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Abstract
Let pod,(n) denote the number of ¢-regular partitions of a positive integer n into
distinct odd parts. In this article, we find some congruences for pod;(n), pod,(n),
podg(n) and podsy;(n) by using the congruence properties of t4(n), ts(n), ts(n) and
tos(n), respectively, where t;(n) is the number of representations of n as a sum of
k triangular numbers.

1. Introduction

Throughout this article, we let ¢ = €™ with Im z > 0. We also define the ¢-shifted
factorials as

(a5 @)oo 1= [] (1 - ag™).
n=0
A special case of (a; q)oo is given by
(oo}
fi = (¢":d") Hl—q for any k£ > 1.

Furthermore, let ¢;(n) denote the number of representations as the sum of k
triangular numbers of a positive integer n. The corresponding generating function

of tr(n) is given by
(g) = tr(n)g
n=0

A partition of a positive integer n is any nonincreasing sequence of positive
integers whose sum is n. We say that a partition of n is £-regular if none of its parts

DOI: 10.5281/zenodo.8399686



INTEGERS: 23 (2023) 2

are divisible by £. Moreover, let pod,(n) denote the number of ¢-regular partitions
with distinct odd parts. The generating function of pod,(n) is given by

oo 0
3 pody(n)g" = L), 1)
n=0

Recently, the arithmetic properties of pod,(n) have been widely studied. See, for
example, [1]-[5]. In this article, by using the congruence properties of t4(n), tg(n),
tg(n) and t24(n), we prove some congruence relations for pods(n), pod;(n), podg(n)
and podgyg(n), respectively.

2. Main Results

In order to obtain the main results, we first prove the following lemmas.
Lemma 1. For any k > 0, let p be an odd prime. Then we have the following:

(i) if p=1 (mod 3), then

ty <pk2_ 1) =t3(p*) =k+1 (mod 3); (2)

(ii) 4f p=2 (mod 3), then

u(ﬁ:*)zaﬁﬂzl<mﬂa 3)
and
u(ﬁf;”)EQWszo<mma; )

(iii) #f p=0 (mod 3), then

e (pk; 1) — (") =0 (mod 3). (5)

Proof. We write
(pt)k-‘rl 1
pr—1

k .
(@)= () =
i=0

K2

If t is odd, then for p =1 (mod 3) with [ = 0, 1, 2, we have
pt =1 (mod 3).
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Consequently, we can deduce that

oi(p*)=k+1 (mod3), p=1 (mod 3); (6)
o(**) =0 (mod 3), o(p**)=1 (mod3), p=2 (mod3); (7)
o) =1 (mod3), p=0 (mod 3). (8)

We make use of the following identity from [6]:
t4(n) :01(2n+1), (9)

where o3(n) =324, d* is the standard divisor function. Replacing n by (p* —1)/2
in (9), we obtain

ta (pk; 1) — o1 (p"). (10)
We also use the following identity from [6]:
ts(n) = o3(n) — o3 (g) . (11)
Similarly, replacing n by p* in (11), we obtain
ts(p*) = o3(p"). (12)
Combining (6), (7), (8), (10) and (12), we deduce (2)-(5). O

The proof of the following lemma is similar to the the proof of Lemma 1, and we
omit the proof.

Lemma 2. For any k > 0, let p be an odd prime. Then we have the following:
(i) if p=1 (mod 5), then

b1
t4(p 5 )Ek+1 (mod 5);

(ii) 4f p=2 (mod 5), then

and



INTEGERS: 23 (2023) 4

(iii) if p=3 (mod b), then

ak
t4 <p 1> =1 (mod 5);

2

Ak+1 _
t4<p 5 1>E4 (mod 5);

ak+2 _
t4<p 5 1)53 (mod 5)

and

(iv) if p=4 (mod 5), then

and

(v) if p=0 (mod 5), then

ty (pk; 1) =1 (mod 5).

Lemma 3. For any k > 0, let p be an odd prime. The following congruences hold:
(i) ifp=1 (mod 7), then

o (3(‘”22‘1)) — 2%k +1 (mod 7); (13)

(ii) ifp=2,5 (mod 7), then
tg (3(10611)) =1 (mod 7); (14)
tg (3(])%:1_1)) =5 (mod 7) (15)

and
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(iii) if p=3, 4, 6 (mod 7), then

to (3(]’61_1)) =1 (mod 7); (17)
to (3@%;4_1)) =3 (mod 7) (18)
and
to (W) =0 (mod 7); (19)
(iv) if p=0 (mod 7), then
te (3@21_1)) =1 (mod7). (20)

Proof. We use the following identity for ¢g(n), which was proved in [6] using the
theory of elliptic functions:

1 2 2
to(n) = ¢ > d? — > d? . (21)
d|4n+3, d=3(mod 4) d|4n+3, d=1(mod 4)
If p is an odd prime, then for k > 0, we have
p?* =1 (mod 4).

Consequently, replacing n by 3(p?* —1)/4 in (21), we can conclude that

k .
3(p2k —1) 2 0 p2(2k+1) _1
to ([ 2 ) =D = 22
Hence equation (22) gives the congruences (13)-(20). O

Lemma 4. For any k > 0, let p be an odd prime. Then we have the following:
(i) if p=1 (mod 5), then
toa(5p® —3) =k +1 (mod 5); (23)

(ii) 4f p=2 (mod 5), then

toa(5p*F —3) =1 (mod 5); (24)
toa(5p** Tt —3) =4 (mod 5); (25)
tos(5p***2 —3) =3  (mod 5) (26)

and
toa(5p** 3 —3) =0 (mod 5); (27)
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(iii) if p=3 (mod b), then

toa(5p* —3) =1 (mod 5); (28)
toa(5p* Tt —3) =3 (mod 5); (29)
tos(5p***2 —3) =2 (mod 5) (30)
and
toa(5p*F T3 —3) =0 (mod 5); (31)
(iv) if p=4 (mod 5), then
toa(5p?F —3) =1 (mod 5) (32)
and
toa(5p*FT1 —3) =0 (mod 5); (33)
(v) if p=0 (mod 5), then
toa(5p*F —3) =1 (mod 5). (34)

Proof. We also use the following identity for ¢24(n), which was proved in [6] using
the theory of elliptic functions:

176896t24 (1 — 3) = 011(n) — o131 (g) —7(n) — 20727 (g) : (35)
where 7(n) is the Ramanujan tau function. Let p be an odd prime and k& > 0.

Replacing n by 5p* in (35), we obtain

taa(5p* — 3) = 011 (5p%) — 7(5p%)  (mod 5). (36)
We note that
. k ok ' k o plk+) g
o11(5p") = Zplh + Z5p113 = Zplh =TT (mod 5). (37)
i=0 7=0 i=0 p
Using the fact that 7(5p%) = 0 (mod 5), we have
k ) 1(k+1) _
taa(5p" — 3) = 011 (5p*) = ZPIM = ppui_l (mod 5). (38)
i=0

Similarly as in the preceding discussion, Equation (38) gives the congruences (23)-
(34). O

We now state and prove our main results of this article.
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Theorem 1. For any k > 0, let p be an odd prime. Then we have the following:

(i) ifp=1 (mod 3), then
pody(p* — 1) = podg(2p* +1) =k +1 (mod 3);

(ii) if p =2 (mod 3), then

podgy(p** — 1) = podg(2p** +1) =1 (mod 3)
and
pody (p** ! — 1) = pody(2p***! +1) =0 (mod 3);

(iii) if p=0 (mod 3), then

pody(p — 1) = podg(2p" +1) =0 (mod 3).

Proof. Setting £ =9 in (1), we obtain

i podg(n)q" —_ w(fqg) )
n=0

Replacing ¢ by —q in (43), we have

Y(q) fo 13 fo

S pody(m)(-1rg = D) T S o e S oq ),

We make use of the following identity from [7]:
h fafs f4f6f36

fo  fafefis f12f18
By substituting (45) in (44), we can rewrite (44) as

fafefls  fifis

n=0

Extracting the terms involving ¢>" in (46) and replacing ¢* by ¢, we obtain

Zpodg (2n)q" = ‘?4%2;;2 = —22 (mod 3).

1
Equating the coefficients of g™, we find that

podg(2n) = t4(n) (mod 3).

ipodg(n)(_l)nqn = 216 < f2f132 f4f6f36) (mod 3)

(39)

(40)

(41)

(44)

(46)

(47)
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Similarly, extracting the terms involving ¢?"*! in (46), we obtain

- 2n+1 f216f4f6f326 — 416
= pody(2n + )¢ = g2 200 = g2l (mod 3). (48)
2 Frof?s /3
Dividing (48) by —q and replacing ¢* by ¢, we obtain
o0 16
Z pody(2n + 1)¢" = % (mod 3). (49)
1

Equating the coefficients of ¢™ in (49), we find that

n=0

podg(2n + 1) =tg(n) (mod 3). (50)
Congruences (39)-(42) follows from (47), (50) and Lemma 1. O

To prove the remaining theorems, we need to state the following congruence. If
p is prime, then for & > 0, we have

nz:;]pOdpk (n)(=1)"q" = wd()(é:)) = ,(/}pk—l(q> _ ;tpkq(n)qn (mod p),
which implies
pod,i (n)(—1)" = tye_1(n) (mod p). (51)

Combining (51) with Lemma 2, Lemma 3 and Lemma 4, we can derive the following
theorems.

Theorem 2. For any k > 0, let p be an odd prime. Then we have the following:

(i) if p=1 (mod 5), then

k_
pods (p 5 1) =k+1 (mod?5);

(ii) if p =2 (mod 5), then

4k_1
pods (p 5 )El (mod 5);
1

4k+1
P
pods <2

4k+2 1
pods <p2 >

ak+3 _ 1
pods <p2> =0 (mod 5);

) =3 (mod 5);

2 (mod 5)

and
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(iii) if p=3 (mod b), then

Ak
pods <p 5 1) =1 (mod 5);

Ak+1 _
pods (232)

ak+2 _ q
pods <p2> =3 (mod 5)

k43 _
pods <p) =0 (mod 5);

if p=4 (mod 5), then

4 (mod 5);

and

and

if p=0 (mod 5), then

ko_
pods (p 5 1) =1 (mod 5).

Theorem 3. For any k > 0, let p be an odd prime. Then we have the following:

(i) ifp=1 (mod 7), then

2% _
podz (?)(1)41)) =2k+1 (mod7);

(ii)) fp=2,5 (mod 7), then

) E—

and
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(i) if p=3, 4, 6 (mod 7), then

) E—

pods (?)(]”%T_l)) =3 (mod 7)

6k+2 1
pods (3(194)>

(iv) if p=0 (mod 7), then

) E—

and

0 (mod 7);

Theorem 4. For any k > 0, let p be an odd prime. Then we have the following:
(i) if p=1 (mod 5), then
podas(5pF —3) =k +1 (mod 5);

(ii) if p =2 (mod 5), then
podas(5p™ —3) =1 (mod 5);
podas (5p*F 1 —3) =4 (mod 5);
podas(5p™ 1 —3) =3 (mod 5)

and
podas (5p* T3 —3) =0  (mod 5);

(iii) of p=3 (mod 5), then
podas (5p** —3) =1 (mod 5);
podas (5p** ! —3) =3 (mod 5);
podas (5p*"T2 —3) =2 (mod 5)

and
p0d25(5p4k+3 —3)=0 (mod 5);

(iv) if p=4 (mod 5), then
podas(5p%% —3) =1 (mod 5)

and
podas (5p*F T —3) =0 (mod 5);
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(v) if p=0 (mod 5), then

podas(5pF —3) =1 (mod 5).
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