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Abstract

Let k be a field of characteristic 0. Let k((1/x)) be the function field with respect
to the degree valuation | · |∞. In this paper, we show that the values of some
power series over k(x) evaluated at certain Liouville numbers in k((1/x)) are either
rational over k[x] or transcendental. Some examples are also included.

1. Introduction

A real number α is considered a Liouville number if, for any positive integer n,

there exist integers pn and qn > 1 satisfying the inequality

0 <

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnn
.

The question raised by Mahler in 1984 [7] to explore a relationship between

Liouville numbers and certain analytic functions. Specifically, he sought for an

analytic function f(T ) with property that if α is a Liouville number, then f(α) is also

a Liouville number. In fact, his inquiry was inspired by the earlier work of Maillet
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[8], who demonstrated that if α is a Liouville number and f(T ) is a non-constant

rational function with rational coefficients, then f(α) is also a Liouville number. The

arithmetic properties of Liouville numbers were also explored in Maillet’s work [8].

An extensive body of scholarly research has been dedicated to the exploration of

this particular inquiry. Some research efforts have focused on constructing exten-

sive sets of Liouville numbers that are mapped onto themselves by transcendental

entire functions; see [9–11]. Others have concentrated on power series with rational

coefficients, delving into the transcendence of their values; see [1,4,5]. For instance,

Çalişkan [1] demonstrated in 2018 that certain power series over Q take values of

either rational or transcendental numbers for arguments from the set of Liouville

numbers, under specific conditions. The analogous results in the p-adic number

field were also established in the same work. In 2019, Lelis and Marques [6] intro-

duced weak p-adic numbers, establishing them as p-adic transcendental numbers

and demonstrating their inclusion of p-adic Liouville numbers. They also examined

the analogous result to Maillet’s work in this context.

In 2010, Chaichana and Laohakosol [3] discussed arithmetic properties of Liou-

ville numbers in the function field, particularly in the non-archimedean case. They

also introduced a class of Liouville numbers referred to as the Liouville series and

established criteria for their algebraic independence. In another study, they ex-

tended Erdős’s result that every real number can be represented as a sum and a

product of two real Liouville numbers to the non-archimedean case. Moreover, they

demonstrated that any bilinear rational transformation over k(x) maps Liouville

numbers to Liouville numbers; see [2].

In this work, inspired by the study of Çalişkan [1], we establish an analogous

result in the function field case.

2. Main Results

Throughout, let k be the field of characteristic 0. Let k∞ = k((1/x)) be a field of all

Laurent series over k equipped with the degree valuation | · |∞ defined by |α|∞ = en

if

α = cnx
n + · · ·+ c1x+ c0 +

c−1
x

+
c−2
x2

+ · · · ∈ k∞\{0},

where n ∈ Z, ci ∈ k for all i ≤ n and cn 6= 0, and |0|∞ = 0.

We first introduce the Liouville numbers in k∞.

Definition 1 ([2]). An element α ∈ k∞ is called a k∞−Liouville number if for any

n ∈ N there exist pn, qn ∈ k[x]\{0} with |qn|∞ > 1 such that

0 <

∣∣∣∣α− pn
qn

∣∣∣∣
∞
<

1

|qn|n∞
.
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The following theorem is the main tool for proving the transcendence of elements

in k∞.

Theorem 1 (Roth’s theorem [12]). Let k be a field of characteristic 0. If α ∈
k∞\{0} is an algebraic element over k(x) of degree ≥ 2, then for each ε > 0, the

inequality ∣∣∣∣α− P

Q

∣∣∣∣
∞
<

1

|Q|2+ε∞
is satisfied by only a finite number of pairs P,Q 6= 0 in k[x] with gcd(P,Q) = 1.

Our main result states that:

Theorem 2. Let f(T ) be the power series such that

f(T ) =

∞∑
n=0

cnT
n (1)

where cn = bn/an with bn, an ∈ k[x]\{0} and |an|∞ > 1 for sufficiently large n

satisfying the following two conditions:

σ := lim inf
n→∞

deg(an+1)

deg(an)
> 1 (2)

and

θ := lim sup
n→∞

deg(bn)

deg(an)
< 1, (3)

further let An = lcm[a0, a1, . . . , an] and derive u := lim sup
n→∞

deg(An)
deg(an)

.

Let α be a k∞−Liouville number for which the following properties hold: there

exist sequences (pn), (qn) ⊂ k[x]\{0} with |qn|∞ > 1 and a sequence of real numbers

(w(n)) with lim
n→∞

w(n) =∞ such that∣∣∣∣α− pn
qn

∣∣∣∣
∞
<

1

|qn|nw(n)
∞

(4)

and

|an|δ1∞ ≤ |qn|n∞ ≤ |an|δ2∞ (5)

hold for sufficiently large n, where δ1, δ2 ∈ R such that u < δ1 ≤ δ2.

If σ(1− θ) > 4δ2, then f(α) is either in k(x) or a k∞−transcendental number.

We separate the proof of Theorem 2 into two parts.

Part I: We show that f(T ) =
∞∑
n=0

cnT
n in (1) converges everywhere on k∞ by

showing that lim sup
n→∞

|cn|1/n∞ = 0.
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Proof of Part I. From (3), we have θ < 1. Then there exists a sufficiently small

ε0 > 0 such that θ+ ε0 < 1 and thus 1− θ− ε0 > 0. Therefore, for sufficiently large

n, we have
deg(bn)

deg(an)
< θ + ε0

and we then have, for sufficiently large n,

|bn|∞ < |an|θ+ε0∞ . (6)

Similarly, from (2), we have σ > 1. Then there is a sufficiently small ε1 > 0 such

that σ1 := σ − ε1 > 1. Since σ1 < σ, for sufficiently large n, we have

σ1 <
deg(an+1)

deg(an)
.

Since |an|∞ > 1 for sufficiently large n, there exists N0 ∈ N such that, for all

n ≥ N0, (6) holds and

deg(an+1) > σ1 deg(an) > deg(an) > 1. (7)

It is clear that the exponential growth (7) implies

lim
n→∞

deg(an)

n
=∞. (8)

Hence, by (6), we have

|cn|1/n∞ =

∣∣∣∣ bnan
∣∣∣∣1/n
∞

<
1

|an|(1−θ−ε0)/n∞
→ 0 (n→∞)

as desired.

Part II: Now, we have f(α) ∈ k∞. We next show that f(α) is either in k(x) or a

transcendental element by using Roth’s theorem.

Proof of Part II. For each n ∈ N, set

fn(T ) =

n∑
ν=0

cνT
ν .

Note that α is a k∞−Liouville number and there exist sequences (pn), (qn) ⊂
k[x]\{0} with |qn|∞ > 1 such that the inequality (4) holds. Then we have, for

each n ∈ N,

fn

(
pn
qn

)
=

n∑
ν=0

bν
aν

(
pn
qn

)ν
=
An

[
b0
a0
qnn + b1

a1
pn

1qn−1n + · · ·+ bn
an
pnn

]
Anqnn

:=
hn
Anqnn

,
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where An = lcm[a0, a1, . . . , an]. It is clear that hn and Anq
n
n are in k[x] and thus

fn

(
pn
qn

)
= hn

Anqnn
∈ k(x). Note that, by assumption (5),

0 < |an|δ1∞ ≤ |qn|n∞ ≤ |an|δ2∞.

Since lim sup
n→∞

deg(An)
deg(an)

= u < δ1 ≤ δ2, we then have, for sufficiently large n ≥ N0,

that deg(An)
deg(an)

< δ2, and so

0 < |An|∞ < |an|δ2∞.
Now we have

0 < |An|∞|qnn |∞ < |an|2δ2∞ ,

or equivalently,
1

|an|∞
<

1

|Anqnn |
1/2δ2
∞

(9)

for sufficiently n ≥ N0. Moreover,∣∣∣∣f(α)− hn
Anqnn

∣∣∣∣
∞

=

∣∣∣∣f(α)− fn
(
pn
qn

)∣∣∣∣
∞

≤ max

{
|f(α)− fn(α)|∞ ,

∣∣∣∣fn(α)− fn
(
pn
qn

)∣∣∣∣
∞

}
. (10)

By (6) and for all n ≥ N0, we obtain

|f(α)− fn(α)|∞ =

∣∣∣∣∣
∞∑

ν=n+1

cνα
ν

∣∣∣∣∣
∞

≤ max
ν≥n+1

{∣∣∣∣ bνaν
∣∣∣∣
∞
· |α|ν∞

}
< max
ν≥n+1

{
1

|aν |1−θ−ε0∞
· |α|ν∞

}
.

By (8), we choose a sufficiently small ε2 > 0 such that 1 − θ − ε0 − ε2 > 0 and

limn→∞
ε2 deg(an)

n =∞. Then, for sufficiently large n ≥ N0, we obtain

log(|α|∞ + 1) <
ε2 deg(an+1)

n+ 1

and so

(|α|∞ + 1)n+1 < |an+1|ε2∞. (11)

Now we have, for sufficiently large n ≥ N0,

|f(α)− fn(α)|∞ < max
ν≥n+1

{
1

|aν |1−θ−ε0−ε2∞

}
=

1

|an+1|1−θ−ε0−ε2∞

<
1

|an|(σ−ε1)(1−θ−ε0−ε2)∞

<
1

|Anqnn |∞
(σ−ε1)(1−θ−ε0−ε2)

2δ2

(12)
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by (7) and (9).

Next, consider the term |fn(α)− fn(pnqn )|∞ in (10). We have, for each n ∈ N,∣∣∣∣fn(α)− fn
(
pn
qn

)∣∣∣∣
∞

=

∣∣∣∣α− pn
qn

∣∣∣∣
∞

∣∣∣∣∣
n∑
ν=1

cν

(
αν−1 + αν−2

(
pn
qn

)1

+ · · ·+
(
pn
qn

)ν−1)∣∣∣∣∣
∞

≤
∣∣∣∣α− pn

qn

∣∣∣∣
∞

max
1≤ν≤n

{|cν |∞} max
1≤ν≤n

{∣∣∣∣∣αν−1 + αν−2
(
pn
qn

)1

+ · · ·+
(
pn
qn

)ν−1∣∣∣∣∣
∞

}
.

For all sufficiently large n ≥ N0, we have

max
1≤ν≤n

{|cν |∞} = max

{∣∣∣∣ b1a1
∣∣∣∣
∞
, . . . ,

∣∣∣∣ bN0

aN0

∣∣∣∣
∞
, |bN0+1|∞, . . . , |bn|∞

}
≤ max {M, |bN0+1|∞, . . . , |bn|∞}
≤ max

{
M, |aN0+1|θ+ε0∞ , . . . , |an|θ+ε0∞

}
by (6)

< max {M, |aN0+1|∞, . . . , |an|∞} since θ + ε0 < 1

< max {M, |an|∞} since deg(an) is increasing,

where M = max
{∣∣∣ b1a1 ∣∣∣∞ , . . . ,

∣∣∣ bN0

aN0

∣∣∣
∞

}
. Then there exists N1 > N0 such that, for

all n ≥ N1,

max
1≤ν≤n

{|cν |∞} < |an|∞.

Moreover, for all n ≥ N1, since∣∣∣∣pnqn
∣∣∣∣
∞
≤ max

{
|α|∞,

∣∣∣∣α− pn
qn

∣∣∣∣
∞

}
≤ max{|α|∞, 1} ≤ |α|∞ + 1,

and |α|∞ < |α|∞ + 1, we have∣∣∣∣∣αν−1 + αν−2
(
pn
qn

)1

+ · · ·+
(
pn
qn

)ν−1∣∣∣∣∣
∞

≤ max

{∣∣αν−1∣∣∞ ,

∣∣∣∣∣αν−2
(
pn
qn

)1
∣∣∣∣∣
∞

, . . . ,

∣∣∣∣∣
(
pn
qn

)ν−1∣∣∣∣∣
∞

}
= (|α|∞ + 1)ν−1

for all ν ∈ {1, 2, . . . , n}. Now we have, for all n ≥ N1,∣∣∣∣fn(α)− fn
(
pn
qn

)∣∣∣∣
∞
≤
∣∣∣∣α− pn

qn

∣∣∣∣
∞
|an|∞(|α|∞ + 1)n−1

≤ 1

|qn|∞nw(n)
|an|2∞ (by (11)).
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Since u < δ1 ≤ δ2, there exists ε3 > 0 such that 0 < u+ε3 < δ1. Then δ1−u−ε3 > 0

and so we obtain 4
δ1−u−ε3 > 0. Since lim

n→∞
w(n) = ∞, there exists N2 ∈ N with

N2 ≥ N1 such that

2 < (δ1 − u− ε3)
w(n)

2
for all n ≥ N2. Now we have, for all n ≥ N2,∣∣∣∣fn(α)− fn

(
pn
qn

)∣∣∣∣
∞
<

1

|qn|∞nw(n)

(
|an|δ1−u−ε3∞

)w(n)
2

=
1

|qn|∞nw(n)

(
|an|δ1∞
|an|∞u+ε3

)w(n)
2

≤ 1

|qn|∞nw(n)

(
|qn|n∞
|an|∞u+ε3

)w(n)
2

=
1

|qn|∞
nw(n)

2

(
1

|an|∞u+ε3

)w(n)
2

.

Since lim sup
n→∞

deg(An)
deg(an)

= u < u + ε3, we then have, for sufficiently large n ≥ N2,

deg(An)
deg(an)

< u+ ε3 and so

|An|∞ < |an|u+ε3∞ .

Now we can conclude that∣∣∣∣fn(α)− fn
(
pn
qn

)∣∣∣∣
∞
<

1

|qn|∞
nw(n)

2

(
1

|An|∞

)w(n)
2

=
1

|Anqnn |∞
w(n)

2

(13)

for sufficiently large n ≥ N2.

Finally, from (12) and (13), the value of (10) becomes∣∣∣∣f(α)− hn
Anqnn

∣∣∣∣
∞
≤ max

{
|f(α)− fn(α)|∞ ,

∣∣∣∣fn(α)− fn
(
pn
qn

)∣∣∣∣
∞

}
< max

{
1

|Anqnn |∞
(σ−ε1)(1−θ−ε0−ε2)

2δ2

,
1

|Anqnn |∞
w(n)

2

}
(14)

for sufficiently large n ≥ N2. Since lim
n→∞

w(n) =∞, there is N3 ≥ N2 such that

w(n)

2
>

(σ − ε1)(1− θ − ε0 − ε2)

2δ2
(n ≥ N3).

Therefore, (14) becomes∣∣∣∣f(α)− hn
Anqnn

∣∣∣∣
∞
<

1

|Anqnn |∞
(σ−ε1)(1−θ−ε0−ε2)

2δ2

(15)
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for all n ≥ N3. Since σ(1−θ)
2δ2

> 2 by the assumption and ε0, ε1 and ε2 can be chosen

to be sufficiently small and

(σ − ε1)(1− θ − ε0 − ε2)

2δ2
> 2,

there exists a positive number ε such that

(σ − ε1)(1− θ − ε0 − ε2)

2δ2
> 2 + ε. (16)

Hence, from (15), (16) and since |Anqnn |∞ > 1 for all n ∈ N, we conclude that∣∣∣∣f(α)− hn
Anqnn

∣∣∣∣
∞
<

1

|Anqnn |∞
2+ε

for sufficiently large n (for all n ≥ N3), where ε is a suitable positive number

dependent on ε0, ε1 and ε2.

Therefore ∣∣∣∣f(α)− hn
Anqnn

∣∣∣∣
∞
<

1

|Anqnn |∞
2+ε −→ 0 (n→∞).

Hence, it can be concluded that

lim
n→∞

hn
Anqnn

= f(α).

Notice that if
{

hn
Anqnn

: n ∈ N
}

is a finite set, then there exists a constant subse-

quence of
(

hn
Anqnn

)
, namely

(
P
Q

)
. Therefore,

f(α) = lim
n→∞

hn
Anqnn

=
P

Q

and we conclude that f(α) = P
Q ∈ k(x).

Now, we may assume that there are infinitely many distinct hn
Anqnn

∈ k(x) with

gcd(hn, Anq
n
n) = 1 and ∣∣∣∣f(α)− hn

Anqnn

∣∣∣∣
∞
<

1

|Anqnn |∞
2+ε (17)

for all n ≥ N3. By Roth’s theorem, f(α) is either a rational number over k(x) or a

k∞−transcendental number.

We can additionally show that in the latter case of the previous proof we can

exclude rationality with details following: suppose f(α) = P
Q ∈ k(x). Choose N =

max{N3,deg(Q)}. If |PAnqnn − hnQ|∞ = 0 for all n ≥ N, then PAnq
n
n − hnQ = 0
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for all n ≥ N . That is, hn
Anqnn

= P
Q for all n ≥ N . Hence,

(
hn
Anqnn

)
is an eventually

constant, a contradiction. Then there is m ≥ N such that |PAmqmm − hmQ|∞ 6= 0.

Therefore ∣∣∣∣f(α)− hm
Amqmm

∣∣∣∣
∞

=
|PAmqmm − hmQ|∞
|QAmqmm |∞

≥ 1

|QAmqmm |∞
.

Now, we have

1

|QAmqmm |∞
≤
∣∣∣∣f(α)− hm

Amqmm

∣∣∣∣
∞
<

1

|Amqmm |∞
2+ε

by (17). Therefore

em < |Amqmm |1+ε∞ < |Q|∞ < edeg(Q)

which is absurd as we assume m ≥ N = max{deg(Q), N3} ≥ deg(Q). Hence, f(α)

is a k∞−transcendental number.

Some interesting examples are constructed as follows.

Example 1. Define an increasing sequence (p̃n) of positive integers by

p̃1 = 1, p̃2 = 2 and p̃n+1 ≥ p̃n · n2 (n ≥ 2).

Let f(T ) =
∞∑
n=0

(
bn
an

)
Tn where bn = x+ 1 (n ≥ 0) and

an =

{
xp̃n·b

n
2 c if n ≥ 1,

1 if n = 0

be the power series over k(x). It is easy to see that, for all n ∈ N ∪ {0}, bn and an
are nonzero polynomials over k and an divides an+1. Moreover,

|bn|∞ = e > 1 and |an|∞ = ep̃n·b
n
2 c > 1 (n ≥ 2).

Next, we have

σ = lim inf
n→∞

deg(an+1)

deg(an)
≥ lim
n→∞

(
n2 ·
bn+1

2 c
bn2 c

)
=∞ > 1

and

θ = lim sup
n→∞

deg(bn)

deg(an)
= lim
n→∞

1

p̃n · bn2 c
= 0 < 1.

We have An = lcm[a0, a1, . . . , an] = an and |An|∞ = |an|∞ (n ≥ 2). We then obtain

u = lim sup
n→∞

deg(An)

deg(an)
= 1.
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Let α =
∞∑
n=1

1
xp̃n

. Observe that the series
∞∑
n=1

1
xp̃n

converges in k∞ because

lim
n→∞

1
|xp̃n |∞ = 0. For each n ∈ N, set pn = xp̃n

n∑
k=1

1
xp̃k

, qn = xp̃n and w(n) = n
2 .

Then pn, qn ∈ k[x]\{0} with |qn|∞ = ep̃n > 1 and lim
n→∞

w(n) =∞. Moreover,

∣∣∣∣α− pn
qn

∣∣∣∣
∞

=

∣∣∣∣∣
∞∑

k=n+1

1

xp̃k

∣∣∣∣∣
∞

=
1

|xp̃n+1 |∞
=

1

ep̃n+1
≤ 1

ep̃n·n2 <
1

|qn|n·w(n)
∞

.

It follows that ∣∣∣∣α− pn
qn

∣∣∣∣
∞
<

1

|qn|n·w(n)
∞

≤ 1

|qn|n∞
(n ≥ 2).

For n = 1, by direct computation, we have∣∣∣∣α− p1
q1

∣∣∣∣
∞

=

∣∣∣∣∣
∞∑
k=2

1

xp̃k

∣∣∣∣∣
∞

=
1

|xp̃2 |∞
=

1

e2
<

1

e
=

1

|q1|∞
.

Therefore, α is k∞-Liouville number by Definition 1.

Choose real numbers δ1 = 2 and δ2 = 3. Then

|an|δ1∞ ≤ |qn|n∞ ≤ |an|δ2∞

for all n ∈ N.

Now, we have u = 1 and σ(1 − θ) = ∞ > 4δ2. By Theorem 2, we can conclude

that f(α) is either rational or transcendental. But in fact, f(α) is a transcendental

element in k∞ because of the following: notice that

fn

(
pn
qn

)
=

n∑
ν=0

(
bν
aν

)(
pn
qn

)ν

= (1 + x) +

n∑
ν=1

(
1 + x

xp̃ν ·b
ν
2 c

)( n∑
k=1

1

xp̃k

)ν
∈ k(x)

for all n ∈ N. Taking the x-adic valuation of both sides, it yields∣∣∣∣fn(pnqn
)∣∣∣∣

x

= max
1≤ν≤n

{
1,

∣∣∣∣ 1 + x

xp̃ν ·b
ν
2 c

∣∣∣∣
x

∣∣∣∣∣
n∑
k=1

1

xp̃k

∣∣∣∣∣
ν

x

}
= max

1≤ν≤n

{
1, ep̃ν ·b

ν
2 c+p̃ν ·ν

}
= ep̃n·b

n
2 c+p̃n·n

for all n ∈ N which is increasing. This guarantees that fn

(
pn
qn

)
(n ≥ 1) are all

distinct. By the proof of Theorem 2, f(α) is transcendental as required.
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Example 2. If the above defining sequences are chosen to be p̃n+1 > p̃n · n2 and

w(n) = n for all n ∈ N, it can be shown by a similar proof as in Example 1 that

f(α) is transcendental.
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