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Abstract

A positive integer n is said to be a practical number if every integer in [1, n] can be
represented as a sum of distinct divisors of n. In this article, we consider practical
numbers of a given polynomial form. We give a necessary and sufficient condition for
a quadratic polynomial to contain infinitely many practical numbers, using which
we solve the first part of a conjecture of Wu. In the final section, we prove that
every number of the form 8k + 1 can be expressed as a sum of a practical number
and a square. We also prove that for every j ∈ {0, . . . , 7} \ {1} there exist infinitely
many natural numbers k such that 8k + j cannot be written as a sum of a square
and a practical number.

1. Introduction

A positive integer n is said to be a practical number if every integer in [1, n] can be

expressed as a sum of distinct divisors of n. Practical numbers were introduced by

Srinivasan in [6]. In [7], Stewart showed that n = pα1
1 pα2

2 · · · p
αk

k where p1 < p2 <

· · · < pk are primes and αi ≥ 1 are integers is practical if either n = 1 or p1 = 2 and

for all 2 ≤ i ≤ k we have pi ≤ σ(pα1
1 pα2

2 · · · p
αi−1

i−1 ) + 1 (here σ denotes the sum of

divisors function). This implies that if m is a practical number then for all natural

numbers n ≤ σ(m) + 1, mn is a practical number. We will be using this property

several times in this article.

There are many properties of practical numbers that are similar to the properties

of prime numbers. All practical numbers except for 1 are even while all primes
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except for 2 are odd. Let π(x) and P (x) denote the number of primes less than or

equal to x and the number of practical numbers less than or equal to x, respectively.

From the Prime Number Theorem, we have π(x) ∼ x
log x . In [8], Weingartner showed

that there exists a positive constant c such that P (x) ∼ cx
log x .

In [2], Margenstern made a Goldbach-type conjecture that every even positive

integer can be expressed as a sum of two practical numbers. In the same paper, he

conjectured that there are infinitely many positive integers m such that m − 2,m,

and m+ 2 are all practical numbers. Melfi proved both conjectures in [3].

In Section 2, we consider quadratic representations of practical numbers. Using

our results, we prove the first part of [9, Conjecture 1.1] and generalize [9, Theorem

1.2].

In Section 3, we prove that every number of the form 8k + 1 can be represented

as a sum of a square and a practical number. We also show that for all j ∈
{0, . . . , 7} \ {1}, there exist infinitely many natural numbers k such that 8k + j

cannot be written as a sum of a square and a practical number.

2. Practical Numbers of the Form an2 + bn + c

Let q(n) = an2 + bn+ c be any quadratic polynomial having positive integer coef-

ficients. For every prime p, define

mq(p) := sup{k ∈ N ∪ {0} : q(n) ≡ 0 mod pk has a solution}.

We will first prove that for every quadratic polynomial q there exists a prime p such

that mq(p) =∞. In order to prove this, we will use the following version of Hensel’s

lemma.

Hensel’s Lemma. Suppose that f(x) is a polynomial with integral coefficients. If

f(a) ≡ 0 (mod pj) and f ′(a) 6≡ 0 (mod p), then there is a unique t (mod p) such

that f(a+ tpj) ≡ 0 (mod pj+1).

Proof. See [4, Theorem 2.23] for proof.

Lemma 2.1. Let q(n) = an2 + bn+ c be any quadratic polynomial having positive

integer coefficients. There exists a prime p such that mq(p) =∞.

Proof. If b2 − 4ac = 0 then q(n) = (2an+b)2

4a . Let p be any prime number such

that p - 2a. For any natural numbers k and n such that 2an ≡ −b mod pk, we

have q(n) ≡ 0 mod p2k. Hence for any prime p not dividing 2a, we have mq(p) =

sup{k ∈ N ∪ {0} : q(n) ≡ 0 mod pk has a solution} =∞.
Let us assume b2−4ac 6= 0. We can apply Schur’s theorem [5], which states that

there are infinitely many prime divisors of q. Consequently, there exists a prime
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p - (b2 − 4ac) and a natural number s such that q(s) ≡ 0 mod p. We claim that

q′(s) 6≡ 0 mod p because if q′(s) ≡ 0 mod p, it would imply that (q′(s))2−4aq(s) =

(2as+ b)2−4a(as2 + bs+ c) = b2−4ac ≡ 0 mod p, which contradicts p - (b2−4ac).

Let

u = sup{k ∈ N ∪ {0} : q(r) ≡ 0 mod pk and r ≡ s mod p has a solution}.

Notice that u ≤ mq(p). If u is finite, then there exists a natural number r such

that q(r) ≡ 0 mod pu and r ≡ s mod p. Since r ≡ s mod p, we have q′(r) ≡
q′(s) mod p, which implies q′(r) 6≡ 0 mod p. From Hensel’s lemma, there exists a

unique t mod p such that q(r + tpu) ≡ 0 mod pu+1. Since r + tpu ≡ r ≡ s mod p

and q(r + tpu) ≡ 0 mod pu+1, it follows that u + 1 ∈ {k ∈ N ∪ {0} : q(r) ≡ 0

mod pk and r ≡ s mod p has a solution}. This is absurd as u is the supremum.

Therefore, we can conclude that u =∞. As u ≤ mq(p), we have mq(p) =∞.

Let us now work on giving a necessary and sufficient condition for a quadratic

polynomial q(n) to represent infinitely many practical numbers. We require a lemma

in order to prove Theorem 2.3.

Lemma 2.2. Let q(n) = an2 + bn+ c be any quadratic polynomial with integer co-

efficients and let Q = {p : p prime and there exists n ∈ N such that p|q(n)}. The

infinite product
∏
p∈Q

(
1 + 1

p

)
diverges.

Proof. Let f be any irreducible divisor of q and let ρf (p) denote the number of

solutions modulo p of the congruence f(x) ≡ 0 mod p. From the Prime Ideal

Theorem, it follows that
∑
p
ρf (p)
p diverges (see [1, Corollary 3.2.2]). As ρf (p) ≤ 2,

it follows that
∑
p∈Q

1
p diverges. Hence

∏
p∈Q(1 + 1

p ) diverges.

Theorem 2.3. Let q be a quadratic polynomial with positive integer coefficients.

Let pn denote the n-th prime number and let r be the least positive integer such that

mq(pr) = ∞. There are infinitely many practical numbers of the form q(n) if and

only if p
mq(p1)
1 p

mq(p2)
2 · · · pmq(pr−1)

r−1 pr is a practical number.

Proof. Suppose p
mq(p1)
1 p

mq(p2)
2 · · · pmq(pr−1)

r−1 pr is not a practical number. We have

either mq(p1) = mq(2) = 0 or there exists an i, with 2 ≤ i ≤ r, such that mq(pi) > 0

and pi > σ
(
p
mq(p1)
1 p

mq(p2)
2 · · · pmq(pi−1)

i−1

)
+ 1. If mq(2) = 0 then all q(n) are odd

and all q(n) > 1 are not practical numbers. Hence there are only finitely many

practical numbers of the form q(n). If there exists an i, with 2 ≤ i ≤ r, such that

mq(pi) > 0 and

pi > σ(p
mq(p1)
1 · · · pmq(pi−1)

i−1 ) + 1,

then we claim that for all natural numbers n such that

q(n) > p
mq(p1)
1 · · · pmq(pr−1)

r−1 pr,
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q(n) is not a practical number. We claim that q(n) > p
mq(p1)
1 · · · pmq(pr−1)

r−1 pr should

have at least one prime factor p ≥ pi. Otherwise, if all the prime factors of q(n) are

less than pi then q(n) can be expressed as q(n) = pe11 · · · p
ei−1

i−1 for some non-negative

integers e1, . . . , ei−1. For 1 ≤ j ≤ i − 1, as p
ej
j |q(n) we have ej ∈ {k ∈ N ∪ {0} :

q(n) ≡ 0 mod pkj has a solution} and hence ej ≤ sup{k ∈ N ∪ {0} : q(n) ≡ 0

mod pkj has a solution} = mq(pj). Consequently, ej ≤ mq(pj) for 1 ≤ j ≤ i − 1,

and we have q(n) = pe11 · · · p
ei−1

i−1 ≤ p
mq(p1)
1 · · · pmq(pi−1)

i−1 . This contradicts q(n) >

p
mq(p1)
1 · · · pmq(pi−1)

i−1 . Hence there exists at least one prime factor of q(n) which is

greater than or equal to pi. Let p be the smallest prime factor of q(n) satisfying

p ≥ pi. Now, q(n) = pa11 p
a2
2 · · · p

ai−1

i−1 p
kQ where Q is either 1 or the least prime

factor of Q is greater than pi. As

p ≥ pi > σ(p
mq(p1)
1 p

mq(p2)
2 · · · pmq(pi−1)

i−1 ) + 1 ≥ σ(pa11 · · · p
ai−1

i−1 ) + 1,

from [7, Theorem 1] we can conclude that q(n) is not a practical number. Hence

there are only finitely many q(n) such that q(n) is a practical number. This proves

one part of the theorem.

We claim that if p
mq(p1)
1 · · · pmq(pr−1)

r−1 pr is a practical number then there are in-

finitely many practical numbers of the form q(n). Assume, for the sake of contra-

diction, that there are only a finite number of practical numbers of the form q(n).

This assumption implies the existence of a real number A such that there are no

practical numbers q(n) for which q(n) ≥ A. Let

Q = {p : p prime and there exists n ∈ N such that p|q(n)}.

From the previous lemma, it follows that
∏
p∈Q(1 + 1

p ) diverges. Hence there exist

primes t1, . . . , ts ∈ Q that are greater than pr such that
∏s
i=1(1 + 1

ti
) > a + b + c.

Let k be a natural number such that pkr > A and p
mq(p1)
1 · · · pmq(pr−1)

r−1 pkr ≥ t1 · · · ts.
Since mq(pr) = ∞ there exists a solution xr mod pkr such that q(xr) ≡ 0 mod pkr .

For 1 ≤ i ≤ r − 1, there exists a solution xi mod p
mq(pi)
i such that q(xi) ≡ 0

mod p
mq(pi)
i , and for 1 ≤ j ≤ s there exists yj mod tj such that q(yj) ≡ 0 mod tj .

Hence there exists an n, with 1 ≤ n ≤ D, such that q(n) is divisible by D, where

D = p
mq(p1)
1 · · · pmq(pr−1)

r−1 pkr t1t2 · · · ts. Observe that as p
mq(p1)
1 · · · pmq(pr−1)

r−1 pkr is a

practical number and t1t2 · · · tr ≤ p
mq(p1)
1 p

mq(p2)
2 · · · pmq(pr−1)

r−1 pkr , we can conclude

that D = p
mq(p1)
1 p

mq(p2)
2 · · · pmq(pr−1)

r−1 pkr t1t2 · · · ts is also a practical number. As

q(n) = D( q(n)D ) and

σ(D) = D

(
σ(D)

D

)
≥ n

s∏
j=1

(
1 +

1

tj

)
> n(a+b+c) ≥ an2 + bn+ c

n
≥ q(n)

n
≥ q(n)

D
,

we have that q(n) is a practical number greater than A. This contradicts our

assumption that there are no practical numbers of the form q(n) which are greater
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than A. Hence there are infinitely many practical numbers of the form q(n). This

proves the other part of the theorem.

Now before proving a corollary of Theorem 2.3, we prove a lemma.

Lemma 2.4. Let a, b, and c be positive integers such that 2 - ab and 2|c. For all

positive integers k, there exists a natural number n such that an2 + bn + c ≡ 0

mod 2k.

Proof. We prove this lemma using induction on k. For k = 1, as a.12 + b.1 + c ≡ 0

mod 2, the statement is true for k = 1. Suppose the statement is true for k = l,

then there exists an n such that an2 + bn+ c ≡ 0 mod 2l. For any natural number

x, let m = 2lx + n. We have a(2lx + n)2 + b(2lx + n) + c ≡ an2 + 2lbx + bn + c

mod 2l+1. If x ≡ an2+bn+c
2l

mod 2 then a(2lx+ n)2 + b(2lx+ n) + c ≡ 0 mod 2l+1.

Hence the statement is true for l + 1 and the lemma follows from the principle of

mathematical induction.

Corollary 2.5. Let a, b, and c be positive integers such that 2 - ab and 2|c. There

are infinitely many practical numbers of the form an2 + bn+ c.

Proof. Let q(n) = an2 + bn+ c. From the previous lemma, we have mq(2) =∞. As

2 is a practical number, from Theorem 2.3 we can conclude that there are infinitely

many practical numbers of the form an2 + bn+ c.

The above corollary solves the first part of [9, Conjecture 1.1] and is a general-

ization of [9, Theorem 1.2].

3. On Natural Numbers Which Can Be Represented as a Sum of a Square
and a Practical Number

We now prove that every natural number of the form 8k + 1 can be expressed as a

sum of a practical number and a square. We will prove this using some lemmas.

Lemma 3.1. If n = 2km with k ≥ 1 and m ≤ 2k+1, then n is a practical number.

Proof. As 2k is a practical number and m ≤ 2k+1 = σ(2k) + 1, we can conclude

that 2km is a practical number.

Lemma 3.2. Let m be a natural number such that m ≡ 1 mod 8 and let k be a

positive integer. There exists a natural number x, with 1 ≤ x ≤ 2k − 1, satisfying

x2 ≡ m (mod 2k+2).
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Proof. Let m be any natural number such that m ≡ 1 mod 8. Using mathematical

induction, we prove that for all positive integers k, there exists a natural number x,

with 1 ≤ x ≤ 2k − 1, such that x2 ≡ m mod 2k+2. The statement is true for k = 1

as 12 ≡ m mod 23. As m ≡ 1 mod 8 implies m ≡ 12 mod 24 or m ≡ 32 mod 24,

the statement is true for k = 2.

Assume that the statement is true for k = s ≥ 2. Then there exists a natural

number xs, with 1 ≤ xs ≤ 2s − 1, such that x2s ≡ m mod 2s+2. Now, x2s ≡ m

mod 2s+3 or x2s ≡ m + 2s+2 mod 2s+3. Let xs+1 = xs if x2s ≡ m mod 2s+3, and

xs+1 = 2s+1 − xs if x2s ≡ m + 2s+2 mod 2s+3. Note that 1 ≤ xs+1 ≤ 2s+1 − 1.

We claim x2s+1 ≡ m mod 2s+3. If x2s ≡ m mod 2s+3 then, as xs+1 = xs, we have

x2s+1 ≡ m mod 2s+3. If x2s ≡ m+ 2s+2 mod 2s+3 then

x2s+1 ≡ (2s+1 − xs)2 mod 2s+3

≡ 22s+2 + x2s − 2s+2xs mod 2s+3

≡ m+ 2s+2 − 2s+2xs mod 2s+3

≡ m+ 2s+2(1− xs) mod 2s+3

≡ m mod 2s+3 (as (1− xs) is even, 2s+2(1− xs) is divisible by 2s+3).

Hence the statement is true for k = s+ 1 and the lemma follows from the principle

of mathematical induction.

Now we are ready to prove the main result of this section.

Theorem 3.3. Every natural number of the form 8k+ 1 can be expressed as a sum

of a square and a practical number. Also, for every j ∈ {0, . . . , 7} \ {1} there exist

infinitely many natural numbers k such that 8k+ j cannot be written as a sum of a

practical number and a square.

Proof. Let n > 1 be a natural number of the form 8k+ 1. Let m =
⌊
log2

√
8k + 1

⌋
.

This implies 22m ≤ 8k + 1 < 22m+2. As m ≥ 1, from Lemma 3.2 there exists

a natural number x, with 1 ≤ x ≤ 2m − 1, such that x2 ≡ 8k + 1 (mod 2m+2).

Therefore, 8k + 1 − x2 = 2m+2s for some positive integer s (observe that s is a

positive integer as x2 < 22m ≤ 8k+1). As 2m+2s ≤ 8k+1 ≤ 22m+2, we have s ≤ 2m.

Hence from Lemma 3.1, 2m+2s is a practical number and 8k + 1 = x2 + 2m+2s is a

sum of a square and a practical number. This proves the first part of the theorem.

Let us prove the second part by considering each j ∈ {0, . . . , 7} \ {1} separately.

(j = 0): Consider numbers m such that m ≡ 24 (mod 32), m ≡ 2 (mod 3), m ≡
2 (mod 5), m ≡ −1 (mod 7), m ≡ −1 (mod 11), and m ≡ 2 (mod 13).

Then m is of the form 8k and m ≡ x2 (mod 16), m ≡ x2 mod 3, m ≡
x2 (mod 5), m ≡ x2 (mod 7), m ≡ x2 (mod 11), and m ≡ x2 (mod 13)

have no solutions. Hence if m = n2 + P then 16 - P , 3 - P , 5 - P ,
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7 - P , 11 - P , and 13 - P . The highest power of 2 dividing P is less than

or equal to 8 and P is not divisible by any prime less than or equal to

σ(8) + 1 = 16. Hence P cannot be a practical number and m cannot be

written as a sum of a square and a practical number. Hence there are

infinitely many numbers of the form 8k which cannot be written as a sum

of a square and a practical number.

(j = 2): Consider numbers m such that m− 1 is not a perfect square and m is of

the form 24n + 2. Then m ≡ x2 (mod 4) and m ≡ x2 (mod 3) have no

solutions. The highest power of 2 dividing m−x2 for any x is less than or

equal to 2. As m−x2 6= 1 is not divisible by any prime less than or equal

to σ(2) + 1 = 4, we can conclude that m− x2 is not a practical number.

Hence there are infinitely many numbers of the form 8k+ 2 which cannot

be written as a sum of a square and a practical number.

(j = 3): Consider numbers m of the form 24n + 11. Then m ≡ x2 (mod 4) and

m ≡ x2 (mod 3) have no solutions. The highest power of 2 dividing m−x2
for any x is less than or equal to 2. As m − x2 is not divisible by any

prime less than or equal to σ(2)+1 = 4, m−x2 is not a practical number.

Hence there are infinitely many numbers of the form 8k+ 3 which cannot

be written as a sum of a square and a practical number.

(j = 4): Consider numbers m such that m ≡ 12 (mod 16), m ≡ 2 (mod 3), m ≡
2 (mod 5), m ≡ −1 (mod 7), m ≡ −1 (mod 11), and m ≡ 2 (mod 13).

Then m is of the form 8k+4 and m ≡ x2 (mod 16), m ≡ x2 (mod 3), m ≡
x2 (mod 5), m ≡ x2 (mod 7), m ≡ x2 (mod 11), and m ≡ x2 (mod 13)

have no solutions. Hence if m = n2 + P then 16 - P , 3 - P , 5 - P ,

7 - P , 11 - P and 13 - P . The highest power of 2 dividing P is less than

or equal to 8 and P is not divisible by any prime less than or equal to

σ(8) + 1 = 16. Hence P cannot be a practical number and m cannot be

written as a sum of a square and a practical number. Hence there are

infinitely many numbers of the form 8k + 4 which cannot be written as a

sum of a square and a practical number.

(j = 5): Consider numbers m such that m − 1 is not a perfect square, m ≡
5 (mod 8), m ≡ 2 (mod 3), m ≡ 2 (mod 5), and m ≡ −1 (mod 7).

Then m is of the form 8k + 5 and m ≡ x2 (mod 8), m ≡ x2 (mod 3),

m ≡ x2 (mod 5), and m ≡ x2 (mod 7) have no solutions. Hence if

m = n2 + P then 8 - P , 3 - P , 5 - P and 7 - P . The highest power

of 2 dividing P is less than or equal to 4 and P is not divisible by any

prime less than or equal to σ(4) + 1 = 8. Hence P cannot be a practical

number and m cannot be written as a sum of a square and a practical
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number. Hence there are infinitely many numbers of the form 8k+5 which

cannot be written as a sum of a square and a practical number.

(j = 6): Consider numbers m of the form 24n + 14. Then m ≡ x2 (mod 4) and

m ≡ x2 (mod 3) have no solutions. The highest power of 2 dividing m−x2
for any x is less than or equal to 2, and since m−x2 is not divisible by any

prime less than or equal to σ(2)+1 = 4, we have m−x2 is not a practical

number. Hence there are infinitely many numbers of the form 8k+6 which

cannot be written as a sum of a square and a practical number.

(j = 7): Consider numbers m of the form 24n + 23. Then m ≡ x2 (mod 4) and

m ≡ x2 (mod 3) have no solutions. The highest power of 2 dividing m−x2
for any x is less than or equal to 2, and since m−x2 is not divisible by any

prime less than or equal to σ(2)+1 = 4, we have m−x2 is not a practical

number. Hence there are infinitely many numbers of the form 8k+7 which

cannot be written as a sum of a square and a practical number.

4. Future Prospects

In this paper, we have given necessary and sufficient conditions for quadratic poly-

nomials to represent infinitely many practical numbers (Theorem 2.3). It would

be worthwhile to explore such necessary and sufficient conditions for cubic and

biquadratic polynomials with integer coefficients.
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