

j + 23, if 1 ≤ j ≤ 3;

j + 11, if 4 ≤ j ≤ 7 or 9 ≤ j ≤ 12;

14, if j = 13.

15 g(j) =


j + 19, if 0 ≤ j ≤ 2 or 8 ≤ j ≤ 10;

26, if j = 3;

j + 11, if 4 ≤ j ≤ 7 or 11 ≤ j ≤ 14.

Table 1. Bijections for the base cases.

Now, suppose that a bijection g as in (4) exists for all 10 ≤ n < N for some

integer N ≥ 16. This is our induction hypothesis. Consider n = N . We first claim

that there is a prime q ≡ 3 (mod 4) such that N + 10 ≤ q < 2N . Indeed, for

16 ≤ N ≤ 21, take q = 31; for 22 ≤ N ≤ 32, take q = 43; and for N > 32, take

q ≡ 3 (mod 4) such that N + 10 ≤ q ≤ 1.5(N + 10) < 2N , which is guaranteed to

exist by Theorem 7. Since 10 ≤ q−N < N , it follows from our induction hypothesis

that there is a bijection

h : {0, 1, . . . , q −N − 1} → {q −N, q −N + 1, . . . , 2(q −N)− 1}

such that for all j ∈ {0, 1, . . . , q−N − 1}, every prime divisor p of h(j)− j satisfies

p ≡ 3 (mod 4) and p > 10. Define a bijection

g : {0, 1, . . . , N − 1} → {N,N + 1, . . . , 2N − 1}

by

g(j) =

{
j + q, if 0 ≤ j ≤ 2N − q − 1;

h(j − 2N + q), if 2N − q ≤ j ≤ N − 1.

Then, for all j ∈ {0, 1, . . . , N−1}, if p is a prime divisor of g(j)−j then p ≡ 3 (mod 4)

and p > 10, since h has this property and the prime q ≡ 3 (mod 4) was chosen so

that q > 10. Thus, the bijection g in (4) exists for n = N , and by induction, it

exists for all n ≥ 10.
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One can follow the proof of Theorem 8 to prove that a bound BL similarly exists

for other Gaussian lines L, but it is tedious to explicitly provide the bijections

g in the base cases (as in Table 1) if the prime set of L contains large primes

p ≡ 3 (mod 4). Instead, for such Gaussian lines we use determinants to simply

show the bijections exist in the base cases. Namely, let n ∈ N and L be a primitive

Gaussian line. Also, let q ≡ 3 (mod 4) be an inert prime that is larger than

every inert prime in P(L). Then a rational prime p is not in the prime set of L

if p ≡ 3 (mod 4) and p ≥ q. Thus, to show a bijection g as in Lemma 4 exists,

it is sufficient to show a permutation σ of {1, 2, . . . , n} exists with the property

that for all j ∈ {1, 2, . . . , n}, there is a prime p ≡ 3 (mod 4), p ≥ q, such that

σ(j)− j + n = p. Define an n× n matrix Mn = [mj k] by

mj k =

{
1, if k − j + n = p for some prime p ≡ 3 (mod 4), p ≥ q;
0, otherwise.

(5)

By the definition of determinant, the determinant of Mn is

det(Mn) =
∑
σ

sgn(σ)

n∏
j=1

mj σ(j),

where the summation is taken over all permutations σ of {1, 2, . . . , n}. Recall that

the sign sgn(σ) is equal to ±1 depending on whether σ is an even or odd permuta-

tion. Thus, if det(Mn) is nonzero, then there must be a permutation σ such that

the product
∏n
j=1mj σ(j) is nonzero, that is, all of the terms mj σ(j) are nonzero.

Therefore, if det(Mn) is nonzero, then there exists a permutation σ of {1, 2, . . . , n}
such that for all j ∈ {1, 2, . . . , n}, there is a prime p ≡ 3 (mod 4), p ≥ q, such

that σ(j) − j + n = p. Notice this only gives us a sufficient condition for such a

permutation σ to exist, not a necessary one. It is possible that there there are a

lot of permutations σ with the desired property, but an equal number of them are

even as are odd, leaving det(Mn) = 0. Putting this together with Lemma 4 gives

the following result.

Lemma 5. Let L be a primitive Gaussian line and n be a positive integer. If

det(Mn) 6= 0, then a coprime mapping exists between any two contiguous intervals

on L of length n.

For a given Gaussian line L, it is computationally easy to construct Mn (choose q

larger than all primes p ≡ 3 (mod 4) that divide ∆) and to compute its determinant.

Thus, for a positive integer n, Lemma 5 provides a simple method for establishing

the existence of a coprime mapping between any two contiguous intervals on L of

length n. We used this method to prove that we may take BL = 102 in the special

case where every prime p ≡ 3 (mod 4) in P(L) is smaller than 100.
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Theorem 9. Let L be a primitive Gaussian line such that every prime p ≡ 3 (mod 4)

in P(L) is smaller than 100. If n ≥ 102, then a coprime mapping exists between

any two contiguous intervals on L of length n.

Proof. Let L be a primitive Gaussian line such that every prime p ≡ 3 (mod 4) in

P(L) is smaller than 100. We use strong induction to prove the theorem for every

n ≥ 102. First consider the base cases 102 ≤ n ≤ 112. For each n, take q = 103 and

let Mn be the n×n matrix defined in (5). We used Python to compute det(Mn) for

102 ≤ n ≤ 112, and saw that it was nonzero in every case. It follows from Lemma 5

that a coprime mapping exists between any two contiguous intervals on L of length

n for 102 ≤ n ≤ 112.

Now, suppose that the desired coprime mapping exists whenever 102 ≤ n < N for

some N ≥ 112. Consider n = N . We first claim that there is a prime q ≡ 3 (mod 4)

such that

N + 102 ≤ q < 2N.

Indeed, if 112 ≤ N ≤ 306, then we may take q as follows:

q =



223, if 112 ≤ N ≤ 121;

239, if 122 ≤ N ≤ 137;

271, if 138 ≤ N ≤ 169;

331, if 170 ≤ N ≤ 229;

443, if 230 ≤ N ≤ 306.

If N > 306, then take q ≡ 3 (mod 4) such that N + 102 ≤ q ≤ 1.5(N + 102) < 2N ,

which is guaranteed to exist by Theorem 7.

Now, let [αk, αk+N−1] and [αk+N , αk+2N−1] be two arbitrary contiguous intervals

of length N on L. Since 102 ≤ q−N < N , it follows from the induction hypothesis

that there is a coprime mapping h from the interval [αk+2N−q, αk+N−1] of length

q −N to the interval [αk+N , αk+q−1]. Thus, we can define a coprime mapping

f : [αk, αk+N−1]→ [αk+N , αk+2N−1]

by

f(αj) =

{
j + q, if k ≤ j ≤ k + 2N − q − 1;

h(αj), if k + 2N − q ≤ j ≤ k +N − 1.

Therefore, a coprime mapping exists between any two contiguous intervals on L of

length N , and by induction, one exists between any two contiguous intervals on L

of length n ≥ 102.

The bound of 102 in Theorem 9 is best possible in some cases, but certainly not

all. For instance, by Theorem 5, there are infinitely many lines for which such a

coprime mapping exists for all n ≥ 1. To see that the bound of 102 can be best
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possible, consider a Gaussian line L with the property that 1 + i and every prime

p ≡ 3 (mod 4), p < 100, is in the prime set of L. There are infinitely many such

lines by Theorem 4. Recall that the prime set of L will also contain at least one

Gaussian prime lying over q for every rational prime q ≡ 1 (mod 4). It follows

from Theorem 3 that there is a k ∈ Z such that the Gaussian integer αk on L

is divisible by 1 + i, every rational prime p ≡ 3 (mod 4) with p < 100, and one

Gaussian prime πq for every rational prime q ≡ 1 (mod 4) with q < 102. Then,

for every 1 < n < 102, a coprime mapping does not exist from [αk, αk+n−1] to the

contiguous interval [αk+n, αk+2n−1] since αk shares a common divisor with every

Gaussian integer in [αk+n, αk+2n−1] by Theorem 2.

Notice that using induction to extend Theorem 9 to cover lines L where larger

inert primes p ≡ 3 (mod 4) are in P(L) would only require consideration of more

base cases. Thus, we are led to make the following conjecture.

Conjecture 1. Let L be a primitive Gaussian line and q ≡ 3 (mod 4) be an inert

prime that is larger than every inert prime in P(L). If n ≥ q − 1, then a coprime

mapping

f : [αk, αk+n−1]→ [αk+n, αk+2n−1]

exists for all k ∈ Z.

We end this section with an example of our main theorems. Consider the infinite

family of Gaussian lines that are parallel to the real line. A line L is in this family

if and only if δ = 1 and α0 = bi for some b ∈ Z, in which case we have 1 + i ∈ P(L)

and ∆ = b. It follows from Theorem 5, that a coprime mapping exists between any

two contiguous intervals on L of the same length unless either 3 or 7 divides b, or

both 11 and 19 divide b. If this divisibility condition on b is satisfied, but all primes

p ≡ 3 (mod 4) that divide b are smaller than 100, then it follows from Theorem 9

that a coprime mapping exists between any two contiguous intervals on L of length

n ≥ 102. If the divisibility condition is satisfied and b also has a prime divisor

p ≡ 3 (mod 4) that is larger than 100, then we conjecture that if q ≡ 3 (mod 4)

is a prime that is larger than b, then for all n ≥ q − 1, a coprime mapping exists

between any two contiguous intervals on L of length n.

5. Coprime Mappings on Lines in Imaginary Quadratic Fields

In this section, we consider coprime mappings on lines in the other imaginary

quadratic fields with class number one. Many of the theorems about Gaussian

lines easily extend to these fields. Let K be one of the nine imaginary quadratic

fields with class number one and L be a line in the complex plane that contains

infinitely many algebraic integers in K. We discuss the prime set of L and provide

necessary and sufficient conditions that L must satisfy to guarantee that a coprime
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mapping exists between any two contiguous intervals on L of the same length. Thus,

Theorem 5 generalizes to these fields. The details follow the Gaussian case and are

largely left to the reader.

Let K be an imaginary quadratic field with class number one, and let OK be its

ring of integers. We call a line L in the complex plane an OK-line if it contains two,

and hence infinitely many, elements in OK . We can extend the definitions of α0,

δ, αk (k ∈ Z), ∆, primitive, and prime set from Gaussian lines to OK-lines since

OK is a unique factorization domain. Similarly, the theorems and proofs for OK-

lines follow those given for Gaussian lines with the primes congruent to 3 modulo 4

replaced by inert primes, the primes congruent to 1 modulo 4 replaced by split

primes, and the prime lying over 2 replaced by ramified primes. In particular, we

have the following theorem.

Theorem 10. Let L be a primitive OK-line with prime set P(L). Let p be a rational

prime.

(a) If p is inert in K, then p ∈ P(L) if and only if p divides ∆.

(b) If p is split or ramified in K and πp ∈ OK is a prime that lies over p, then

πp ∈ P(L) if and only if πp does not divide δ.

Let L be a primitive OK-line. Then considering split, inert, and ramified primes

in K, the proof of Theorem 5 generalizes to give necessary and sufficient conditions

for a coprime mapping to exist between any two contiguous intervals on L of the

same length. If p splits in K, then the prime set P(L) of L contains at least one

prime lying over p. The existence of a coprime mapping between any two contiguous

intervals on L of the same length is determined by whether or not certain small non-

split primes are in P(L). The proof requires a lemma that is a companion to those

given in Section 3 since different small primes can be inert in this more general

setting.

Lemma 6. Let n ≥ 2 be an integer. Then there exist non-negative integers x and

y such that

n ≤ 3x5y < 2n.

Proof. Let n ≥ 2 and m = 3s5t be the largest integer of this form that is strictly less

than n. First we show that there are integers x and y such that m < 3x5y < 2m.

Indeed, if t = 0 then m = 3s for some s ≥ 1. Thus, m < 3s−15 < 2m since

1 < 5/3 < 2. Similarly, if t > 0, then m < 3s+25t−1 < 2m since 1 < 9/5 < 2.

Moreover, we must have n ≤ 3x5y since m < 3x5y and m = 3s5t is the largest

integer of this form that is strictly less than n. Thus, we have

n ≤ 3x5y < 2m < 2n,

as needed.
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Now, together with Lemma 6, the proof of Theorem 5 generalizes and gives the

following theorem.

Theorem 11. Let K be an imaginary quadratic field with class number one and

L be a primitive OK-line. For a rational prime p, let πp be a prime in OK that

divides p. Then a coprime mapping exists between any two contiguous intervals on

L of the same length if and only if at least one of the following three conditions is

satisfied:

1. the prime 2 is not split in K and π2 6∈ P(L);

2. the primes 3 and 5 are not split in K and π3, π5 6∈ P(L);

3. for some p ∈ {11, 13, 17, 19}, the primes 3, 7, and p are not split in K and

π3, π7, πp 6∈ P(L).

For each of the nine imaginary quadratic fields K with class number one, at least

one of the conditions about specific rational primes not splitting in K is met. Thus,

for each K there are infinitely many primitive OK-lines L with the property that

a coprime mapping exists between any two contiguous intervals on L of the same

length.

Suppose L is a primitive OK-line that does not satisfy any of the conditions in

Theorem 11. Let q be the smallest inert prime in K that is larger than all the inert

primes in P(L). Such a prime q exists since the prime set of L contains only finitely

many inert primes by Theorem 10. In the special case where K = Q(i), we predict

in Conjecture 1 that if BL = q−1, then a coprime mapping exists between any two

contiguous intervals on L of length n > BL. If K 6= Q(i), then we predict that a

bound BL will similarly exist, but that in general it will be larger than q.

For example, consider K = Q(
√
−3). Then OK is the ring of Eisenstein integers

Z[(1 +
√
−3)/2], and the inert primes are 2 and the rational primes p ≡ 5 (mod 6).

It follows from our strategy used for Gaussian lines that to show a coprime mapping

f : [αk, αk+n−1]→ [αk+n, αk+2n−1]

exists on any two contiguous intervals of length n on an Eisenstein line L, it is

sufficient to show that a bijection

g : {0, 1, . . . , n− 1} → {n, n+ 1, . . . , 2n− 1}

exists such that for all j ∈ {0, 1, . . . , n− 1} there is an inert prime pj ≡ 5 (mod 6),

pj 6∈ P(L), with g(j) = j + pj . But if n ≡ 2 or 3 (mod 6), then no such bijection g

can exist since otherwise g(j) would be divisible by 6 if and only if j ≡ 1 (mod 6),

and there is one few integer in the set {n, n+1, . . . , 2n−1} that is divisible by 6 than

there are integers j ∈ {0, 1, . . . , n− 1} with j ≡ 1 (mod 6). Here every inert prime

p satisfies p2 ≡ 1 (mod 6), so we can patch this up and get our desired coprime
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mapping f by taking f(αj) = αj+p2j for some values of j, but this requires longer

intervals than in the Gaussian case. To better see this, suppose L is an Eisenstein

line with 2, 5 ∈ P(L) and p 6∈ P(L) for all rational primes p ≡ 5 (mod 6), p ≥ 11 (so

q = 11). If n ≡ 2 or 3 (mod 6) and n ≤ 57, then a coprime mapping f that satisfies

f(αj) = αj+pj for some inert prime pj ≡ 5 (mod 6) does not exist. If n ≥ 58, then

n = 62 is the smallest value of n ≡ 2 or 3 (mod 6), and in this case we have a long

enough interval to translate by 121 = 112 and use that 11 6∈ P(L). Namely, define

f on [αk, αk+n−1] by

f(αj) =

{
αj+121, if k ≤ j ≤ k + 2;

αj+59, if k + 3 ≤ j ≤ k + 61.

This is a coprime mapping onto [αk+n, αk+2n−1] since 11 and 59 are inert primes

that are not in P(L). A similar coprime mapping f exists when n = 63. Thus, if

L is an Eisenstein line such that every inert prime in P(L) is smaller than q = 11,

it appears that we must go up to BL = 58 for a coprime mapping to exist between

all contiguous intervals on L of length n ≥ BL. Note that q = 11 is also inert in

Z[i], so if L were a Gaussian line with this property, then by contrast we could take

BL = 10 by Theorem 8.

It seems plausible that if K is one of the nine imaginary quadratic fields with

class number one and L is an OK-line, then a coprime mapping exists between

any two sufficiently long contiguous intervals on L. We leave the reader to further

investigate this problem.
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