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Abstract

Let r(k,A, n) denote the number of representations of n as a sum of k elements of
a set A ⊆ N. In 2002, Dombi conjectured that if A is co-infinite, then the sequence
(r(k,A, n))n≥0 cannot be strictly increasing. Using tools from automata theory and
logic, we give an explicit counterexample where N \A has positive lower density.

1. Introduction

Let N = {0, 1, . . .} be the natural numbers, and let A ⊆ N. Define r(k,A, n) to be

the number of k-tuples of elements of A that sum to n. Dombi [7] conjectured that

there is no infinite set F such that r(3,N \F, n) is strictly increasing. Recently Bell

et al. [2] found a counterexample to this conjecture; also see the recent paper of

Kiss, Sándor, and Yang [9]. However, the F of their example is quite sparse; it has

upper density 0. In this note we give a simple explicit example of an F such that

r(3,N \ F, n) is strictly increasing and F has positive lower density. The novelty in

our approach is the use of tools from automata theory and logic.

2. Brief Introduction to Automata

A deterministic finite automaton (DFA) is a simple model of a computer that takes

strings over a finite alphabet Σ as input, and either accepts or rejects them. The

set of all accepted strings is called the language recognized by the automaton. A

DFA consists of a finite number of states, Q, and labeled transitions between them,

specified by a transition function δ : Q×Σ→ Q. Starting in the distinguished start

state q0, the automaton processes each symbol of the input in turn, moving from

state to state according to δ. If it ends up in one of the distinguished accepting
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states, specified by a set F , the automaton accepts; otherwise it rejects. For more

about automata theory, consult any basic textbook in the area, such as [8].

A set S ⊆ N is said to be k-automatic if there is a DFA recognizing the language

of base-k representations of members of S. It is known that if S is k-automatic,

then so is its complement N \ S. For more about automatic sequences, see, for

example, [1].

A deterministic finite automaton with output (DFAO) is a small variation on this

model. Here the notion of acceptance/rejection for states is replaced by an output

chosen from an output set, ∆. The output on input x is the output associated with

the last state reached. A sequence (a(n))n≥0 is said to be k-automatic if there is a

DFAO that, after processing the input n represented in base k, reaches a state with

output a(n).

As an example, let F = {3, 12, 13, 14, 15, 48, 49, 50, . . .} be the set of natural

numbers whose base-2 expansion (ignoring leading zeros) is of even length and

begins with 11. This is a 2-automatic set, and the automaton is depicted in Figure 1.

Here 0 is the initial state, and 3 is the only accepting state, denoted by the double

circle. The input is a binary representation of n, starting with the most significant

digit.
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Figure 1: Automaton for F .

The language recognized by this automaton is

{11, 011, 0011, 1100, 1101, 1110, 1111, . . .}.

For example, 14 in base 2 is 1110. On input 1110, the automaton visits states

0, 1, 3, 4, and ends in state 3, which is an accepting state. Hence 14 is accepted, as

it should be. On the other hand, 9 in base 2 is 1001. On input 1001, the automaton

visits states 0, 1, 2, 2, and ends in state 2, which not an accepting state. Hence 9 is

rejected, and it is not in F .

A very important result about automatic sequences, originally due to Büchi, is

the following:

Theorem 1. The first-order logical theory of automatic sequences is decidable.
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Roughly speaking, this means that the truth of any well-formed first-order logic

formula about automatic sequences (using a set of basic operations such as indexing,

equality, and addition) can be determined with an algorithm. As an example of the

kinds of claims that can be so expressed, consider the assertion that every natural

number is a sum of two elements of N− F . It can be expressed as

∀n ∃i, j 6∈ F such that n = i+ j,

and hence is decidable with the algorithm. (It is true, by the way.)

For more about this celebrated result, see [5, 4, 11].

3. Linear Representations

Another tool we will need is linear representations. A sequence (a(n))n≥0 has a

k-linear representation if there exist an integer t ≥ 1 and

• a 1× t row vector v;

• a t× t-matrix-valued morphism µ with domain {0, 1, . . . , k − 1}; and

• a t× 1 column vector w

such that a(n) = vµ(x)w for all strings x that represent n in base k (whether or not

they have leading zeros). The integer t is called the rank of a linear representation.

Given linear representations for one or more sequences, we can, using a simple

construction involving block matrices, effectively compute linear representations for

any linear combination of them.

Linear representations are connected to automatic sequences in the following way

[6]:

Theorem 2. Suppose ϕ is a first-order logical formula about a k-automatic se-

quence, with free variables n, x1, x2, . . . xj. Then the number of j-tuples (x1, . . . , xj)

such that ϕ(n, x1, . . . , xj) evaluates to true has a k-linear representation that can be

effectively computed.

We say two linear representations are equivalent if they represent the same se-

quence. Another extremely useful result is the following [3, Chap. 2]:

Theorem 3. There is an algorithm for minimizing linear representations; that is,

finding an equivalent linear representation of minimum rank.

Finally, we will also use the following result [11, §4.11]:

Theorem 4. It is decidable if an integer sequence (a(n))n≥0 given by a k-linear

representation takes only finitely many values. If so, then it is k-automatic, and

the automaton is computably deducible from the representation.

For more about linear representations, see [3, 11].
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4. Our Example Set F

Let F be as defined in Section 2.

For a set X ⊆ N, define DX(n) = 1
n |{X ∩ {0, 1, . . . , n − 1}}|. Recall that the

lower density of X is defined to be lim infn→∞DX(n) and the upper density is

lim supn→∞DX(n).

Proposition 1. The lower density of F is 1/9 and the upper density is 1/3.

Proof. The characteristic sequence of F is

000 1

8︷ ︸︸ ︷
{0 · · · 0}

4︷ ︸︸ ︷
{1 · · · 1}

32︷ ︸︸ ︷
{0 · · · 0}

16︷ ︸︸ ︷
{1 · · · 1} · · ·

2·4n︷ ︸︸ ︷
{0 · · · 0}

4n︷ ︸︸ ︷
{1 · · · 1} · · · .

So the lower density of F is

lim inf
n→∞

DX(3 · 4n) =
1 + 4 + 16 + · · ·+ 4n−1

3 · 4n
=

4n−1
3

3 · 4n
=

1

9
,

and the upper density is

lim sup
n→∞

DX(4n) =
1 + 4 + 16 + · · ·+ 4n−1

4n
=

4n−1
3

4n
=

1

3
.

Theorem 5. The sequence r(3,N \ F, n) is strictly increasing.

Proof. Here is an outline of the proof. Define A := N \ F and d(n) := r(3, A, n) −
r(3, A, n− 1). We will show that d(n) > 0 for all n. To do this, we show

d(n) ≥ 4d(bn/4c)− 18. (1)

and then use an easy induction.

To prove the bound in Equation (1), we show that f(n) := d(n) − 4d(bn/4c) is

a 2-automatic sequence, and we explicitly determine the automaton. Once we have

the automaton for f , we can determine the range of f simply by examining the

(finitely many) outputs associated with the states.

To find the DFAO for f , we first observe that A := N \ F is a 2-automatic set

since F is. We can now use Theorem 1 to conclude that

G := {(n, i, j, k) : n = i+ j + k for i, j, k ∈ A}

is also 2-automatic. The automaton for G can be computed explicitly by free

software called Walnut [10, 11], with the following commands:
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morphism x "0->01 1->23 2->22 3->44 4->33":

morphism y "0->0 1->0 2->0 3->1 4->0":

promote X x:

image FF y X:

def g "FF[i]=@0 & FF[j]=@0 & FF[k]=@0 & n=i+j+k":

The resulting automaton has 143 states.

Now, from Theorem 2, we know that the number r(3, A, n) of triples (i, j, k)

corresponding to a particular n has a linear representation. Furthermore, this linear

representation is computable from the automaton for G by the Walnut command

def r3an n "$g(i,j,k,n)":

In the same way we can compute linear representations for

r(3, A, n− 1), r(3, A, bn/4c), and r(3, A, bn/4c − 1)

using the following commands:

def r3anm1 n "$g(i,j,k,n-1)":

def r3an4 n "$g(i,j,k,n/4)":

def r3an4m1 n "$g(i,j,k,n/4-1)":

These have rank 143, 446, 446 respectively. From these four linear representations

we can compute a linear representation for the linear combination

f(n) := d(n)− 4d(bn/4c)
= r(3, A, n)− r(3, A, n− 1)− 4(r(3, A, bn/4c)− r(3, A, bn/4c − 1)).

The resulting linear representation has rank 1178.

Now we can use Theorem 3 to minimize this linear representation, resulting in a

linear representation (v′, γ′, w′) for f of rank 16. We give it explicitly below:

v′
T

=



1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


w′ =



−3
−2
−1
−3
−6
−5
−1
−3
−6
−6
−3
−3
3
1
−1
3


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γ′(0) =

1

276



276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 276 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 276 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 276 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 276 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 276 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 276 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 276 0
0 0 0 −616 −348 344 156 −202 156 414 208 −680 −8 692 −572 −634
0 0 0 244 −36 −288 −566 405 −566 161 12 1408 −280 −252 542 971
0 0 0 276 552 92 46 23 46 −253 −368 92 276 −460 138 253
0 0 0 −380 −324 168 334 −219 334 161 384 −668 56 492 −274 −553
0 0 0 448 504 168 472 126 196 −322 −168 −392 56 −336 140 −70
0 0 0 −344 −180 216 712 −252 712 92 60 −1148 164 396 −556 −964
0 0 0 −132 −252 −84 −6 75 −6 207 84 12 −120 168 −162 −195
0 0 0 364 444 56 −226 203 −226 −161 −332 360 80 −388 62 429



γ′(1) =

1

552



0 552 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 552 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 552 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 552 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 552 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 552 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 552 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 552
0 0 0 −104 −600 −16 −724 218 −724 322 568 1632 −496 32 692 942
0 0 0 −444 −396 420 306 −99 306 345 408 −1164 48 816 −294 −957
0 0 0 −300 180 612 714 −231 714 69 −336 −1428 480 432 −870 −945
0 0 0 616 72 −528 −1076 846 −1076 230 −24 2704 −544 −600 1124 1922
0 0 0 324 468 156 642 393 642 −483 120 −732 144 −312 −54 −249
0 0 0 376 216 −480 −284 606 −284 230 −72 1120 −160 −696 428 890
0 0 0 772 420 −596 −726 565 −726 −207 −232 1820 −352 −1016 914 1291
0 0 0 −980 −516 748 1302 −1049 1302 −69 632 −2788 464 1264 −1186 −2351


Using Theorem 4, we can check that the range of this linear representation is

finite and explicitly deduce a DFAO M for it. By inspection of M , we see that the

range of f is

{−18,−15,−14,−12,−11,−10,−9,−8,−7,−6,−5,−4,−3,−2,−1,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 18}.

Thus we have shown f(n) = d(n)− 4d(bn/4c) ≥ −18.

We now verify by induction on n that d(n) > n/5 + 7 for n ≥ 87. The base case

is 87 ≤ n < 348, and is easily checked.

Now assume n ≥ 348 and that d(n′) > n′/5 + 7 for 87 ≤ n′ < n. Then by

induction

d(n) ≥ 4d(bn/4c)− 18 > 4(bn/4c/5 + 7)− 18 ≥ 4((n/4− 1)/5 + 7)− 18 > n/5 + 7,

as desired.

After checking that d(n) > 0 for 0 ≤ n < 87, it follows that d(n) > 0 for all

n.
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