#A67 INTEGERS 23 (2023)

A NOTE ON PUBLIC KEY CRYPTOGRAPHY BASED ON
WILLIAMS-GUY FUNCTIONS

E. L. Roettger
Department of General Education, Mount Royal University, Calgary, Alberta,
Canada
eroettger@mtroyal.ca

Received: 6/23/23, Revised: 7/11/23, Accepted: 8/17/23, Published: 9/15/23

Abstract
In 2011 Williams and Guy developed a pair of fourth-order sequences and they
showed how these sequences possess many of the same properties as the Lucas
functions; hence, are a fourth-order generalization of said functions. We show here
that these fourth-order Williams-Guy functions can be used to perform public key
cryptography.

— Dedicated to Hugh Williams on the occasion of his 80" birthday.

1. Introduction

It is the goal of this paper to verify that a fourth-order generalization of the Lucas
functions developed by Williams and Guy can be employed to perform public key
cryptography. That such a public key protocol is possible is mentioned by Granville
and Pomerance in [1]; after they introduce the Williams-Guy functions they write:

“This work led to further understanding, including a series of papers
with [Williams’] former doctoral student Eric Roettger that culminated
with a solution to Lucas’ unsolved problem of generalizing the Lucas
sequences to the setting of higher order recurrences, as well as an idea
for public key cryptography.”

2. The Diffie-Hellman-like Key-Exchange Protocol

The integer sequences (Uy,) and (V) are introduced in [2, 7] by letting

of + 57 — af — B
ar+ P81 —as— B

Vi=al+081+ad+p5 and U, =

DOLI: 10.5281/zenodo.8349074

INTEGERS: 23 (2023) 2

where a1, 81, az, and (9 are the zeroes of F(z) = 2% — Pia® + (P, +2Q)2? — QP +
Q?, where P, P»,Q € Z, A = P} —4P, # 0 and gcd(Py, P2, Q) = 1. Also, if we set
E = (P, +4Q)? — 4QP?, then the discriminant D of F(z) is D = EA%Q?. Further,
in [6, p. 1270 Case 4] they show that if the Legendre symbols (Alp) = (E|p) = —1,
p1 Pi, and pt D, then the splitting field of F(x) considered as a polynomial over I,
is IFa. This result assures we are working over Fp in the presented cryptosystem.

Many valuable properties of (U,) and (V,,) are developed in [2, 6, 7]; however,
here we only require the following addition formulas from [6, p. 1259]:

Wi = ViV + AU U — 2Q" Viy_ 1, (1)

and
2Un+m = Up Vi + U Vi, — 2Q™ Uy — .- (2)

Making appropriate substitutions for n, m in (1) and (2) yields the formulas
Win = Vi, + AUZ, —8Q*" and Uy, = Vo, Usp. (3)

Using these few equations above, an efficient double and add method to compute U,,
and V,,, (mod N) is presented in [2, Section 4] (with the aid of auxiliary functions
K, L; and J;) and it is somewhat repeated here, as it is what makes the Diffie-
Hellman-like key-exchange protocol developed in the sequel possible.

We begin by noting that Uy = P; and Vo = P — 2P, — 4Q, and for any fixed
integer ¢t > 0 we define

Kj = Uy /2Q7" and L; = Va;,/2Q"". (4)
Thus, if we substitute nt for n in (3) and divide (3) by 4Q*"!, we get
Lop = L2 + AK2 —2 and Ko, = 2K, L,. (5)

Also, if we set n to be 2nt + 2t and m to be 2nt in (1), (2) and divide (1), (2) by
4Q?"* . we recover

L2n+1 = Ln+1L7z+AKn+1Kn _Ll and K2n+1 = Ln+1Kn+LnKn+1 _Kl- (6)

Now let N be any positive integer such that ged(Q, N) = 1. We will use identities
(5), (6) to perform a double and add algorithm to calculate K, and L,, (mod N)
for the case that t = 1. We present two similar algorithms based on the cases: t =1
and ¢ > 1 in equation (4).

Case 1: (t = 1) We will first show how to calculate K, = Us,,/2Q™ and L,, =
Vo /2Q™ (mod N). Since t = 1, by (4) we assign K1 = U/2Q and L; = V2/2Q.
If we let h = [logym], then we can represent the binary expansion of m by
S bn_i2i, where by = 1 and b; € {0,1} for positive i < h. We begin with

INTEGERS: 23 (2023) 3

the 4-tuple Wy = {L1, K1, La, K2} (mod N). Now if W; = {A, B,C, D} (mod N),
then

{A?2 + AB? —2,2AB,AC + ABD — Ly,
BC + AD — K1} (mod N), if b;y1 = 0;
{AC + ABD — L, BC + AD — K;,
C? + AD? —2,20D} (mod N), if by = 1.

Wit1 =

Hence, Wy, = {Lm, Km, Lim+1, Kmt1} (mod N).

Case 2: (t > 1) Now given Uy /2Q! and Vo, /2Q* we can perform a similar process
to calculate Uzt /2Q™ and Vo, /2Q™t. We will again use K; and Ly, however
since t # 1 it is worth stating that in what follows K; = Usy/2Q! and L1 =
Vai /2Q". Again, following [2] we define J; = Q~U~VU,;, /Uy, and note that since
K1 = Uy /2Q¢, we have

K1 Jj = (Uae/2Q)(Q™ YUV Uy [Un) = Uaje /2Q7" = K. (7)

Hence, we can modify equations (5), (6) by performing substitutions with (7) using
appropriate values for j and setting A = AK? to obtain:

Loy = L2+ AJ? — 2, Jon = 2Jy Ly, (8)
Lopi1 =Lny1Ln + Adpi1Jy — Ly and Japit = Lys1Jn + Lo dpgr — 1. (9)

If we use the same binary expansion of m and let Wy = {L1,1, Lo, J2} (mod N),
then we can compute Wy, = {Lm, Jm; Lim+1, Jm+1} (mod N) as follows. As before,
we let W; = {A, B,C, D} (mod N); then

{A2+ AB? —2,2AB,AC + ABD — L,
BC+ AD — 1} (mod N), if b;yq = 0;
{AC +ABD — L,,BC + AD —1,
C? + AD? —2,2CD} (mod N), if bjy; = 1.

Wit1 =

Thus, at the end of the algorithm we have J,, = Q= (™ DtU,,,, /Uy and L, =
Vomt/Q™ (mod N).

In order to avoid confusion, in the case that ¢ > 0 we will write L,, ; to denote
calculating L,, (mod N) with the initial conditions K; = Us;/2Q, L1 = Va;/2Q",
and A = AUy /2Q" (mod N).

Theorem 1. For a,b € Z*, let Ly, and J, be the result of the the above algorithm
with initial values K1 = Us,/2Q%, L1 = Vay/2Q°, and A= AU /2Q° (mod N).
Further, let Ly , and Jy be the result of the same algorithm with initial values K; =
Ua/2Q%, Ly = Vaa/2Q%, and A = AUy, /2Q* (mod N). Then Loy = Ly and
JoUs2/2Q° = JyUs, /2Q% (mod N).

INTEGERS: 23 (2023) 4

The above theorem is what makes the following novel Diffie-Hellman-like key-
exchange possible and it is easily verified using identity (7).

The Diffie-Hellman-like Algorithm:

)

Alice and Bob agree on a large prime p such that p — 1 is not smooth and
integers Py, P, such that 2 | Py, ged(P1, P2) =1, (Alp) = (Elp) = -1, pt P
and p t D. Further, it will always be the case that @ = 1. The values p, P,
and P, are public.

Alice selects some integer a at random such that 1 < a < %B (% is some
predetermined bound). Alice computes L, and K, (mod p) using the first
double and add algorithm with the initial conditions K; = Us/2 = P;/2,
Ly = V3/2 = (PP — 2P, — 4Q)/2 (mod p) and sends them to Bob. Bob
selects some integer b at random such that 1 < b < %8. Bob computes L; and
K, (mod p) using the first double and add algorithm (with the same initial
conditions as Alice) and sends them to Alice.

Alice computes L, ; and J, modulo p using the second double and add al-
gorithm with the initial conditions K7 = Kj, L1 = Ly and A= AK&. Bob
computes Ly, and J, modulo p using the second double and add algorithm
with the initial conditions Ky = K,, L1 = L, and A= AK?. Alice and Bob
use either L, = Ly q or JoKp = Jp K, as their common key.

3. Security and Efficiency of Our Cryptosystem

We can certainly break the system if, in general, we can compute n given Ky, L1,
K,, and L,, (mod p). Note that if we expand (x — of*)(z — B7")(x — a§*)(x — BT),

we get x

4 — a12% + asx?® — asx + a4, where

ay = Vi, az = 2Q™ + W2 + PU2 + PU,W,y,, az = V,,Q™, and ay = Q*™.

Now if we let m = 2n and note that Ws,, + PyUs, = Vs, we get

a1 = Van, ag =2Q*" + V3, + (P, — 2P,)Va,Usy, + (P2 — PLPy) U2,

as = VQnQQ", and a4 = Q4”.

Thus, upon setting K, = Us, /2Q™, L, = V2,,/2Q™, we have

a1/Q" = 2Ly, a3/Q*" =2+ 4L2 +4(P, — 2P,)L, K, +4(Pj — PP,) K2,

az/@Q>™ =2L,, and a4/Q*™ = 1.

If 0 is a zero of a(z) = 2% — 20123 + (2 4+ 4L3 + 4(P, — 2P) L1 Ky + 4(P3 —
PyPy)K?)2* — 2Lz + 1 in Fpu (a(z) is irreducible over F,, by selection of Py, P,

INTEGERS: 23 (2023))

Q), then v = 6" is a zero of b(z) = 2* — 2L,,2% + (2 +4L2 + 4(P, — 2P,) L, K,, +
4(P} — PyPy)K?)2? — 2L,z + 1. Thus the problem of determining n can be reduced
to solving the discrete log problem (DLP) in .

Let Ly|a,c] = exp(c(logq)*(loglog ¢)'~*). Schirokauer [3] conjectured that the
complexity of solving the DLP in F, is L,[1/3, (64/9)'/3+0(1)]. Thus the complexity
of solving the DLP in Fu is likely greater than (L,[1/3, (64/9)'/3 + o(1)]) Vi,

We now provide a rough performance comparison of our system with Diffie-
Hellman and LUCDIF (a similar cryprosystem that relies on the Lucas functions [4])

280 operations

using parameters designed to provide 80 bits of security (i.e., roughly
to break). In all three cases a 160 bit exponent or multiplier k£ will be used. Following
the key size suggested in [5, Table 1], let p; be a 1024 bit prime, py be a 512 bit
prime and p3 be a 256 bit prime. To compare the speed of calculations of our
system versus classic Diffie-Hellman key exchange and LUCDIF, let us recall that
due to the compression factor, p; used in the Diffie-Hellman key exchange provides
equivalent security to using p, in LUCDIF or ps in our system.

The Diffie-Hellman key exchange performs (3/2)k modular multiplications with
modulus p;, we will denote the cost of these modular multiplications by m,,, .
LUCDIF performs 5k modular multiplications with modulus ps, having cost m,,,.
In our system we need to perform at most 9k+2 modular multiplications to compute
Wy, (mod ps); denote the cost of these multiplications by m,,,. Therefore, we are in-
(9k+2)mpy (9k+2)mp,
B2k, and Shmp,
and LUCDIF, respectively. However, for ease of comparison we will replace (9% +2)
in our system with simply 9%. This is perhaps appropriate as in [2, p. 525] it is
argued that since A is often very small in comparison to the modulus N, the cost of
computing AX (mod N) is essentially that of X (mod N). Hence, the cost is closer

to 9k modular multiplications in the first algorithm. A similar argument is made

terested in to compare our system to classic Diffie-Hellman

for the cost of the second algorithm being closer to 9% + 1 modular multiplications.

. . 9km, 9km,
Hence, we will proceed by comparing G /2)72!;,31 and 5kz"3 .
VITepy P2

If we compare our system to the Diffie-Hellman key-exchange, we have (3?];)% =
1

6mp,

. Under the best case scenario for modular multiplication we can expect m,,
P1

to be O(log p;) bit operations and worst case scenario we can expect mp, to be
O((logp;)?) . Hence with the fastest possible multiplication we would expect

Mpy . logps _ 256 __ 1 mp; . (logps)® _
mp, logpi _ 1024 — 47 my, ~ (logp1)?
2562
10242
our cryptosystem depending on the speed of the modular multiplication used.
. 9km Im .
Similarly, to compare our system to LUCDIF we have %% = %% Again,
Mpy 5mp,
~ logps _ 256 __ 1
~ logpe ~ 512 T 2

or with slower multiplication we have

k .
= %. Thus we can expect % < (332)% < %, which may be favourable for

mp
m

o

with the fastest possible multiplication we have or with

P2
m 1 2 2 .
rs p (08D3) 2567 _ 1. Therefore here we certainly

the slower multiplication T N (logpa)® = 5127 =

INTEGERS: 23 (2023) 6
have a favourable outcome, as we have shown % < g:z:z %.

Thus, our cyrptosystem may take fewer bit operations than Diffie-Hellman or
LUCDIF. Also, although we double the bandwidth, we get two numbers that can
be used for the key: Lqp = Lpq, JoKp = JpK,. These numbers have no obvious
relationship to each other.

4. Conclusion

Despite this paper providing verification of the existence of public key cryptography
using Williams-Guy functions, as observed possible by Granville and Pomerance, it
is stressed that the key-exchange developed herein is purely of recreational interest,
as it does not compete with modern high powered methods nor does it belong to
the class of post-quantum schemes. However, it is of some theoretical interest as an
application of the Williams-Guy functions.

Acknowledgment. Much thanks to an anonymous referee, whose careful reading
of the original submission of this paper and thoughtful suggestions resulted in a
substantial improvement in its exposition.

References

[1] A. Granville and C. Pomerance, The man who loved problems: Richard K. Guy, Notices
Am. Math. Soc. 69, (4) (2022), 574-585.

[2] E. L. Roettger, H. C. Williams and R. K. Guy, Some primality tests that eluded Lucas,
Des. Codes Cryptogr. 77 (2015), 515-539.

[3] O. Schirokauer, Discrete logarithms and local units, Phil. Trans. Royal Soc. 345 (1993), 409
423.

[4] P. J. Smith and M. J. J. Lennon, LUC a new public key system, SEC (1993), 103-117.

[5] S. S. Wagstaff, Is there a shortage of primes for cryptography?, Int. J. Netw. Secur. 3 (2006),
296-299.

[6] H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Int. J. Number
Theory 7 (2011), 1255-1277.

[7] H. C. Williams and R. K. Guy, Some monoapparitic fourth-order linear divisibility sequences,
Integers 12 (2012), 1463-1485.

