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Abstract

In this paper, a unified generalization for several extensions of Fubini and Touchard
polynomials is considered. A combinatorial interpretation of the generalization in
terms of generalized hierarchical orderings is examined. Also, asymptotic results are
obtained, and a linear operator approach is used to obtain closed form expressions.

1. Introduction

Inserting bars between blocks of an ordered set partition induces a barred preferential

arrangement (see [3, 26]). The magnitude of the spaces between elements indicates

which elements belong to the same block. For instance, for the set [6] = {1, 2, . . . , 6},
the following are possible barred preferential arrangements with 2 and 3 bars re-

spectively:

(I) 26|1 5|34,

(II) |14 36| |23 5.

In the barred preferential arrangement in (I), the two bars induce three sections. In

the first section (section to the left of the first bar), there is only one block {2, 6}.
In the second section (between the two bars), there are two singleton blocks {1} and

{5}. In the third section, we have only one block {3, 4}. In the barred preferential

arrangement in (II), the three bars induce four sections. The first section is empty.

In the second section, we have two blocks: the first block is {1, 4}, and the second
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block is {3, 6}. The third section is empty. In the fourth section, we have two

blocks. The first block is {2, 3}, and the second block is the singleton {5}. Note

that in forming the barred preferential arrangements in the current study, the bars

are taken to be identical.

The Hsu-Shiue generalized Stirling numbers S(n, k, q, β, γ) (see [16]) can be

stated in the following way:

(t|(1− q))n =

n∑
k=0

S(n, k, q, β, γ)(t− γ|β)n,

where (t|(1− q))n is the generalized factorial polynomial

(t|(1− q))n =
n−1∏
k=0

(t− k(1− q)),

such that n ≥ 1 and q, β, γ are real or complex numbers.

For real or complex q, β, λ, a generalization of Fubini polynomials (see [17, 18])

is
∞∑
n=0

ω(λ)
n (x; q, β, γ)

tn

n!
=

[1 + (1− q)t]
γ

(1−q)

(1− x((1 + (1− q)t)β/(1−q) − 1))λ
. (1)

For β, λ ∈ N and q ∈ Z− = {−1,−2,−3, . . .}, combinatorial properties of the

polynomials in Equation (1) have been studied in [24], and related polynomials in

[8, 25].

Lemma 1. [10] Let β, γ be nonnegative integers. Let q ∈ Z− be such that (1− q)|β
and (1− q)|γ. Suppose the following conditions are true:

• there are k + 1 distinct cells,

• each of the first k cells (from left to right) contains β labelled compartments

(the cells are called ordinary cells),

• the (k+ 1)th cell contains γ labelled compartments (the cell is called a special

cell),

• in each cell, compartments have cyclic ordered numbering,

• the capacity of each compartment is limited to one element,

• in each consecutive available (1− q) compartments only the first compartment

would be occupied by an element, the (1−q) compartments are called a (1−q)-
block.

Then the number of ways of distributing elements of [n] into the compartments

satisfying the above conditions, one element at a time, such that the first k cells are

nonempty, is βkk!S(n, k, q, β, γ).
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In [24], it is noted that for all k = 0, 1, . . . , n, the number of ways of distributing

[n] into cells satisfying the conditions of Lemma 1 above, such that λ− 1 identical

bars are inserted before, in between, and immediately after the first k cells, and

each of the ordinary cells is colored, each with one of x available colors, is

ω(λ)
n (x; q, β, γ) =

n∑
k=0

(
k + λ− 1

k

)
k!S(n, k, q, β, γ)βkxk. (2)

The blocks of an ordered set partition can be viewed as a preferential arrangement

of the elements of the set. For instance, the first block of an ordered set partition

from left to right can be considered the least preferred elements. Hence, throughout

the paper the use of the terms ordered set partition and preferential arrangement

is meant to mean the same thing. Blocks of a preferential arrangement can also be

viewed from left to right as elements being ranked based on some relative status. For

instance, the first block of an ordered set partition can be considered as the lowest

level of a hierarchy. Hence, by a hierarchy we also mean an ordered set partition.

In different parts of this paper we use the more appropriate word depending on

the context. Partitioning [n] into nonempty disjoint subsets is done, such that on

each of the subsets a preferential arrangement/hierarchy is formed, following which

a fixed collection of all those preferential arrangements/hierarchies forms a single

hierarchical ordering. The integer sequence for the number of hierarchical orderings

is A075729 in [28]. The generating function for the number of hierarchical orderings

on [n] is (see [29])

∞∑
n=0

Hn
tn

n!
= exp

(
1

2− et
− 1

)
. (3)

As an example, let us consider the possible hierarchical orderings of the set [2].

There are four possible hierarchical orderings:

• when we have only one hierarchy, there are three possibilities; 1 2, 2 1, 12;

• when we have two hierarchies, one hierarchy will be composed of the element

{1} and the other of the element {2}.

Hierarchical orderings are studied in Motzkin’s classical paper [23]. Touchard poly-

nomials, also known as exponential or Bell polynomials, are defined in the following

way (see [5, 13, 30, 31]):

∞∑
n=0

Tn(u)
tn

n!
= exp(u(et − 1)). (4)

As a generalization of Equations (3) and (4), we define (using Tsallis’ generalized
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exponential function (see [32]))

∞∑
n=0

H(λ,u,p,δ)
n (x; q, β, γ)

tn

n!
=

[
1 + (1− p)u

[
(1+(1−q)t)

γ
1−q

(1−x((1+(1−q)t)
β

1−q −1))λ
− 1

]] δ
1−p

, (5)

for real or complex numbers λ, δ, β, γ, p, q, x, u.

The generating function in Equation (5) is the main generating function in this

paper. The polynomials in Equation (5) are a unified generalization of both Fubini

and Touchard polynomial extensions. Both Fubini and Touchard polynomials have

a rich history. Over the years they have cropped up in many different branches of

mathematics and science, and are continuously being rediscovered in many branches

of mathematics. In recent years, many extensions of both kinds of polynomials have

been investigated (see, for instance, [3, 4, 6, 9, 11, 13, 17, 19, 20, 21, 25, 26]). The

following are special cases of the polynomials in Equation (5).

• The higher order degenerate Euler polynomials discussed in [17] are obtained

when (λ, γ, δ, p, q, u, x, β) = (λ, γ, 1, 0, q, 1,− 1
2 , 1).

• The two variable higher order Fubini polynomials discussed in [20, 27] are

obtained when (λ, γ, δ, p, q, u, x, β) = (λ, γ, 1, 0, 1, 1, x, 1).

• The (p, q)-deformed Touchard polynomials discussed in [13] are obtained when

(λ, γ, δ, p, q, u, x, β) = (0, 1, 1, p, q, u, x, β).

• The partially degenerate Bell polynomials discussed in [21, 22] are obtained

when (λ, γ, δ, p, q, u, x, β) = (0, 1, 1, 1, q, u, x, β).

• The higher order generalized geometric polynomials discussed in [17] are ob-

tained when (λ, γ, δ, p, q, u, x, β) = (λ, γ, 1, 0, q, 1, x, β).

In the following section, we propose a combinatorial interpretation of the poly-

nomials in Equation (5). Thereafter, we discuss some asymptotic results using a

method developed in [14, 15]. Finally, we offer a linear operator interpretation by

using linear operators having Poisson and negative binomial weights.

2. Main Generating Function and Combinatorial Interpretations

In this section, we study some special cases of the main generating function given

in Equation (5). We also discuss its possible combinatorial interpretation.
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2.1. The Case (p, δ) = (1, 1), β, γ ∈ N0 = {0, 1, 2, . . .}, and q ∈ Z−

The following formula is a consequence of Equation (5):

∞∑
n=0

H(λ,u,1,1)
n (x; q, β, γ)

tn

n!
= exp

(
u(1 + (1− q)t)

γ
1−q

(1− x((1 + (1− q)t)
β

1−q − 1))λ
− u

)
. (6)

Clearly, by Equations (1) and (3), H
(λ,u,1,1)
n (x; q, β, γ) is the number of hierar-

chies of [n] into u hierarchical orderings, where in each hierarchical ordering the

hierarchies are the barred preferential arrangements described in Equation (2). We

will refer to these hierarchies as barred hierarchies. In Equation (6), we assume that

(1− q) divides both β and γ.

Let

H
(λ,1,1,1)
n,k (x; q, β, γ) =

[
tn

n!

] [ (1+(1−q)t)
γ

1−q

(1−x((1+(1−q)t)
β

1−q −1))λ
− 1

]k
× 1

k!
. (7)

It follows from Equation (7) that H
(λ,u,1,1)
n,k (x; q, β, γ) is the number of hierarchies

of [n] into a single hierarchical ordering having k barred hierarchies.

Theorem 1. For β, λ ∈ N, (1− q)|β, and (1− q)|γ, we have

H
(λ,u,1,1)
n+1 (x; q, β, γ) = u

n∑
k=0

(
n

k

)
H

(λ,u,1,1)
k (x; q, β, γ)ω

(λ)
n+1−k(x; q, β, γ). (8)

Proof. Consider the position of the (n+ 1)st element. There are
(
n
k

)
ways of select-

ing k elements from [n] that are not in the same barred hierarchy as (n + 1). The

k elements can form u hierarchical orderings in H
(λ,u,1,1)
k (x; q, β, γ) ways. Together

with the n − k other elements, the element (n + 1) can form a single barred hier-

archy in ω
(λ)
n+1−k(x; q, β, γ) ways. The formed hierarchy can be placed in one of the

hierarchical orderings in
(
u
1

)
ways.

Special cases of Theorem 1 include Equation (2) in [29], Theorem 2 in [22], and

Theorem 2.4 in [21].

Theorem 2. For u, β, λ ∈ N, (1− q)|β, and (1− q)|γ, we have

H
(λ,u,1,1)
n+1 (x; q, β, γ) = uγ

n∑
k=0

(
n

k

)
ω
(λ)
k (x; q, β, γ − (1− q))H(λ,u,1,1)

n−k (x; q, β, γ)

+uxβλ

n∑
k=0

(
n

k

)
ω
(λ−1)
k (x; q, β, γ + β − (1− q))H(λ,u,1,1)

n−k (x; q, β, γ).

(9)

Proof. Recalling Lemma 1, we consider the following two cases.
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Case 1: Within a barred hierarchy, the (n + 1)st element is in a special cell. Say

there are k other elements together with (n + 1) in this barred hierarchy. The k

other elements can be chosen in
(
n
k

)
ways. There are γ ways of placing (n+1) within

the special cell. The k other elements, together with (n + 1), can form a barred

hierarchy in γω
(λ)
k (x; q, β, γ − (1 − q)) ways. Using the remaining n − k elements

that are not in the same barred hierarchy as (n + 1), u hierarchical orderings can

be formed in H
(λ,u,1,1)
n−k (x; q, β, γ) ways. The barred hierarchy having (n+ 1) can be

placed in one of the u hierarchical orderings in u ways. Thus, the number of possible

arrangements in this case is uγ
∑n
k=0

(
n
k

)
ω
(λ)
k (x; q, β, γ−(1−q))H(λ,u,1,1)

n−k (x; q, β, γ).

Case 2: Within a barred hierarchy, the (n + 1)st element is in an ordinary cell.

Within a barred hierarchy, there are λ ways of selecting a section to which (n+ 1)

belongs; there are β ways of choosing a compartment within the cell; and there are

x ways of coloring the cell. Consider the barred hierarchy having (n+ 1). View the

cell occupied by (n+ 1) and the special cell of the barred hierarchy as a single unit,

and call it B. Say as part of B there are k other elements (chosen in
(
n
k

)
ways).

Such barred hierarchies can be formed in ω
(λ−1)
k (x; q, β, γ + β − (1− q)) ways. The

other n − k elements that are not in the same barred hierarchy as (n + 1) can

form u hierarchical orderings in H
(λ,u,1,1)
n−k (x; q, β, γ) ways. Thus, in total, there are

uxβλ
∑n
k=0

(
n
k

)
ω
(λ−1)
k (x; q, β, γ+β−(1−q))H(λ,u,1,1)

n−k (x; q, β, γ) possible hierarchical

orderings in this case.

Theorem 2 is a generalization of Theorem 3.2 in [24]. The following identity

can be viewed as a special case of the Bell partition polynomial identity in Equa-

tion (11.11) in [7] obtained by using an algebraic technique:

H
(λ,1,1,1)
n+1,k+1(x; q, β, γ) =

n∑
i=k

(
n

i

)
H

(λ,1,1,1)
i,k (x; q, β, γ)ω

(λ)
n−i+1(x; q, β, γ). (10)

One can obtain a combinatorial proof of Equation (10) in the following way. We

construct a single hierarchical ordering of [n + 1] having k + 1 barred hierarchies.

Say there are n− i other elements in the barred hierarchy occupied by the (n+ 1)st

element. There are
(
n
i

)
ways of choosing the n− i elements. A barred hierarchy can

be formed in ω
(λ)
n−i+1(x; q, β, γ) ways. The other k barred hierarchies can be formed

in H
(λ,1,1,1)
i,k (x; q, β, γ) ways.

Theorem 3. For u, β, λ ∈ N, (1− q)|β, and (1− q)|γ, we have

(k + 1)H
(λ,1,1,1)
n+1,k+1(x; q, β, γ) =

n−k∑
i=0

(
n+ 1

i+ 1

)
H

(λ,1,1,1)
n−i,k (x; q, β, γ)ω

(λ)
i+1(x; q, β, γ). (11)

Proof. We construct a single hierarchical ordering of [n + 1] with k + 1 barred hi-

erarchies. There are
(
n+1
i+1

)
ways of choosing i + 1 elements to form one of the
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k + 1 barred hierarchies. The barred hierarchy can be formed in ω
(λ)
i+1(x; q, β, γ)

ways. The other k barred hierarchies can be formed in H
(λ,1,1,1)
n−i,k (x; q, β, γ) ways.

In light of Equation (10), constructing a hierarchical ordering having k hierar-

chies in this way leads to an overcount. The repetition comes from the fact that

the element (n + 1) can be in any of the k + 1 hierarchies. As a result, we

need to subtract kH
(λ,1,1,1)
n+1,k+1(x; q, β, γ). Thus, the number of barred hierarchies

is
∑n−k
i=0

(
n+1
i+1

)
H

(λ,1,1,1)
n−i,k (x; q, β, γ)ω

(λ)
i+1(x; p, β, γ)− kH(λ,1,1,1)

n+1,k+1(x; q, β, γ).

The identity in Equation (11) can be viewed as a special case of the Bell partition

polynomial identity given in Equation (11.12) in [7].

2.2. The General Case

In this subsection, we consider the polynomials generated by

∞∑
n=0

H(λ,u,p,δ)
n (x; q, β, γ)

tn

n!
=

[
1 + (1− p)u

[
(1+(1−q)t)

γ
1−q

(1−x((1+(1−q)t)
β

1−q −1))λ
− 1

]] δ
1−p

,

(12)

for δ, β, γ ∈ N0 and p, q ∈ Z−. Comparing Equations (7) and (12), we have

H(λ,u,p,δ)
n (x; q, β, γ) =

n∑
k=0

(δ|(1− p))kukH(λ,1,1,1)
n,k (x; q, β, γ). (13)

From Equation (13), one can give the following combinatorial interpretation of

H
(λ,u,p,δ)
n (x; q, β, γ). The number H

(λ,u,p,δ)
n (x; q, β, γ) is the number of hierarchies of

[n] into u hierarchical orderings, such that each hierarchical ordering is composed

of barred hierarchies as described in Equation (2). In the hierarchical orderings

discussed in Subsection 2.1, the barred hierarchies were unordered with respect to

each other. We now consider the case where the barred hierarchies are ordered one at

a time into δ positions (cyclically ordered), where in each available (1−p) positions

only the first position can be occupied by a barred hierarchy. We will refer to the

(1 − p) positions as (1 − p)-blocks. Also, each of the barred hierarchies is colored

with one of u available colors. For the case δ = 1 and λ = 0, Equations (14), (16),

and (17) below were obtained algebraically in [13]. Here, we provide combinatorial

proofs of their generalizations.

Theorem 4. For δ, β, γ ∈ N0, p, q ∈ Z−, and (1− p)|δ, we have

H
(λ,u,p,δ)
n+1 (x; q, β, γ) =u

n∑
m=0

[(
n
m

)
δ − (1− p)

(
n

m−1

)]
ω

(λ)
n−m+1(x; q, β, γ)

×H(λ,u,p,δ)
m (x; q, β, γ).

(14)
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Proof. The proof is based on the position of the barred hierarchy having the (n+1)st
element. We will refer to it as the chosen barred hierarchy.

Case 1: All elements of [n + 1] are in the chosen barred hierarchy. The chosen
barred hierarchy can be colored in

(
u
1

)
ways and placed in one of δ positions in

uδωλn+1(x;α, β, γ) ways.

Case 2: We use an inclusion/exclusion argument. From [n], we choose n − m
elements in

(
n

n−m
)

ways and form a barred hierarchy as the chosen barred hierar-

chy, and place it in one of δ positions. This can be done in δω
(λ)
n−m+1(x; q, β, γ)

ways. Using the unselected m elements without any restriction, one can form hier-
archical orderings and place the formed barred hierarchies in one of δ positions in

H
(λ,u,p,δ)
m (x; q, β, γ) ways.

Constructing hierarchical orderings in the above way leads to overcount. In fact,

the arrangements enumerated by H
(λ,u,p,δ)
m (x; q, β, γ) are unrestricted as in the δ

positions, the (1 − p)-block already occupied by the chosen barred hierarchy was
not considered as already occupied. To account for this, without loss of generality,
say of the δ positions, the (1− p)-block occupied by the chosen barred hierarchy is
1, 2, . . . , 1−p. A way in which at least one of the positions 1, 2, . . . , 1−p is occupied
by a non-chosen barred hierarchy is the following. From the set [n], select

(
n

m−1
)

elements, and form a barred hierarchy of [n−(m−1)] in one of the (1−p) positions.
The formed barred hierarchy can be colored and placed in one of the (1−p) positions

in u(1 − p)ω(λ)
n−(m−1)(x; q, β, γ) ways, and the other m − 1 elements, together with

the element (n + 1), can form hierarchical orderings in H
(λ,u,p,δ)
m (x; q, β, γ) ways.

Thus, the total number of arrangements in this case is

u
n∑

m=0

[(n
m

)
δ − (1− p)

(
n

m−1
)]
ω
(λ)
n−m+1(x; q, β, γ)H

(λ,u,p,δ)
m (x; q, β, γ).

By Equation (12), we have

d

du
H(λ,u,p,δ)
n (x; q, β, γ)

= δ

n−1∑
m=0

(
n

m

)
ω
(λ)
n−m(x; q, β, γ)H(λ,u,p,δ−(1−p))

m (x; q, β, γ).
(15)

Hence, we deduce that d
duH

(λ,u,p,δ)
n (x; q, β, γ) gives the number of arrangements of

[n] into hierarchical orderings placed in δ positions, such that only one of the barred
hierarchies is not colored and the (1− p)-block occupied by the non-colored barred
hierarchy ordering is pre-specified.
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Theorem 5. For δ, β, γ ∈ N0, p, q ∈ Z−, and (1− p)|δ, we have

d

du
H(λ,u,p,δ)
n (x; q, β, γ) + (1− p)u

n−1∑
m=0

(
n

m

)
d

du
H(λ,u,p,δ)
m (x; q, β, γ)ωλn−m(x; q, β, γ)

= δ

n−1∑
m=0

(
n

m

)
ωλn−m(x; q, β, γ)H(λ,u,p,δ)

m (x; q, β, γ).

(16)

The above theorem can be proved in a similar way to Theorem 4. The number
of hierarchical orderings of [n] where the formed barred hierarchies are placed in
δ+ (1− p) positions, such that one barred hierarchy is not colored and the (1− p)-
block of the noncolored barred hierarchy is pre-specified, is given by the following
identity:

(δ+(1− p))
n−1∑
m=0

(
n

m

)
H

(λ,u,p,δ)
m+1 (x; q, β, γ)ω

(λ)
n−m(x; q, β, γ)

= (δ + (1− p))u
n−1∑
m=0

(
n

m

)
ω
(λ)
n−m(x; q, β, γ)

d

du
H

(λ,u,p,δ)
m+1 (x; q, β, γ).

(17)

3. Asymptotic Results

In this section, we offer some asymptotic results for the numbersH
(λ,u,p,δ)
n (x; q, β, γ).

The results are based on a method developed in [14, 15]. The asymptotic method
has also been used in [8, 16, 24]. We let k denote the vector (k1, k2, . . . , kn)
which represents the partition 1k12k2 · · ·nkn , where k1 + 2k2 + · · · + nkn = n, and
k = k1 + k2 + · · ·+ kn is the number of parts of the partition 1k12k2 · · ·nkn . We let
d ∈ C and n ∈ N. We let (d)n denote the product d(d − 1)(d − 2) · · · (d − n + 1),
where (d)0 = 1. We also let σ(n) denote the set of partitions of n ∈ N and σ(n, k)
denote the set of partitions of n ∈ N having k parts. We let Ψ(t) denote the formal

power series
∞∑
n=0

bnt
n over C with Ψ(0) = b0 = 1. We suppose that, for any α ∈ C

with α 6= 0, we have a formal power series

Π(t) = (Ψ(t))α =

∞∑
n=0

{
α

n

}
tn, (18)

where
{
α
n

}
= [tn]Π(t) and

{
α
0

}
= 1. Then for δ ∈ C with δ 6= 0 we have

1

(δ)n
[tn] (Π(t))

δ
=

1

(δ)n

{
αδ

n

}
=

s∑
j=0

W (n, j)

(δ − n+ j)j
+ o

(
W (n, s)

(δ − n+ s)s

)
, (19)
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where W (n, i) =
∑

σ(n,n−i)

b
k1
1 b

k2
2 ···b

kn
n

k1!k2!···kn! , 0 ≤ i < n, and n = o(
√
|δ|) as |δ| → ∞. The

following theorem is a consequence of the discussion above.

Theorem 6. For all integers n ≥ 0, we have{
αδ
n

}
(δ)n

=

s∑
j=0

W (n, j)

(δ − n+ j)j
+ o

(
W (n,s)

(δ−n+s)s

)
. (20)

Corollary 1. For all integers n ≥ 0, we have

H
(λ,u,p,δ)
n (x; q, β, γ)

(δ)nn!
=

s∑
j=0

W (n, j)

(δ − n+ j)j
+ o

(
W (n,s)

(δ−n+s)s

)
, (21)

where

W (n, j) =
∑

σ(n,n−j)

n∏
i=1

1

ki!

[
H

(λ,u,p,1)
i (x;q,β,γ)

i!

]ki
, (22)

and n = o(
√
|δ|) as |δ| → ∞.

The numbers H
(λ,u,p,δ)
n (x; q, β, γ) satisfy the following identity (see [14]):

H
(λ,u,p,δ)
n (x; q, β, γ)

n!
=
∑
σ(n)

(
δ

k1, k2, · · · , kn

) n∏
i=1

[
H

(λ,u,p,1)
i (x;q,β,γ)

i!

]ki
. (23)

We now compute a few values of the numbers W (n, s) exhibited in Theorem 6
above. We have:

W (n, 0) =
1

n!

{
H

(λ,u,p,1)
1 (x;q,β,γ)

1!

}n
,

W (n, 1) =
1

(n− 2)!

{
H

(λ,u,p,1)
1 (x;q,β,γ)

1!

}n−2 {
H

(λ,u,p,1)
2 (x;q,β,γ)

2!

}
,

W (n, 2) =
1

(n− 3)!

{
H

(λ,u,p,1)
1 (x;q,β,γ)

1!

}n−3 {
H

(λ,u,p,1)
3 (x;q,β,γ)

3!

}
+

1

2!(n− 4)!

{
H

(λ,u,p,1)
1 (x;q,β,γ)

1!

}n−4 {
H

(λ,u,p,1)
2 (x;q,β,γ)

2!

}2

,

W (n, 3) =
1

(n− 4)!

{
H

(λ,u,p,1)
1 (x;q,β,γ)

1!

}n−4 {
H

(λ,u,p,1)
4 (x;q,β,γ)

4!

}
+

1

(n− 5)!

{
H

(λ,u,p,1)
1 (x;q,β,γ)

1!

}n−5 {
H

(λ,u,p,1)
2 (x;q,β,γ)

2!

}{
H

(λ,u,p,1)
3 (x;q,β,γ)

3!

}
+

1

3!(n− 6)!

{
H

(λ,u,p,1)
1 (x;q,β,γ)

1!

}n−6 {
H

(λ,u,p,1)
2 (x;q,β,γ)

2!

}3

.
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Finally, Theorem 6 implies the following:

H
(λ,u,p,δ)
n (x; q, β, γ)

n!
∼ (δ)nW (n, 0) + (δ)n−1W (n, 1) + (δ)n−2W (n, 2)

+ (δ)n−3W (n, 3) + (δ)n−4W (n, 4) + (δ)n−5W (n, 5).

4. Linear Operator Interpretation

In this section, we give explicit expressions for the coefficients appearing in Equa-
tions (1), (5), and (6). The main feature is that such expressions are computable,
since they depend only on the classical Stirling numbers of the first and second
kind. To achieve this, we use the linear operator approach below.

Let N0 be the set of nonnegative integers. We consider functions φ : N0 → C

having at most polynomial growth, that is,

|φ(m)| ≤ Cms, m ∈ N0,

for some positive constants C and s. We define the linear operators

Lφ(u) =

∞∑
m=0

φ(m)
um

m!
e−u, u ∈ C, (24)

and

Nrφ(v) =

∞∑
m=0

φ(m)

(
r

m

)
vm(1 + v)−r, r, v ∈ C, |v| < 1. (25)

The weights in Equations (24) and (25) are the Poisson and the negative binomial
weights, provided that u ≥ 0, and r ≤ 0, −1 < v ≤ 0, respectively.

The series in Equations (24) and (25) can be computed by means of forward
differences. We let k, l ∈ N0. Recall that the usual kth forward difference of φ is
recursively defined as

∆0φ(l) = φ(l),

∆1φ(l) = φ(l + 1)− φ(l),

∆k+1φ(l) = ∆1(∆kφ)(l),

(26)

or, equivalently, as

∆kφ(l) =

k∑
i=0

(
k

i

)
(−1)k−iφ(l + i), k, l ∈ N0. (27)

As noted by Flajolet and Vepstas [12], the dual formula of Equation (27) is

φ(m) =

m∑
k=0

(
m

k

)
∆kφ(0). (28)
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Lemma 2. For u, r, v ∈ C, we have

Lφ(u) =

∞∑
k=0

∆kφ(0)

k!
uk, (29)

and

Nrφ(v) =

∞∑
k=0

∆kφ(0)

(
r

k

)(
v

1 + v

)k
, |v| < min(1, |1 + v|). (30)

Proof. The proof of Equation (29) being similar, we will only prove Equation (30).
Since (

r

m

)(
m

k

)
=

(
r

k

)(
r − k
m− k

)
,

we have from Equations (25) and (28)

Nrφ(v) =(1 + v)−r
∞∑
m=0

(
r

m

)
vm

m∑
k=0

(
m

k

)
∆kφ(0)

=(1 + v)−r
∞∑
k=0

(
r

k

)
∆kφ(0)

∞∑
m=k

(
r − k
m− k

)
vm

=(1 + v)−r
∞∑
k=0

(
r

k

)
∆kφ(0)vk(1 + v)r−k.

Equations (29) and (30) for the Poisson and negative binomial weights were
previously proved in [2] and [1], respectively.

Remark 1. The sums in Equations (29) and (30) are actually finite sums when φ
is a polynomial of degree n, since ∆kφ = 0, for all k ≥ n + 1. In such a case, the
assumption |v| < |1 + v| is unnecessary.

Recall that for d ∈ C and n ∈ N, (d)n = d(d − 1)(d − 2) · · · (d − n + 1), is the
falling factorial with (d)0 = 1. Denote

φn,c(l) = (l + c)n, φn(l) = (l)n, n, l ∈ N0, c ∈ C. (31)

Lemma 3. For any c ∈ C and n ∈ N0, we have

Lφn,c(u) =

n∑
k=0

(
n

k

)(
c

k

)
k!un−k, u ∈ C, (32)

and

Nrφn,c(v) =

n∑
k=0

(
n

k

)(
r

k

)
k!(c)n−k

(
v

1 + v

)k
, r, v ∈ C, |v| < 1. (33)
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Proof. Using induction and Equation (26), it can be checked that

∆kφn,c(l) = (n)k(l + c)n−k, k = 0, 1, . . . , n,

whereas ∆kφn,c = 0, for all k ≥ n+ 1. Hence, Equations (32) and (33) follow from
Equations (29) and (30), respectively.

Recall that the classical Stirling numbers of the first and second kind, respectively
denoted by s(n,m) and S(n,m), are defined by

(z)n =

n∑
m=0

s(n,m)zm, and zn =

n∑
m=0

S(n,m)(z)m, z ∈ C. (34)

We consider the numbers

t(n, i; a) =

n∑
l=i

s(n, l)S(l, i)al, a ∈ C, n, i ∈ N0, i ≤ n. (35)

The interest of these numbers comes from the following lemma.

Lemma 4. Let a, z ∈ C and n ∈ N0. Then,

(az)n =

n∑
i=0

t(n, i; a)(z)i.

Proof. We have from Equation (34)

(az)n =

n∑
l=0

s(n, l)alzl =

n∑
l=0

s(n, l)al
l∑
i=0

S(l, i)(z)i =

n∑
i=0

(z)i

n∑
l=i

s(n, l)S(l, i)al.

The numbers defined in Equation (35) are actually a particular case of the gen-
eralized Stirling numbers introduced by Hsu and Shiue [16] mentioned in Section 1.
The numbers t(n, i; a) play an important role in the following two auxiliary results.
To this end, denote i ∧ j = min(i, j) and i ∨ j = max(i, j). We define

C(n,m; a, b, u) :=

∞∑
k=0

(ak)n(bk)m
uk

k!
e−u.

Lemma 5. Let a, b, u ∈ C and n,m ∈ N0. Then,

C(n,m; a, b, u) =

n∑
i=0

m∑
j=0

t(n, i; a)t(m, j; b)

i∧j∑
k=0

(
i

k

)(
j

k

)
k!ui+j−k.
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Proof. By Lemma 4, we have

∞∑
k=0

(ak)n(bk)m
uke−u

k!
=

n∑
i=0

m∑
j=0

t(n, i; a)t(m, j; b)

∞∑
k=0

(k)i(k)j
uke−u

k!
. (36)

Suppose that i ≤ j. By Equations (31) and (32), the last sum in Equation (36)
equals

∞∑
k=j

(k)i
uke−u

(k − j)!
= uj

∞∑
l=0

(l + j)i
ule−u

l!

= ujLφi,j(u) = uj
i∑

k=0

(
i

k

)(
j

k

)
k!ui−k.

This and Equation (36) show the result. We define

D(n,m; a, b, r, v) :=

∞∑
k=0

(ak)n(bk)m

(
r

m

)
vm(1 + v)−r.

Lemma 6. Let a, b, r, v ∈ C with |v| < 1, and n,m ∈ N0. Then,

D(n,m; a, b, r, v)

=

n∑
i=0

m∑
j=0

t(n, i; a)t(m, j; b)

i∧j∑
k=0

(
i

k

)(
j

k

)
k!(r)i+j−k

(
v

1 + v

)i+j−k
.

Proof. From Lemma 4, we see that

D(n,m; a, b, r, v) =

n∑
i=0

m∑
j=0

t(n, i; a)t(m, j; b)

∞∑
k=0

(k)i(k)j

(
r

k

)
vk(1 + v)−r. (37)

Assume that i ≤ j. By Equations (31) and (33), the last sum in Equation (37)
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equals

∞∑
k=j

(k)i
1

(k − j)!
(r)kv

k(1 + v)−r

=

(
v

1 + v

)j
(r)j

∞∑
l=0

(l + j)i

(
r − j
l

)
vl(1 + v)−(r−j)

=

(
v

1 + v

)j
(r)jNr−jφi,j(v)

=

(
v

1 + v

)j
(r)j

i∑
k=0

(
i

k

)(
r − j
k

)
k!(j)i−k

(
v

1 + v

)k

=

i∑
k=0

(
i

k

)
(j)i−k(r)j+k

(
v

1 + v

)j+k

=

i∑
l=0

(
i

l

)(
j

l

)
l!(r)i+j−l

(
v

1 + v

)i+j−l
.

This in conjunction with Equation (37) completes the proof.

From now on, we assume that λ, γ, δ, p, q, u, x, and β are complex numbers
such that

δ 6= 0, β 6= 0, p 6= 1, q 6= 1,

∣∣∣∣ x

x+ 1

∣∣∣∣ < 1,

∣∣∣∣ (1− p)u
1− (1− p)u

∣∣∣∣ < 1. (38)

We denote by G(λ)(t, x; q, β, γ) the generating function in Equation (1) i.e.

G(λ)(t, x; q, β, γ) =
(1 + (1− q)t)γ/(1−q)(

1− x
(
(1 + (1− q)t)β/(1−q) − 1

))λ . (39)

The last auxiliary result is the following.

Lemma 7. For any m ∈ N0, we have

[
G(λ)(t, x; q, β, γ)

]m
=

∞∑
n=0

(1− q)n t
n

n!

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)k(−λm)k

×
(
γm

β

)
i−k

.

Proof. Choose t ∈ C small enough so that∣∣∣∣ x

x+ 1
(1 + (1− q)t)β/(1−q)

∣∣∣∣ < 1, (40)
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which is possible by the assumptions in Equation (38). We define

s = λm, a = β/(1− q), b = γm/(1− q), v = − x

x+ 1
. (41)

On the one hand, we have from Equation (40)

∞∑
k=0

(1 + (1− q)t)ak+b
(
−s
k

)
vk(1 + v)s

= (1 + (1− q)t)b(1 + v)s
∞∑
k=0

(
−s
k

)
(v (1 + (1− q)t)a)

k

= (1 + v)s
(1 + (1− q)t)b

(1 + v (1 + (1− q)t)a)s
=
[
G(λ)(t, x; q, β, γ)

]m
,

(42)

where the last equality follows from Equations (39) and (41).

On the other hand, we have from the binomial expansion

∞∑
k=0

(1 + (1− q)t)ak+b
(
−s
k

)
vk(1 + v)s

=

∞∑
k=0

(
−s
k

)
vk(1 + v)s

∞∑
n=0

(ak + b)n(1− q)n t
n

n!

=

∞∑
n=0

(1− q)n t
n

n!

∞∑
k=0

(ak + b)n

(
−s
k

)
vk(1 + v)s.

(43)

By Lemma 4, we can write

(ak + b)n =

(
a

(
k +

b

a

))
n

=

n∑
i=0

t(n, i; a)

(
k +

b

a

)
i

. (44)

Finally, we have from Equations (31) and (33)

∞∑
k=0

(
k +

b

a

)
i

(
−s
k

)
vk(1 + v)s

= N−sφi,b/a(v)

=

i∑
k=0

(
i

k

)(
−s
k

)
k!

(
b

a

)
i−k

(
v

1 + v

)k

=

i∑
k=0

(
i

k

)
(−x)k(−λm)k

(
γm

β

)
i−k

,

(45)

where the last equality follows from Equation (41). Gathering Equations (42)–(45),
the result follows.
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We now state the main results of this section.

Theorem 7. In the setting of Equation (1), we have

ω(λ)
n (x; q, β, γ) = (1− q)n

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)k(−λ)k

(
γ

β

)
i−k

.

Proof. The proof is an immediate consequence of Equations (1) and (35), and
Lemma 7 for m = 1.

Theorem 8. In the setting of Equation (6), we have

H(λ,u,1,1)
n (x; q, β, γ) =(1− q)n

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)k

× C
(
k, i− k;−λ, γ

β
.u

)
where the quantity C(·) is computed in Lemma 5.

Proof. Starting from the generating function in Equation (6) and recalling Equa-
tion (39) and Lemma 7, we have

e(uG
(λ)(t,x;q,β,γ)−u) =

∞∑
m=0

ume−u

m!

[
G(λ)(t, x; q, β, γ)

]m
=

∞∑
n=0

(1− q)n t
n

n!

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)k

∞∑
m=0

(−λm)k

(
γm

β

)
i−k

ume−u

m!

=

∞∑
n=0

(1− q)n t
n

n!

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)kC

(
k, i− k;−λ, γ

β
, u

)
,

where the last equality follows from Lemma 5.

Theorem 9. In the setting of Equation (5), we have

H(λ,u,p,δ)
n (x; q, β, γ) =(1− q)n

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)k

×D
(
k, i− k;−λ, γ

β
,

δ

1− p
,

(1− p)u
1− (1− p)u

)
,

where the quantity D(·) is computed in Lemma 6.

Proof. Choose t ∈ C small enough so that∣∣∣∣ (1− p)u
1− (1− p)u

G(λ)(t, x; q, β, γ)

∣∣∣∣ < 1, (46)
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which is possible by virtue of Equations (38) and (39). We define v as follows:

v =
(1− p)u

1− (1− p)u
. (47)

By Equations (39), (46), and (47), as well as Lemma 7, we can write the generating
function in Equation (5) as(

1 + (1− p)u
(
G(λ)(t, x; q, β, γ

)
− 1
)δ/(1−p)

= (1 + v)−δ/(1−p)
(

1 + vG(λ)(t, x; q, β, γ
)δ/(1−p)

= (1 + v)−δ/(1−p)
∞∑
m=0

(
δ/(1− p)

m

)
vm
[
G(λ)(t, x; q, β, γ

]m
=

∞∑
n=0

(1− q)n t
n

n!

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)k

×
∞∑
m=0

(−λm)k

(
γm

β

)
i−k

(
δ/(1− p)

m

)
vm(1 + v)−δ/(1−p)

=

∞∑
n=0

(1− q)n t
n

n!

n∑
i=0

t

(
n, i;

β

1− q

) i∑
k=0

(
i

k

)
(−x)k

×D
(
k, i− k;−λ, γ

β
,

δ

1− p
,

(1− p)u
1− (1− p)u

)
,

where the last equality follows from Equation (47) and Lemma 6.
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