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Abstract

Let m be a positive integer. We show that the exponential Diophantine equation
(44m2 + 1)x + (5m2 − 1)y = (7m)z has only the positive integer solution (x, y, z) =
(1, 1, 2) under some conditions. The proof is based on elementary methods, Baker’s
method and linear forms in p-adic logarithms.

1. Introduction

Let A,B,C be fixed coprime positive integers with min(A,B,C) > 1. The ternary

exponential Diophantine equation

Ax +By = Cz (1)

in positive integers x, y, z has been actively studied by many authors. It is known

that the number of solutions (x, y, z) of Equation (1) is finite.

In the last decade, many of the recent works on Equation (1) concerned the case

where

A = am2 + 1, B = bm2 − 1, C = cm,

and a, b, c are fixed positive integers such that a+ b = c2, 2 - c. Clearly, in this case

Equation (1) always has a solution (x, y, z) = (1, 1, 2).

In 2020 Terai and Shinsho [12] proposed the following conjecture.
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Conjecture 1. Let m be a positive integer greater than one. Let a, b, c > 1 be

positive integers satisfying a+ b = c2. Then the equation

(am2 + 1)x + (bm2 − 1)y = (cm)z

has only the positive integer solution (x, y, z) = (1, 1, 2).

Although, in general, the above conjecture is widely open, it has been confirmed

by several authors under some conditions on m, a, b, c:

• (N. Terai [8]) (a, b, c) = (4, 5, 3), m ≤ 20 or m 6≡ 3 (mod 6).

• (J.-L. Su and X.-X. Li [7]) (a, b, c) = (4, 5, 3), m > 90, m ≡ 0 (mod 3).

• (C. Bertok [2]) (a, b, c) = (4, 5, 3), 20 < m ≤ 90.

• (M. Alan [1]) (a, b, c) = (18, 7, 5), m 6≡ 23, 47, 63 or 87 (mod 120).

• (N. Terai [10]) (a, b, c) = (4, 21, 5), m satisfies some conditions.

• (N. Terai [9]) (a, b, c) = (10, 15, 5), for all m.

• (N. Terai and T. Hibino [11]) (a, b, c) = (12, 13, 5), m 6≡ 17, 33 (mod 40).

• (N. Terai and Y. Shinsho [13]) (a, b, c) = (4, 45, 7), m ≡ −1 (mod 3), m ≡ 2

(mod 5) or m ≡ ±1,±2 (mod 7).

• (S. Fei and J. Luo [4]) (a, b, c) = (28, 21, 7), for all m.

In this paper we consider the exponential Diophantine equation

(44m2 + 1)x + (5m2 − 1)y = (7m)z. (2)

We prove the following result.

Theorem 1. Let m be a positive integer. When m is odd, we suppose that

m ≡ 2 (mod 5) or m ≡ 0,±1,±3 (mod 7). (3)

Then Equation (2) has only the positive integer solution (x, y, z) = (1, 1, 2).

2. Preliminaries

In this section, we give some lemmas that will be useful for the proof of the main

result.

Lemma 1 (Terai-Shinsho [12]). Let r be an odd integer with r ≥ 3. Then the

equation

4x + (r2 − 4)y = rz

has only the positive integer solution (x, y, z) = (1, 1, 2).
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Let α be an algebraic number of degree d ≥ 1 with the minimal polynomial

a0X
d + +a1X

d−1 + · · ·+ ad = a0

d∏
i=1

(X − α(i)),

where the ai’s are relatively prime integers with a0 > 0 and the α(i)s are the

conjugates of α. Then the logarithmic height of α is defined as

h(α) =
1

d

(
log |a0|+

d∑
i=1

log (max{|α(i)|, 1})
)
.

Let α1, α2 be two real algebraic numbers with |α1|, |α2| ≥ 1 and b1, b2 be positive

integers. We consider the linear form

Λ1 = b2 logα2 − b1 logα1.

Let A1 and A2 be real numbers greater than 1 with

logAi ≥ max

{
h(αi),

| logαi|
D

,
1

D

}
(i = 1, 2),

where D = [Q(α1, α2) : Q]. Set

b′ =
b1

D logA2
+

b2
D logA1

.

With the above notation, we cite a result due to Laurent [6, Corollary 2] withm = 10

and C2 = 25.2. Recall that two nonzero complex numbers α, β are multiplicatively

independent if the only solution of the equation αxβy = 1 in integers x, y is x =

y = 0.

Lemma 2 (Laurent [6]). Let Λ1 be given as above with α1 > 1 and α2 > 1. Suppose

that α1 and α2 are multiplicatively independent. Then

log |Λ1| ≥ −25.2D4

(
max

{
log b′ + 0.38,

10

D

})2

logA1 logA2.

We will also need a result on linear forms in p-adic logarithms due to Bugeaud.

Here we just use a special case y1 = y2 = 1 in the notation from [3, p. 375]. Let p

be an odd prime and a1 and a2 be non-zero integers prime to p. Let g denote the

smallest positive integer such that

vp(ag1 − 1) ≥ 1, vp(ag2 − 1) ≥ 1,

where we denote the p-adic valuation by vp(·). Assume that there exists a real

number E such that

1

p− 1
< E ≤ vp(ag1 − 1).
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We consider the integer

Λ2 = ab11 − a
b2
2 .

Lemma 3 (Bugeaud [3]). Let A1 > 1, A2 > 1 be real numbers such that

logAi ≥ max{log |ai|, E log p} (i = 1, 2)

and put

b′ =
b1

logA2
+

b2
logA1

.

If a1 and a2 are multiplicatively independent then we have the upper estimate

vp(Λ2) ≤ 36.1g

E3(log p)4
(max{log b′ + log (E log p) + 0.4, 6E log p, 5})2 logA1 logA2.

The next lemma shows that for a possible solution (x, y, z) of the exponential

Diophantine equation (am2 + 1)x + (bm2− 1)y = (cm)z there is an upper and lower

bound for z depending on max{x, y} and m.

Lemma 4 (Alan [1]). Let a, b, c and m > 1 be positive integers such that a+ b = c2

and (x, y, z) be a positive integer solution of the exponential Diophantine equation

(am2 + 1)x + (bm2 − 1)y = (cm)z. If M = max{x, y} > 1, then

(
2−

log
(

c2

min
(
a,b− 1

m2

))
log (cm)

)
M < z < 2M.

Finally for the case m ≡ 0 (mod 7) we will require a result from [5] that gives

an upper bound for m.

Lemma 5 (Fu-Yang [5]). Let a, b, c,m be positive integers such that a+b = c2, 2 | a,
2 - c, and m > 1. If c | m and m > 36c3 log c, then (am2 +1)x +(bm2−1)y = (cm)z

has only the solution (x, y, z) = (1, 1, 2).

3. Proof

In this section, we give a proof of Theorem 1. The proof follows in a series of

lemmas. First we consider the case m = 1.

Lemma 6. The equation

45x + 4y = 7z

has only the positive integer solution (x, y, z) = (1, 1, 2).
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Proof. This follows from Lemma 1 with r = 7.

By Lemma 6, we may assume that m ≥ 2.

Lemma 7. If (x, y, z) is a positive integer solution of Equation (2), then y is odd.

Proof. It follows from Equation (2) that z ≥ 2. Taking Equation (2) modulo m2

implies that 1 + (−1)y ≡ 0 (mod m2) and hence y is odd.

Lemma 8. If m is even then Equation (2) has only the positive integer solution

(x, y, z) = (1, 1, 2).

Proof. If z ≤ 2, then (x, y, z) = (1, 1, 2) is the only positive integer solution of

Equation (2). Thus we may assume that z ≥ 3. Taking Equation (2) modulo m3

implies that

1 + 44m2x− 1 + 5m2y ≡ 0 (mod m3).

So

44x+ 5y ≡ 0 (mod m),

which is impossible, since y is odd and m is even. Hence for z ≥ 3, Equation (2)

has no positive integer solution when m is even.

3.1. The Case m Is Odd and m ≡ 2 (mod 5) or m ≡ ±1,±3 (mod 7)

By Lemma 8, we may suppose that m is odd and m ≥ 3. Let (x, y, z) be a solution

of Equation (2).

Lemma 9. If m is odd and m ≡ 2 (mod 5) or m ≡ ±1,±3 (mod 7), then y = 1

and x is odd.

Proof. We follow closely an argument in [13]. We first show that x is odd and z is

even by considering the following case analysis.

a) m ≡ 2 (mod 5). Taking Equation (2) modulo 5 implies that

2x + (−1)y ≡ (−1)z (mod 5).

Since y is odd, we have 2x ≡ 1 + (−1)z (mod 5). This shows that z is even. Then

1 =
(
2
5

)x−1
= (−1)x−1, where (∗∗ ) denotes the Jacobi symbol. Hence x is odd.

b) m ≡ ±1,±3 (mod 7). Since m2 ≡ 1 (mod 7) or m2 ≡ 2 (mod 7), taking

Equation (2) modulo 7 implies that

3x + 4y ≡ 0 (mod 7) or 5x + 2y ≡ 0 (mod 7),
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that is,
(
3
7

)x
=
(−4y

7

)
or
(
5
7

)x
=
(−2y

7

)
. This shows that x is odd. In these cases,

we have that
(

5m2−1
44m2+1

)
= 1 and

(
7m

44m2+1

)
= −1. Indeed,(

5m2 − 1

44m2 + 1

)
=

(
49m2

44m2 + 1

)
= 1

and (
7m

44m2 + 1

)
=

(
7

44m2 + 1

)(
m

44m2 + 1

)
=

(
44m2 + 1

7

)(
44m2 + 1

m

)
=

(
2m2 + 1

7

)
= −1,

since m2 ≡ 1, 2 (mod 7). Hence z is even from Equation (2).

Suppose that y ≥ 2. Taking Equation (2) modulo 8 implies that

5x ≡ (7m)z ≡ 1 (mod 8),

so x is even, but this contradicts the fact that x is odd as seen from above. Hence,

y = 1.

From Lemma 9, it follows that y = 1 and x is odd. If x = 1, then clearly z = 2.

From now on, we may suppose that x ≥ 3. Thus our theorem is reduced to solving

Pillai’s equation

cz − ax = b (4)

with x ≥ 3, where a = 44m2 + 1, b = 5m2 − 1 and c = 7m.

Next we obtain a lower bound for x.

Lemma 10. If (x, y, z) is a positive integer solution of Equation (4), then

x ≥ 1

44
(m2 − 5).

Proof. Since x ≥ 3, from Equation (4) we get

(7m)z = (44m2 + 1)x + 5m2 − 1 ≥ (44m2 + 1)3 + 5m2 − 1 > (7m)3.

Hence z ≥ 4. Taking Equation (4) modulo m4 implies that

1 + 44m2x+ 5m2 − 1 ≡ 0 (mod m4),

so 44x+ 5 ≡ 0 (mod m2) and the lemma follows.

Lemma 11. If (x, y, z) is a positive integer solution of Equation (4), then

x < 2521 log (7m).
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Proof. The proof follows the argument as in [1], [11], and [13]. Without loss of

generality we may assume that z > 2. Consider the linear form of two logarithms

Λ = z log c− x log a.

Using the inequality log (1 + t) < t for t > 0, we have

0 < Λ = log

(
cz

ax

)
= log

(
1 +

b

ax

)
<

b

ax
. (5)

Hence, we get

log Λ < log b− x log a. (6)

On the other hand, it follows from Lemma 2 that

log Λ ≥ −25.2(max{log b′ + 0.38, 10})2 log a log c, (7)

where

b′ =
x

log c
+

z

log a
.

Observe that

ax+1−cz = a(cz−b)−cz = (a−1)cz−ab > 44m2 ·49m2−(44m2 +1)(5m2−1) > 0,

since z > 2. Thus b′ < 2x+1
log c . Put M = x

log c . Now combining (6) and (7) we obtain

x log a < log b+ 25.2

(
max

{
log

(
2M +

1

log c

)
+ 0.38, 10

})2

log a log c.

Since log b < log a log c and log c = log 7m > 2 for m ≥ 3, we can rewrite the above

inequality as

M < 1 + 25.2(max{log (2M + 0.5) + 0.38, 10})2.

If log (2M + 0.5) + 0.38 > 10, then M ≥ 7532. But the inequality

M < 1 + 25.2(log (2M + 0.5) + 0.38)2

implies M ≤ 1867. Therefore, max{log (2M + 0.5)+0.38, 10} = 10 yields M < 2521

and hence x < 2521 log (7m).

We are now ready to prove Theorem 1. It follows from Lemmas 10, 11 that

1

44
(m2 − 5) < 2521 log (7m).
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Hence we obtain m ≤ 990. From (5) we have the inequality∣∣∣∣ log a

log c
− z

x

∣∣∣∣ < b

xax log c
.

Since ax log c
b > 44m2x

5m2 > 2x, we get that∣∣∣∣ log a

log c
− z

x

∣∣∣∣ < 1

2x2
,

which implies that z
x is a convergent in the simple continued fraction expansion to

log a
log c . Let z

x = pk

qk
, where pk

qk
is the k-th convergent of the simple continued fraction

expansion to log a
log c . Note that qk ≤ x, since (pk, qk) = 1. It follows then that

1

q2k(ak+1 + 2)
<

∣∣∣∣ log a

log c
− pk
qk

∣∣∣∣ < b

xax log c
<

b

qkaqk log c
,

where ak+1 is the (k + 1)-st partial quotient to log a
log c . Thus qk and ak+1 satisfy the

inequality

ak+1 + 2 >
aqk log c

bqk
. (8)

Finally, using a computer program we checked that there do not exist any convergent
pk

qk
of log a

log c satisfying (8) when qk < 2521 log 7m in the range 3 ≤ m ≤ 990.

In view of the above proof, we have proved the following:

Proposition 1. Let m be a positive integer with m ≥ 3. Put a = 44m2 + 1,

b = 5m2 − 1 and c = 7m. Then Pillai’s equation

cz − ax = b

has no positive integer solutions x, z with x ≥ 3.

3.2. The Case m is Odd and 7 | m

From Lemma 5, we may assume that m ≤ 24028 when m ≡ 0 (mod 7).

Lemma 12. Let (x, y, z) be a positive integer solution of Equation (2). Suppose

that m ≡ 0 (mod 7). Then the only positive integer solution of Equation (2) is

(x, y, z) = (1, 1, 2).

Proof. Obviously (1, 1, 2) is the only solution of Equation (2) for M = max{x, y} =

1. Suppose that M > 1. From Lemma 4 for m ≥ 7 we have that

1.35M <

(
2−

log (49
4 )

log 49

)
M < z < 2M.
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Hence z ≥ 3. Taking Equation (2) modulo m, we see that y is odd. Here we apply

Lemma 3. For this we set p = 7, a1 = 44m2 + 1, a2 = 1− 5m2, b1 = x, b2 = y, and

Λ := (44m2 + 1)x − (1− 5m2)y.

Then we may take g = 1, E = 2, A1 = 44m2 + 1, A2 = 5m2 − 1. We get

2z ≤ 36.1(max{log b′ + log (2 log 7) + 0.4, 12 log 7, 5})2 log (44m2 + 1) log (5m2 − 1)

8(log 7)4
,

where

b′ =
x

log (5m2 − 1)
+

y

log (44m2 + 1)
.

Suppose that z ≥ 4. We will show that this leads to a contradiction. Taking

Equation (2) modulo m4, we find

44x+ 5y ≡ 0 (mod m2).

Then M ≥ m2

49 . Since z >

(
2− log ( 49

4 )

log (7m)

)
M and b′ < M

logm we have that

2

(
2−

log (49
4 )

log (7m)

)
M ≤ 36.1

8(log 7)4

(
max{log

(
M

logm

)
+ log (2 log 7) + 0.4, 12 log 7}

)2

× log (44m2 + 1) log (5m2 − 1). (9)

Let

h = max{log

(
M

logm

)
+ log (2 log 7) + 0.4, 12 log 7}.

Suppose that log
(

M
logm

)
+ log (2 log 7) + 0.4 ≥ 12 log 7. Then the inequality

logM ≥ 12 log 7 − log (2 log 7) − 0.4 implies that M ≥ 2383998120. On the other

hand, from Inequality (9) we have that

2M ≤ 0.32(logM + 1.76)2 log (44 · 240282 + 1) log (5 · 240282 − 1),

which implies that M < 10061, a contradiction. Hence h = 12 log 7 and therefore

from Inequality (9) we get

2m2

49

(
2−

log ( 49
4 )

log (7m)

)
≤ 172 log (44m2 + 1) log (5m2 − 1).

This yields that m ≤ 795. Hence

M ≤ 172 log (44m2 + 1) log (5m2 − 1)

2

(
2− log ( 49

4 )

log (7m)

)
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and therefore all x, y, z are bounded. Using a program in Maple we found that

there is no (m,x, y, z) under consideration satisfying Equation (2). We conclude

that z ≤ 3. In this case, one can easily show that (x, y, z) = (1, 1, 2). Thus there

is no positive integer solution of Equation (2) other than (x, y, z) = (1, 1, 2) when

7 | m.

4. Example

In this section we verify that when 1 ≤ m ≤ 18, Equation (2) has only the positive

integer solution (x, y, z) = (1, 1, 2).

Example 1. Let m be a positive integer with 1 ≤ m ≤ 18. Then the Diophantine

equation

(44m2 + 1)x + (5m2 − 1)y = (7m)z

has only the positive integer solution (x, y, z) = (1, 1, 2).

Proof. It follows from Theorem 1 that the above equation has only the positive

integer solution (x, y, z) = (1, 1, 2) in all cases 1 ≤ m ≤ 18 except for the following

two cases m = 5, 9:

(a) (3 · 367)x + (4 · 31)y = 35z

(b) (5 · 23 · 31)x + (4 · 101)y = 63z

(a) Case 1: y = 1. Then it follows from Proposition 1 that the equation

35z − (3 · 367)x = 124

has only the positive integer solution z = 2, x = 1.

Case 2: y ≥ 2. Then taking (a) modulo 8 implies that 5x ≡ 3z (mod 8). By

( 124
367 ) = 1 and ( 35

367 ) = −1, we see that z is even and hence x is even, say z = 2Z,

x = 2X. Then

(35Z + (3 · 367)X)(35Z − (3 · 367)X) = (4 · 31)y.

Thus we have the following two cases:{
35Z ± (3 · 367)X = 22y−1

35Z ∓ (3 · 367)X = 2 · 31y

or {
35Z ± (3 · 367)X = 22y−1 · 31y

35Z ∓ (3 · 367)X = 2.
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We deal with the first system. Adding these two equations yields

35Z = 22y−2 + 31y.

Taking the above equation modulo 5 implies that (−1)y−1 + 1 ≡ 0 (mod 5) and y

is even, which is impossible.

Now we consider the second system. Adding these two equations yields

35Z = 22y−231y + 1

Again taking the above equation modulo 5 we see that y is even, which is impossible.

(b) Case 1: y = 1. Then it follows from Proposition 1 that the equation

63z − (5 · 23 · 31)x = 404

has only the positive integer solution z = 2, x = 1.

Case 2: y ≥ 2. Then taking (b) modulo 8 implies that 5x ≡ (−1)z (mod 8). By

( 404
23 ) = 1 and ( 63

23 ) = −1, we see that z is even and hence x is even, say z = 2Z,

x = 2X. Then

(63Z + (5 · 23 · 31)X)(63Z − (5 · 23 · 31)X) = (4 · 101)y.

Thus we have the following two cases:{
63Z ± (5 · 23 · 31)X = 22y−1

35Z ∓ (5 · 23 · 31)X = 2 · 101y

or {
63Z ± (5 · 23 · 31)X = 22y−1 · 101y

63Z ∓ (5 · 23 · 31)X = 2.

We deal with the first system. Adding these two equations yields

63Z = 22y−2 + 101y.

Taking the above equation modulo 3 implies that y is odd. On the other hand,

taking the same equation modulo 7, yields 4y−1 ≡ 4y (mod 7), which is impossible.

Now we consider the second system. Adding these two equations yields

63Z = 22y−2101y + 1.

Again taking the above equation modulo 3 we see that y is odd. On the other

hand, taking the same equation modulo 31, yields 1 ≡ 25y−2 + 1 (mod 31), which

is impossible.
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