
#A67 INTEGERS 23 (2023)

A NOTE ON PUBLIC KEY CRYPTOGRAPHY BASED ON
WILLIAMS-GUY FUNCTIONS

E. L. Roettger
Department of General Education, Mount Royal University, Calgary, Alberta,

Canada
eroettger@mtroyal.ca

Received: 6/23/23, Revised: 7/11/23, Accepted: 8/17/23, Published: 9/15/23

Abstract

In 2011 Williams and Guy developed a pair of fourth-order sequences and they
showed how these sequences possess many of the same properties as the Lucas
functions; hence, are a fourth-order generalization of said functions. We show here
that these fourth-order Williams-Guy functions can be used to perform public key
cryptography.

– Dedicated to Hugh Williams on the occasion of his 80th birthday.

1. Introduction

It is the goal of this paper to verify that a fourth-order generalization of the Lucas

functions developed by Williams and Guy can be employed to perform public key

cryptography. That such a public key protocol is possible is mentioned by Granville

and Pomerance in [1]; after they introduce the Williams-Guy functions they write:

“This work led to further understanding, including a series of papers

with [Williams’] former doctoral student Eric Roettger that culminated

with a solution to Lucas’ unsolved problem of generalizing the Lucas

sequences to the setting of higher order recurrences, as well as an idea

for public key cryptography.”

2. The Diffie-Hellman-like Key-Exchange Protocol

The integer sequences (Un) and (Vn) are introduced in [2, 7] by letting

Vn = αn1 + βn1 + αn2 + βn2 and Un =
αn1 + βn1 − αn2 − βn2
α1 + β1 − α2 − β2

,

DOI: 10.5281/zenodo.8349074

INTEGERS: 23 (2023) 2

where α1, β1, α2, and β2 are the zeroes of F (x) = x4−P1x
3+(P2+2Q)x2−QP1x+

Q2, where P1, P2, Q ∈ Z, ∆ = P 2
1 − 4P2 6= 0 and gcd(P1, P2, Q) = 1. Also, if we set

E = (P2 + 4Q)2− 4QP 2
1 , then the discriminant D of F (x) is D = E∆2Q2. Further,

in [6, p. 1270 Case 4] they show that if the Legendre symbols (∆|p) = (E|p) = −1,

p - P1, and p - D, then the splitting field of F (x) considered as a polynomial over Fp
is Fp4 . This result assures we are working over Fp4 in the presented cryptosystem.

Many valuable properties of (Un) and (Vn) are developed in [2, 6, 7]; however,

here we only require the following addition formulas from [6, p. 1259]:

2Vn+m = VnVm + ∆UnUm − 2QmVn−m (1)

and

2Un+m = UnVm + UmVn − 2QmUn−m. (2)

Making appropriate substitutions for n, m in (1) and (2) yields the formulas

2V4n = V 2
2n + ∆U2

2n − 8Q2n and U4n = V2nU2n. (3)

Using these few equations above, an efficient double and add method to compute Um
and Vm (mod N) is presented in [2, Section 4] (with the aid of auxiliary functions

Kj , Lj and Jj) and it is somewhat repeated here, as it is what makes the Diffie-

Hellman-like key-exchange protocol developed in the sequel possible.

We begin by noting that U2 = P1 and V2 = P 2
1 − 2P2 − 4Q, and for any fixed

integer t > 0 we define

Kj = U2jt/2Q
jt and Lj = V2jt/2Q

jt. (4)

Thus, if we substitute nt for n in (3) and divide (3) by 4Q2nt, we get

L2n = L2
n + ∆K2

n − 2 and K2n = 2KnLn. (5)

Also, if we set n to be 2nt + 2t and m to be 2nt in (1), (2) and divide (1), (2) by

4Q2nt+t, we recover

L2n+1 = Ln+1Ln+∆Kn+1Kn−L1 and K2n+1 = Ln+1Kn+LnKn+1−K1. (6)

Now let N be any positive integer such that gcd(Q,N) = 1. We will use identities

(5), (6) to perform a double and add algorithm to calculate Km and Lm (mod N)

for the case that t = 1. We present two similar algorithms based on the cases: t = 1

and t > 1 in equation (4).

Case 1: (t = 1) We will first show how to calculate Km ≡ U2m/2Q
m and Lm ≡

V2m/2Q
m (mod N). Since t = 1, by (4) we assign K1 = U2/2Q and L1 = V2/2Q.

If we let h = dlog2me, then we can represent the binary expansion of m by∑h
i=0 bh−i2

i, where b0 = 1 and bi ∈ {0, 1} for positive i ≤ h. We begin with

INTEGERS: 23 (2023) 3

the 4-tuple W0 ≡ {L1,K1, L2,K2} (mod N). Now if Wi ≡ {A,B,C,D} (mod N),

then

Wi+1 ≡


{A2 + ∆B2 − 2, 2AB,AC + ∆BD − L1,

BC +AD −K1} (mod N), if bi+1 = 0;

{AC + ∆BD − L1, BC +AD −K1,

C2 + ∆D2 − 2, 2CD} (mod N), if bi+1 = 1.

Hence, Wh ≡ {Lm,Km, Lm+1,Km+1} (mod N).

Case 2: (t > 1) Now given U2t/2Q
t and V2t/2Q

t we can perform a similar process

to calculate U2mt/2Q
mt and V2mt/2Q

mt. We will again use K1 and L1, however

since t 6= 1 it is worth stating that in what follows K1 = U2t/2Q
t and L1 =

V2t/2Q
t. Again, following [2] we define Jj = Q−(j−1)tU2jt/U2t and note that since

K1 = U2t/2Q
t, we have

K1Jj = (U2t/2Q
t)(Q−(j−1)tU2jt/U2t) = U2jt/2Q

jt = Kj . (7)

Hence, we can modify equations (5), (6) by performing substitutions with (7) using

appropriate values for j and setting ∆̃ = ∆K2
1 to obtain:

L2n = L2
n + ∆̃J2

n − 2, J2n = 2JnLn, (8)

L2n+1 = Ln+1Ln + ∆̃Jn+1Jn − L1 and J2n+1 = Ln+1Jn + LnJn+1 − 1. (9)

If we use the same binary expansion of m and let W0 ≡ {L1, 1, L2, J2} (mod N),

then we can compute Wh ≡ {Lm, Jm, Lm+1, Jm+1} (mod N) as follows. As before,

we let Wi ≡ {A,B,C,D} (mod N); then

Wi+1 ≡


{A2 + ∆̃B2 − 2, 2AB,AC + ∆̃BD − L1,

BC +AD − 1} (mod N), if bi+1 = 0;

{AC + ∆̃BD − L1, BC +AD − 1,

C2 + ∆̃D2 − 2, 2CD} (mod N), if bi+1 = 1.

Thus, at the end of the algorithm we have Jm ≡ Q−(m−1)tU2mt/U2t and Lm ≡
V2mt/Q

mt (mod N).

In order to avoid confusion, in the case that t > 0 we will write Lm,t to denote

calculating Lm (mod N) with the initial conditions K1 ≡ U2t/2Q
t, L1 ≡ V2t/2Q

t,

and ∆̃ ≡ ∆U2t/2Q
t (mod N).

Theorem 1. For a, b ∈ Z+, let La,b and Ja be the result of the the above algorithm

with initial values K1 ≡ U2b/2Q
b, L1 ≡ V2b/2Q

b, and ∆̃ ≡ ∆U2b/2Q
b (mod N).

Further, let Lb,a and Jb be the result of the same algorithm with initial values K1 ≡
U2a/2Q

a, L1 ≡ V2a/2Q
a, and ∆̃ ≡ ∆U2a/2Q

a (mod N). Then La,b ≡ Lb,a and

JaU2b/2Q
b ≡ JbU2a/2Q

a (mod N).

INTEGERS: 23 (2023) 4

The above theorem is what makes the following novel Diffie-Hellman-like key-

exchange possible and it is easily verified using identity (7).

The Diffie-Hellman-like Algorithm:

1) Alice and Bob agree on a large prime p such that p − 1 is not smooth and

integers P1, P2 such that 2 | P1, gcd(P1, P2) = 1, (∆|p) = (E|p) = −1, p - P1

and p - D. Further, it will always be the case that Q = 1. The values p, P1

and P2 are public.

2) Alice selects some integer a at random such that 1 < a < B (B is some

predetermined bound). Alice computes La and Ka (mod p) using the first

double and add algorithm with the initial conditions K1 ≡ U2/2 ≡ P1/2,

L1 ≡ V2/2 ≡ (P 2
1 − 2P2 − 4Q)/2 (mod p) and sends them to Bob. Bob

selects some integer b at random such that 1 < b < B. Bob computes Lb and

Kb (mod p) using the first double and add algorithm (with the same initial

conditions as Alice) and sends them to Alice.

3) Alice computes La,b and Ja modulo p using the second double and add al-

gorithm with the initial conditions K1 = Kb, L1 = Lb and ∆̃ = ∆K2
b . Bob

computes Lb,a and Jb modulo p using the second double and add algorithm

with the initial conditions K1 = Ka, L1 = La and ∆̃ = ∆K2
a . Alice and Bob

use either La,b = Lb,a or JaKb = JbKa as their common key.

3. Security and Efficiency of Our Cryptosystem

We can certainly break the system if, in general, we can compute n given K1, L1,

Kn, and Ln (mod p). Note that if we expand (x− αm1)(x− βm1)(x− αm2)(x− βm2),

we get x4 − a1x3 + a2x
2 − a3x+ a4, where

a1 = Vm, a2 = 2Qm +W 2
m + P2U

2
m + P1UmWm, a3 = VmQ

m, and a4 = Q2m.

Now if we let m = 2n and note that W2n + P2U2n = V2n, we get

a1 = V2n, a2 = 2Q2n + V 2
2n + (P1 − 2P2)V2nU2n + (P 2

2 − P1P2)U2
2n,

a3 = V2nQ
2n, and a4 = Q4n.

Thus, upon setting Kn = U2n/2Q
n, Ln = V2n/2Q

n, we have

a1/Q
n = 2Ln, a2/Q

2n = 2 + 4L2
n + 4(P1 − 2P2)LnKn + 4(P 2

2 − P1P2)K2
n,

a3/Q
3m = 2Ln, and a4/Q

4m = 1.

If θ is a zero of a(z) = z4 − 2L1z
3 + (2 + 4L2

1 + 4(P1 − 2P2)L1K1 + 4(P 2
2 −

P1P2)K2
1)z2 − 2L1z + 1 in Fp4 (a(z) is irreducible over Fp by selection of P1, P2,

INTEGERS: 23 (2023) 5

Q), then γ = θn is a zero of b(z) = z4 − 2Lnz
3 + (2 + 4L2

n + 4(P1 − 2P2)LnKn +

4(P 2
2 −P1P2)K2

n)z2− 2Lnz+ 1. Thus the problem of determining n can be reduced

to solving the discrete log problem (DLP) in Fp4 .

Let Lq[α, c] = exp(c(log q)α(log log q)1−α). Schirokauer [3] conjectured that the

complexity of solving the DLP in Fq is Lq[1/3, (64/9)1/3+o(1)]. Thus the complexity

of solving the DLP in Fp4 is likely greater than (Lp[1/3, (64/9)1/3 + o(1)])
3√4.

We now provide a rough performance comparison of our system with Diffie-

Hellman and LUCDIF (a similar cryprosystem that relies on the Lucas functions [4])

using parameters designed to provide 80 bits of security (i.e., roughly 280 operations

to break). In all three cases a 160 bit exponent or multiplier k will be used. Following

the key size suggested in [5, Table 1], let p1 be a 1024 bit prime, p2 be a 512 bit

prime and p3 be a 256 bit prime. To compare the speed of calculations of our

system versus classic Diffie-Hellman key exchange and LUCDIF, let us recall that

due to the compression factor, p1 used in the Diffie-Hellman key exchange provides

equivalent security to using p2 in LUCDIF or p3 in our system.

The Diffie-Hellman key exchange performs (3/2)k modular multiplications with

modulus p1, we will denote the cost of these modular multiplications by mp1 .

LUCDIF performs 5k modular multiplications with modulus p2, having cost mp2 .

In our system we need to perform at most 9k+2 modular multiplications to compute

Wm (mod p3); denote the cost of these multiplications by mp3 . Therefore, we are in-

terested in
(9k+2)mp3

(3/2)kmp1
and

(9k+2)mp3

5kmp2
to compare our system to classic Diffie-Hellman

and LUCDIF, respectively. However, for ease of comparison we will replace (9k+2)

in our system with simply 9k. This is perhaps appropriate as in [2, p. 525] it is

argued that since ∆ is often very small in comparison to the modulus N , the cost of

computing ∆X (mod N) is essentially that of X (mod N). Hence, the cost is closer

to 9k modular multiplications in the first algorithm. A similar argument is made

for the cost of the second algorithm being closer to 9k+ 1 modular multiplications.

Hence, we will proceed by comparing
9kmp3

(3/2)kmp1
and

9kmp3

5kmp2
.

If we compare our system to the Diffie-Hellman key-exchange, we have
9kmp3

(3/2)kmp1
=

6mp3

mp1
. Under the best case scenario for modular multiplication we can expect mpi

to be Õ(log pi) bit operations and worst case scenario we can expect mpi to be

O((log pi)
2) . Hence with the fastest possible multiplication we would expect

mp3

mp1
≈ log p3

log p1
= 256

1024 = 1
4 , or with slower multiplication we have

mp3

mp1
≈ (log p3)

2

(log p1)2
=

2562

10242 = 1
16 . Thus we can expect 3

8 <
9kmp3

(3/2)kmp1
< 3

2 , which may be favourable for

our cryptosystem depending on the speed of the modular multiplication used.

Similarly, to compare our system to LUCDIF we have
9kmp3

5kmp2
=

9mp3

5mp2
. Again,

with the fastest possible multiplication we have
mp3

mp2
≈ log p3

log p2
= 256

512 = 1
2 , or with

the slower multiplication
mp3

mp2
≈ (log p3)

2

(log p2)2
= 2562

5122 = 1
4 . Therefore here we certainly

INTEGERS: 23 (2023) 6

have a favourable outcome, as we have shown 9
20 <

9kmp3

5kmp2
< 9

10 .

Thus, our cyrptosystem may take fewer bit operations than Diffie-Hellman or

LUCDIF. Also, although we double the bandwidth, we get two numbers that can

be used for the key: La,b = Lb,a, JaKb = JbKa. These numbers have no obvious

relationship to each other.

4. Conclusion

Despite this paper providing verification of the existence of public key cryptography

using Williams-Guy functions, as observed possible by Granville and Pomerance, it

is stressed that the key-exchange developed herein is purely of recreational interest,

as it does not compete with modern high powered methods nor does it belong to

the class of post-quantum schemes. However, it is of some theoretical interest as an

application of the Williams-Guy functions.

Acknowledgment. Much thanks to an anonymous referee, whose careful reading

of the original submission of this paper and thoughtful suggestions resulted in a

substantial improvement in its exposition.

References

[1] A. Granville and C. Pomerance, The man who loved problems: Richard K. Guy, Notices
Am. Math. Soc. 69, (4) (2022), 574–585.

[2] E. L. Roettger, H. C. Williams and R. K. Guy, Some primality tests that eluded Lucas,
Des. Codes Cryptogr. 77 (2015), 515–539.

[3] O. Schirokauer, Discrete logarithms and local units, Phil. Trans. Royal Soc. 345 (1993), 409–
423.

[4] P. J. Smith and M. J. J. Lennon, LUC a new public key system, SEC (1993), 103–117.

[5] S. S. Wagstaff, Is there a shortage of primes for cryptography?, Int. J. Netw. Secur. 3 (2006),
296–299.

[6] H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Int. J. Number
Theory 7 (2011), 1255–1277.

[7] H. C. Williams and R. K. Guy, Some monoapparitic fourth-order linear divisibility sequences,
Integers 12 (2012), 1463–1485.

