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Abstract

This paper introduces a new problem concerning additive properties of convex sets.
Let S = {s1 < · · · < sn} be a set of real numbers and let Di(S) = {sx − sy : 1 ≤
x − y ≤ i}. We expect that Di(S) is large, with respect to the size of S and the
parameter i, for any convex set S. We give a construction to show that D3(S) can
be as small as n + 2, and show that this is the smallest possible size. On the other
hand, we use an elementary argument to prove a non-trivial lower bound for D4(S),
namely |D4(S)| ≥ 5

4n − 1. For sufficiently large values of i, we are able to prove a
non-trivial bound that grows with i using incidence geometry.

1. Introduction

Let S ⊆ R be a finite set and write S = {s1, s2, . . . , sn} such that si < si+1 for all

i ∈ [n− 1]. S is said to be a convex set if si+1 − si < si+2 − si+1 for all i ∈ [n− 2].

In the spirit of the sum-product problem, Erdős raised the question of whether

A + A and A−A are guaranteed to be large for any convex set. Progress has been

made towards this question via a combination of methods in incidence geometry

(see for instance [2]) and elementary methods (see [3], [8] and [4]), but the question

of determining the best possible lower bounds remains open. The current state-of-

the-art results state that, for some absolute constant c > 0, the bounds

|S − S| � n8/5

(log n)c
, |S + S| � n30/19

(log n)c
(1)
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hold for any convex set A ⊂ R, see [10] and [7] respectively. The notation� is used

to absorb a multiplicative constant. That is X � Y denotes that there exists an

absolute constant C > 0 such that X ≥ CY .

In this paper, we introduce a new local variant of this problem, where only

differences between close elements of A are considered. We define

Di(S) := {sx − sy : 1 ≤ x− y ≤ i}.

Moreover, for any set I ⊂ [n− 1], define

DI(S) := {sx − sy | x− y ∈ I}.

We expect that Di(S) is large (in terms of i) and that DI(S) is large (in terms of

|I|) for any convex set S ⊂ R. We begin with some trivial observations.

• For any convex set S, |D1(S)| = |S| − 1. Indeed, it is an immediate con-

sequence of the definition of a convex set that S has distinct consecutive

differences. Additive properties of such sets were considered in [8] and [9].

• For any convex set S, we have |D2(S)| ≥ |S|. This can be seen by observing

that sn − sn−2 ∈ D{2}(S) \D{1}(S), and so

|D2(S)| = |D{1}(S)|+ |D{2}(S) \D{1}(S)| ≥ n− 1 + 1 = n. (2)

On the other hand, if we consider the set

S = {fi+3 : i ∈ [n]}, (3)

where fi is the i-th Fibonacci number, we see that |D2(S)| = n, and so the

lower bound (2) is optimal.

• Setting i = n − 1, we see that the set Di(S) is equal to the set of positive

elements of the difference set S−S. Therefore, the question of obtaining lower

bounds for Dn−1(S) is equivalent to that of lower bounding the size of S−S.

The main results of this paper concern the minimum possible sizes of D3(S) and

D4(S) when S is convex. Let S(n) be the set of all convex sets of size n. Define

Di(n) := min{|Di(S)| : S ∈ S(n)}.

The discussion above shows that D1(n) = n− 1 and D2(n) = n. For D3(n) we will

provide a constructive proof of the following result.

Theorem 1.1. For any integer n ≥ 5,

D3(n) = n + 2.
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However, there is an interesting change of behaviour that occurs when i goes

from 3 to 4, and D4(n) is not of the form n+O(1). In this paper we will prove the

following result.

Theorem 1.2. For any n ∈ N,

D4(n) ≥ 5

4
n− 1.

We also consider a stronger notion of convexity, namely k-convexity, which was

one of the main considerations of the paper [4].

Definition 1.3. A set S is k-convex if D1(S) is a (k− 1)-convex set. A convex set

is also called a 1-convex set.

Let S2(n) be the set of all 2-convex sets of size n. Define

D2
i (n) := min{|Di(S)| : S ∈ S2(n)}.

Note that D2
1(n) = n−1. The set S defined in (3) is a 2-convex set with |D2(S)| = n,

and it therefore follows that D2
2(n) = n.

Similarly to Theorem 1.1 we will prove the following result.

Theorem 1.4. For any integer n ≥ 5,

D2
3(n) = n + 2. (4)

We give a slightly better lower bound for D2
4(n) than that for D4(n) given in

Theorem 1.2.

Theorem 1.5. For any n ∈ N,

D2
4(n) ≥ 4

3
n− 4

3
.

We expect that the values of Di(n) and D2
i (n) increase with i, and it may even

be possible that a lower bound of the form Ω((ni)1−ε) holds. However, we are not

able to generalize the elementary techniques used to prove Theorems 1.2 and 1.4 to

obtain better bounds by considering larger i.

On the other hand, for sufficiently large i, a non-trivial lower bound for Di(n)

can be obtained by a trivial application of the lower bound for S−S in (1). Indeed,

let S be a convex set with cardinality n and let S′ ⊂ S denote the subset formed

by taking the i smallest elements. Then

|Di(S)| ≥ |Di(S
′)| � |S′ − S′| � i8/5

(log n)c
(5)
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In particular, if i ≥ n5/8+ε, then (5) gives a lower bound of the form

Di(n)� n1+ε′ . (6)

It appears plausible that (6) holds under the weaker assumption that i ≥ nε.

In this paper, we use incidence geometric techniques to give a more general result,

see the forthcoming Theorem 2.1. In particular, this gives us a good lower bound

for the size of DI(S) when |I| is large.

2. Proofs of the Main Results

Proof of Theorems 1.1 and 1.4. To prove that D3(n) ≥ n+2, we need to prove that

|D3(S)| ≥ n + 2 (7)

holds for an arbitrary convex set S with |S| = n. Observe that |D3(S)| ≥ |D2(S)|+1,

since sn−sn−3 ∈ D3(S)\D2(S). Hence |D3(S)| ≥ n+1. Suppose for a contradiction

that |D3(S)| = n + 1 for some n ≥ 5. Observe that

s2 − s1 < s3 − s2 < s3 − s1 < s4 − s2 < s4 − s1 < s5 − s2 < · · · < sn − sn−3

and

s2 − s1 < s3 − s2 < s4 − s3 < s4 − s2 < s5 − s3 < s5 − s2 < · · · < sn − sn−3.

We have identified two increasing sequences of length n + 1 in D3(S), and so the

sequences must be identical. Comparing the third terms of the sequences, we get

s4 − s3 = s3 − s1 (8)

and comparing the fifth terms of the sequences, we get

s4 − s1 = s5 − s3. (9)

From Equations (8) and (9) we get

s5 − s4 = s3 − s1 = s4 − s3.

But as S is a convex set this is not possible. Hence our assumption that |D3(S)| =
n + 1 was wrong, and so |D3(S)| ≥ n + 2, proving (7).

Since every 2-convex set is also convex, it follows that |D3(S)| ≥ n + 2 for all

2-convex sets S. Therefore, D2
3(n) ≥ n + 2.
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To prove that D3(n) ≤ n + 2 and D2
3(n) ≤ n + 2, we provide an example of

a 2-convex (and thus also convex) set with |D3(S)| = n + 2. Consider the set

S = {s1, s2, . . . , sn} where

s1 = 0, s2 = 10, s3 = 23, s4 = 40,

si := si−1 + si−2 − si−4 for i = 5, . . . , n.

Indeed, |D3(S)| = n + 2. Observe that

si+5 − si+4 = si+2 − si∀i ∈ [1, n− 5]. (10)

We will prove that S is 2-convex by induction on n. The base case, with n = 5, 6, 7,

can be checked by a direct calculation.

Now let n ≥ 8. To show S is 2-convex it is sufficient to show that

(si+3 − si+2)− (si+2 − si+1) > (si+2 − si+1)− (si+1 − si) (11)

for all i ∈ [1, n − 3]. We know from the induction hypothesis that (11) holds for

i = 1, . . . , n− 4, and so we only need to check that it is valid for i = n− 3.

From Equation (10) we know that

(sn − sn−1)− (sn−1 − sn−2) = (sn−3 − sn−5)− (sn−4 − sn−6)

= (sn−3 − sn−4)− (sn−5 − sn−6).
(12)

Analogously,

(sn−1 − sn−2)− (sn−2 − sn−3) = (sn−4 − sn−5)− (sn−6 − sn−7). (13)

Applying (11) twice (with i = n− 6 and i = n− 7), it follows that

(sn−3 − sn−4)− (sn−4 − sn−5) > (sn−5 − sn−6)− (sn−6 − sn−7).

Rearranging gives

(sn−3 − sn−4)− (sn−5 − sn−6) > (sn−4 − sn−5)− (sn−6 − sn−7).

We then apply (12) and (13) to conclude that

(sn − sn−1)− (sn−1 − sn−2) > (sn−1 − sn−2)− (sn−2 − sn−3).

This proves (11) for the case i = n− 3, as required.

Taking a closer look at the construction of the set S defined above, we see that

there is additional structure, as the set D{5}(S) overlaps significantly with D3(S).

To be precise, we have

|D{1,2,3,5}(S)| = n + 4.

Since the two largest elements of D{1,2,3,5}(S) are not in D3(S), it follows from

Theorem 1.1 that D{1,2,3,5}(S) ≥ n+4 for any convex set S, and so this construction

is optimal in this regard.
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Proof of Theorem 1.2. To prove Theorem 1.2, we need to show that

|D4(S)| ≥ 5

4
n− 1 (14)

holds for an arbitrary convex set S with size n. Indeed, let S be such a set. The

proof of (14) is split into two cases.

Case 1. Suppose that |D{2}(S) \D{1}(S)| ≥ n
4 − 2. It follows that

|D4(S)| ≥ |D2(S)|+ 2 = |D{1}(S) ∪ [D{2}(S) \D{1}(S)]|+ 2

≥ (n− 1) + (n/4− 2) + 2 =
5n

4
− 1.

Case 2. Suppose that |D{2}(S) \D{1}(S)| < n/4− 2. It follows that

si+2 − si, si+3 − si+1 ∈ D{1}(S)

holds for at least

(n− 3)− 2(n/4− 2) =
n

2
+ 1

values of i ∈ [n− 3]. Let I be the set of all such i. Then, for all i ∈ I,

si+2 − si = sj+1 − sj , si+3 − si+1 = sj′+1 − sj ,

for some j, j′ ∈ [n− 1].

Case 2a. Suppose that, for at least n
4 + 2 of the elements i ∈ I, we have j′ = j + 1.

Then sj+2−sj is in D{2}(S), but it is also strictly between two consecutive elements

of D{4}(S). Indeed

si+3 − si−1 = (si+3 − si+1) + (si+1 − si−1)

< (si+3 − si+1) + (si+2 − si)

= (sj+2 − sj+1) + (sj+1 − sj)

= sj+2 − sj

< (si+4 − si+2) + (si+2 − si)

= si+4 − si.

It follows that |D{2}(S) \D{4}(S)| ≥ n
4 + 2. Therefore,

|D4(S)| ≥ 1 + |D{2,4}(S)| = 1 + |D{4}(S) ∪ [D{2}(S) \D{4}(S)]|

≥ 1 + n− 4 +
n

4
+ 2 =

5n

4
− 1.

Case 2b. Suppose that we are not in case 2a, and hence, for at least n
4 − 1 of

the elements of I, we have j′ ≥ j + 2. Then sj+2 − sj+1 lies strictly between
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two consecutive elements of D{2}, namely si+2 − si and si+3 − si+1. Therefore,

|D{1}(S) \D{2}(S)| ≥ n
4 − 1, and thus

|D4(S)| ≥ |D2(S)|+ 2 = |D{2}(S) ∪ [D{1}(S) \D{2}(S)]|+ 2

≥ (n− 2) + (n/4− 1) + 2 =
5n

4
− 1.

A closer look at the proof of Theorem 1.2 reveals that we have barely used the

elements of D{3}(S) anywhere in the proof of (14). By modifying the proof slightly,

we obtain the bound

|D{1,2,4}(S)| ≥ 5

4
n− 2

for any convex set S with cardinality n.

The construction of the set S from Theorem 1.1 yields the bound

|D4(S)| ≤ |D3(S)|+ (n− 4) = 2n− 2.

Combining this observation with the result of Theorem 1.2, we see that

5

4
n− 1 ≤ D4(n) ≤ 2n− 2.

We now proceed to the proof of Theorem 1.5. The proof is largely the same as

that of Theorem 1.2. The main difference is that we can use the 2-convex condition

to show that Case 2b does not occur.

Proof of Theorem 1.5. To prove Theorem 1.5, we need to show that

|D4(S)| ≥ 4

3
n− 4

3
(15)

holds for an arbitrary 2-convex set S with size n. Indeed, let S be such a set. The

proof is split into two cases.

Case 1. Suppose that |D{2}(S) \D{1}(S)| ≥ n
3 −

7
3 . It follows that

|D4(S)| ≥ |D2(S)|+ 2 = |D{1}(S) ∪ [D{2}(S) \D{1}(S)]|+ 2

≥ (n− 1) +

(
n

3
− 7

3

)
+ 2 =

4

3
n− 4

3
.

Case 2. Suppose that |D{2}(S) \D{1}(S)| < n
3 −

7
3 . It follows that

si+2 − si, si+3 − si+1 ∈ D{1}(S)

holds for at least

(n− 3)− 2

(
n

3
− 7

3

)
=

n

3
+

5

3
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values of i ∈ [n− 3]. Let I be the set of all such i. Then, for all i ∈ I,

si+2 − si = sj+1 − sj , si+3 − si+1 = sj′+1 − sj ,

for some j, j′ ∈ [n− 1] satisfying j′ > j > i. We claim now that it must be the case

that j′ = j + 1. Indeed, suppose for a contradiction that j′ ≥ j + 2. It then follows

that

(sj+3 − sj+2)− (sj+1 − sj) ≤ (sj′+1 − sj′)− (sj+1 − sj)

= (si+3 − si+1)− (si+2 − si)

= (si+3 − si+2)− (si+1 − si).

However, since j > i, this contradicts the assumption that S is 2-convex. Indeed,

write the convex set D1(S) = {d1 < d2 < · · · < dn−1}, and so di = si+1 − si. Then

the previous inequality can be written as

dj+2 − dj ≤ di+2 − di.

But this inequality cannot hold if D1(S) is convex, which proves the claim.

As was the case in the proof of Theorem 1.2, sj+2 − sj is in D{2}(S), but it is

also strictly in-between two consecutive elements of D{4}(S). Indeed

si+3 − si−1 = (si+3 − si+1) + (si+1 − si−1)

< (si+3 − si+1) + (si+2 − si)

= (sj+2 − sj+1) + (sj+1 − sj)

= sj+2 − sj

< (si+4 − si+2) + (si+2 − si)

= si+4 − si.

It follows that |D{2}(S) \D{4}(S)| ≥ n
3 + 5

3 . Therefore,

|D4(S)| ≥ 1 + |D{2,4}(S)| = 1 + |D{4}(S) ∪ [D{2}(S) \D{4}(S)]|

≥ 1 + n− 4 +
n

3
+

5

3
=

4

3
n− 4

3
.

We now turn to the case of bounding DI(S) for large I, giving a modification of

the proof of the main result in [2].

Theorem 2.1. Let S = {s1 < s2 < · · · < sn} be convex and let G ⊂ [n]× [n]. Then

|{sx − sy : (x, y) ∈ G}| �
(
|G|
n

)3/2

. (16)
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Similar sum-product type results for restricted pairs have been considered in, for

instance, [1] and [5]. Note that the bound in (16) becomes meaningful when |G| is

significantly larger than n. A construction of a convex set with a rich difference in

[6] shows that the set {sx − sy : (x, y) ∈ G} can have cardinality as small as one

when G has cardinality as large as n/2.

Proof of Theorem 2.1. We may assume that |G| ≥ 2n, as otherwise the bound (16)

becomes trivial since the right hand side of the inequality is constant.

Denote

S −G S := {sx − sy : (x, y) ∈ G}.
We will prove that

|S −G S| �
(
|G|
n

)3/2

. (17)

Since S is convex, it follows that there exists a strictly convex function f : R → R
such that f(i) = si.

Define P to be the point set

P = {−n,−n + 1, . . . , n− 1, n} × (S −G S).

Let `a,b denote the curve with equation y = f(x + a)− b. Define L to be the set of

curves

L = {`j,sh : 1 ≤ j, h ≤ n}.
The set L consists of translates of the same convex curve, and it therefore follows

that we have the Szemerédi-Trotter type bound

I(P,L) ≤ 4|P |2/3|L|2/3 + 4|P |+ |L|, (18)

where

I(P,L) := {(p, `) ∈ P × L : p ∈ `}.
For each `j,sh ∈ L, and for any k such that (k, h) ∈ G, observe that

(k − j, sk − sh) ∈ P ∩ `j,sh .

This implies that

I(P,L) =
∑
`∈L

|` ∩ P | ≥
∑

1≤j≤n

∑
1≤h≤n

|{k : (k, h) ∈ G}| = n|G|.

Comparing this bound with (18) yields

n|G| ≤ 4n2|S −G S|2/3 + 4n|S −G S|+ n2.

The assumption that |G| ≥ 2n can then be used to deduce that

n|G| � n2|S −G S|2/3 + n|S −G S| � n2|S −G S|2/3,

where the latter inequality makes use of the (very) trivial bound |S −G S| ≤ n3. A

rearrangement gives the claimed bound (17).
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3. Concluding Remarks

3.1. Sums Instead of Differences

One may also consider a version of this question with sums. Let Ei(S) denote the

set

Ei(S) = {sx + sy : 1 ≤ x− y ≤ i}.
However, it turns out that this modification to the question makes it rather straight-

forward to prove a non-trivial bound that grows with i. If we split S into disjoint

consecutive blocks S1∪S2∪· · ·∪St, with each block having i elements (we possibly

discard some elements to ensure that all blocks have exactly the same size, and so

t = bn/ic), then the sum sets Sj +Sj are pairwise disjoint. It then follows from the

lower bound for Sj + Sj given in (1) that

|S + S| ≥
t∑

j=1

|Sj + Sj | �
n

i
· i30/19

(log n)c
=

ni11/19

(log n)c
.

3.2. Sets I such that DI = n + O(1)

In Theorem 1.1, we have seen that D{1,2,3}(n) = n + 2. There are other examples

of sets I ⊂ [n− 1] with cardinality 3 such that DI(n) = n+O(1). For example, we

can define S using the recurrence relation

sn = sn−2 + sn−3 − sn−6.

By choosing the initial elements of S suitably, the set S is convex. However, this

recurrence relations gives rise to the system of equations

sj − sj−2 = sj−3 − sj−6 = sj−5 − sj−9, ∀ 10 ≤ j ≤ n.

This implies that the elements of D{2}(S), D{3}(S) and D{4}(S) are largely the

same, with just a few exceptions occurring at the extremes of the three sets. It

follows that D{2,3,4}(S) = n + C, for some absolute constant C. It appears likely

that the same argument can be used to show that D{k,k+d,k+2d}(n) = n + Ok,d(1).

On the other hand, we have seen in this paper that D{1,2,4}(n) = 5n
4 − O(1).

This raises the following question: can we classify the sets I with cardinality 3 with

the property that DI(n) = n + C, where C is some constant (which may depend

on the elements of I)?
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