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Abstract

The partition method for a power series expansion is a method that utilizes stan-
dard integer partitions to evaluate the coefficients in power series expansions and
generating functions. Here it is shown how an existing code based on the method
can be adapted to deal with partitions homologous to standard integer partitions.
Consequently, with the aid of further processing in Mathematica this work presents
polynomial expressions for both kinds of Stirling numbers in two cases where: (1)
the secondary variable is fixed and (2) it becomes a variable. Interestingly, the
second case requires the results produced in the first case for the Stirling numbers
of the first kind. In the second case the highest power in the primary variable is
found to be dependent upon the secondary variable and the coefficients become
polynomials in terms of this variable, whereas in the first case the coefficients are
rational. The results represent a major advance on already published results of both
kinds of the Stirling numbers due to the introduction of partitions into the analysis.
Finally, new results for the related Worpitzky numbers and Stirling polynomials are
also presented.

1. Introduction

Introduced in the 18th century, the Stirling numbers arise in an extensive number

of analytic and combinatorial problems [1, 22, 30]. There are basically two sets of

these numbers, known as the Stirling numbers of the first and second kinds, and they

yield completely different values from each other. The Stirling numbers of the first

kind are often denoted as s(n, k) or s
(k)
n , while their unsigned values or magnitudes

represent the number of permutations of n elements that contain exactly k cycles.
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The Stirling numbers of the second kind, which are often denoted by S(n, k), yield

the number of ways to partition n elements into k non-empty subsets or groups. Yet,

despite the fact that they appear in a vast number of combinatorial problems, there

are very few expressions or general formulas that yield their values. Consequently,

to this day, there is very little known about the structure of both sets of numbers.

A step in this regard was accomplished by Comtet in [5, page 217], who developed

polynomials where the coefficients are given by the Stirling numbers of first kind.

These polynomials, which are known as Pochhammer polynomials, are discussed in

Chapters 24 and 18 of [1] and [30], respectively. They are defined as

(y)n =
Γ(y + n)

Γ(y)
+ (−1)n

n∑
k=0

(−1)ks(n, k) yk. (1)

Where required, we shall refer to n as the primary variable and k as the secondary

variable. From this definition we see that s(0, 0) = 1, s(n, 0) = 0 for n ≥ 1, and

s(n, 1) = (−1)n(n − 1)!, but beyond these results, it becomes a more formidable

exercise to determine expressions or formulas for them. However, by applying Bell

polynomials of the second kind [31] to the above result, Comtet derived the k = 2

to 4 results in terms of the harmonic numbers, Hn +
∑n
j=1 1/j, which were given

in their unsigned form as

|s(n+ 1, 2)| = n!(1 + 1/2 + · · ·+ 1/n) = Γ(n+ 1)Hn, (2)

|s(n+ 1, 3)| = n!
(
H2
n −

(
1 + 1/22 + · · ·+ 1/n2

))
/2, (3)

and

|s(n+ 1, 4)| =n!
(
H3
n − 3Hn

(
1 + 1/22 + · · ·+ 1/n2

))
+ 2

(
1 + 1/23 + · · ·+ 1/n3

))
/6. (4)

It should also be noted that the harmonic numbers are related to the digamma

function ψ(n + 1) since Hn = ψ(n + 1) + γ, where γ is the Euler-Mascheroni

constant. Moreover, they have been generalized as described in [29]. The generalized

harmonic numbers are defined as H
(r)
n +

∑n
j=1 1/jr and are themselves a subject

of mathematical research, e.g., [4] and [8]. Consequently, the sum over inverse

squares in the second result represents H
(2)
n , which are known as Wolstenholme

numbers [32], while the last sum in the third result represents H
(3)
n . These results

in addition to s(n+1, 5) and a very general formula were later obtained by applying

the partition method for a power series expansion to Equation (1) as described in

the appendix of [12] and also in [13]. These results will be extended here.

More recently, in Chapter 14 of [25], Quaintance and Gould consider the sum of

the products of integers of the first n integers taken j at a time without repetitions
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or

S1(n, k) +
∑

1≤j1<j2<···<jn≤n

k∏
i=1

ji,

Next they cast the above result in a symbolic computational program to obtain

explicit formulas for the first seven values of k, which are listed in the chapter

as polynomials of degree 2k with rational coefficients. Then they show that the

S1(n, k) are related to the Stirling numbers of the first kind by

S1(n, k) = (−1)ks(n+ 1, n+ 1− k). (5)

Surprisingly, they do not list the ensuing formulas for the Stirling numbers of the

first kind. Unbeknownst to them, the appendix in [12] presents the following results

s(n, n) = 1, s(n, n− 1) = −
(
n

2

)
, s(n, n− 2) =

(3n− 1

4

)(n
3

)
s(n, n− 3) = −

(n(n− 1)

2

)(n
4

)
,

and

s(n, n− 4) =
(15n3 − 30n2 + 5n+ 2

48

)(n
5

)
. (6)

The last of these results has a typographical error in [12], where 336 in the denomi-

nator has now been replaced by 48. These results have been obtained by expanding

the left-hand side (lhs) of Equation (1) in decreasing powers of y, which yields

s(n, n− k) = (−1)k
k−1∑
ij=j

ij

ij−1∑
ij−1=j−1

ij−1

ij−1−1∑
ij−2=j−2

ij−2 · · ·
i2−1∑
i1=1

i1. (7)

Then Equation (7) is introduced into Mathematica for specific values of k. The

above result is not only cumbersome for large values of k, but also does not provide

information about general behaviour of k with n. Surprisingly, we shall observe that

in order to determine the general k-behaviour for both kinds of Stirling numbers,

we shall require the results for specific values of k.

The situation regarding Stirling numbers of the second kind is slightly better than

their first kind counterparts since general forms of S(n, k) for fixed (low integer)

values of k can be determined by using Euler’s formula as it has been referred to in

[9] and [25]. This result also appears as Theorem 8.4 in [3] and is given by

S(k, j) =
1

j!

j∑
i=1

(−1)j−i
(
j

i

)
ik. (8)
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In a similar manner to the Stirling numbers of the first kind, k and j will be

referred to as the primary and secondary variables, respectively. In addition, in [14]

a Kronecker delta was introduced into the result to ensure S(0, 0) = 1, which is not

really necessary if 00 is taken to be equal to unity. Hence one obtains

S(k, 1) = 1, S(k, 2) =
1

2

(
2k − 1

)
, S(k, 3) =

1

2

(
3k−1 − 2k + 1

)
,

and S(k, 4) =
1

6

(
4k−1 − 3k + 3× 2k−1 − 1

)
.

In the case of the Stirling numbers of the second kind, Quaintance and Gould

introduce the sum, S2(n, k), also in Chapter 14 of [25], where it is defined as the

sum of the products of the first n integers taken k at a time with repetitions or

S2(n, k) +
∑

1≤j1≤j2≤···≤jn≤n

k∏
i=1

ji.

Next they give the forms of S2(n, k) for k ranging from 1 to 6. Although they

relate the Stirling numbers of the second kind to S2(n, k) by noting that S(n, k) =

S2(k, n− k), they do not give any of the resulting forms for S(n, k).

With the exception of Euler’s formula for the Stirling numbers of the second kind,

all the preceding results can be developed further by using the partition method

for a power series expansion, which is described in detail in [14] and [15]. In fact,

the results for both kinds of Stirling numbers have been tabulated up to k = 10 in

the first of these references. The problem with these results is that the secondary

variable has had to be fixed. Therefore, it has not been possible to obtain the

general formulas for the coefficients of the polynomials for s(n, n−k) and S(n, n−k)

as functions of both n and k. Consequently, one cannot relate the polynomials

for different values of n with each other. That is, they just appear as distinct

polynomials with numerical values for their coefficients without any understanding

of the dependence on k. However, this situation has changed with the advent

of [14]. There it has been sketched out how the first few leading order terms of

S(n, n − k) and s(n, n − k) can be obtained in Chapters 2 and 6, respectively, via

the partition method for a power series expansion. In this paper we shall extend

the partition method for a power series expansion to far more orders of the above

results or polynomials by adapting and developing the method further. Surprisingly,

in order to obtain the general coefficients, we shall still require the fixed k values

of s(n, n − k) for both kinds of Stirling numbers. Furthermore, computer codes

discussed in [14] will need to be modified to determine contributions due to other

classes of partitions. These new codes appear in their entirety in the appendix of

this paper. Moreover, as a result of the analysis on the refined rencontres numbers

presented in [6], which are, in turn, related to the signless Stirling numbers of the

first kind, the limited results for s(n, k) appearing in Equation (2) will be developed
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further, thereby resulting in a comprehensive account of the structure and properties

of both kinds of Stirling numbers.

2. The Partition Method for a Power Series Expansion

In order to understand the following material, it will be necessary to summarise

the relevant points of the partition method for a power series expansion, which

is described in great detail in Chapters 4 and 6 of [14]. Basically, we begin with

two functions, f(z) and g(z), each of which can be expressed in terms of a power

series. The power series for f(z), referred to as the inner power series, is given

by
∑∞
k=0 pk y

k, where y = zµ, while the outer power series for g(z) is given by

h(z)
∑∞
k=0 qk z

k, where h(z) can be an arbitrary number or even a function. From

the general theorem, viz. Theorem 4.1 in [14], we have

g (af(z))

h (af(z))
≡
∞∑
k=0

Dk(a) yk, (9)

where for p0 = 0, the coefficients in Result (9) are given by

Dk(a) = LP,k

[
ql(λk)a

l(λk)l(λk)!

k∏
i=1

pλii
λi!

]
. (10)

Representing the sum over all partitions summing to k, the partition operator

LP,k

[
·
]

in Equation (10) is defined as

LP,k

[
·
]
+
∑
λk

=

k,bk/2c,bk/3c,...,1∑
i1,i2,i3,...,ik=0∑k

i=1 iλi=k

(
·
)
, (11)

where b c represents the floor function, λk represents a partition summing to k and

λi, the multiplicity or number of occurrences of the part i in a partition. The total

number of parts or length of each partition, l(λk) or Nk in [14], is equal to the sum of

the multiplicities, i.e. l(λk) =
∑k
i=1 λi. The length ranges from unity correspond-

ing to the one-part partition, {k}, to k, corresponding to the partition with k ones,

which is denoted here by {1k}. That is, it should be stated that in this work parti-

tions will be expressed in terms of the shorthand notation of {1λ1
,2λ2

,3λ3
, · · · ,kλk}

for each λk > 1. For example, in accordance with this notation, the partition

{1,1,1,1,2,2,3,6,6} is represented as {14,22,3,62}.
As in the case of Taylor series expansions, the power series in Result (9) need

not be convergent in specific sectors of the complex plane. Nor do both the inner

and outer power series need to be absolutely convergent. However, to compensate
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for these cases, an equivalence symbol appears in the result rather than an equals

sign. From here on, Result (9) will be referred to as an equivalence statement, not

an equation. When it is established that a result is convergent over a sector of the

complex plane, the equivalence symbol can be replaced by an equals sign. Then we

have an equation for that sector. This will become clearer later because in order to

derive new results from Equivalence (9), we will require equals signs or equations

in regions of validity.

According to [5,page 133] and [26], the Bell polynomials of the first kind are

defined by the generating function of the exponential, exp (x(et − 1)). That is,∑
k=0

Bk(x)
tk

k!
= exp

(
x
(
et − 1

))
, (12)

where the notation Bk(x) has been used instead of Bk(x) to avoid confusion with the

more famous Bernoulli polynomials. Expanding the exponential on the right-hand

side (rhs) of Equation (12) yields

∑
k=0

Bk(x)
tk

k!
=

∞∑
k=0

(
t+ t2/2! + t3/3! + t4/4! + · · ·

)k xk
k!
. (13)

In this situation the powers of t represent the the inner series with pk = 1/k!, while

the powers of x represent the outer series with qk = 1/k!. Except for p0 = 0, this

is an unusual example as the coefficients of both the inner and outer power series

are identical. If we introduce the forms for pk and qk into Equation (10) together

with a = x, then by equating the Dk(a) with the Bell polynomials on the lhs of

Equation (13), we arrive at

Bk(x) = k!LP,k

[
xl(λk)

k∏
i=1

1

i!λiλi!

]
. (14)

Thus, we observe that since l(λk) ranges from unity to k, the Dk(x) represent

polynomials in x of degree k. Moreover, by setting x = 1, we obtain the Bell

numbers, which can be expressed in terms of the Stirling numbers of the second

kind as

Bk =

k∑
j=1

S(k, j).

From these results one can see that the Stirling numbers of the second kind S(k, j)

represent the coefficient of the j-th power in Equation (14). In other words, S(k, j)

represents the value obtained by summing all the quantities in Equation (14) when

the length or total number of parts, i.e., l(λk), is only equal to j. This means that

the partition operator must be modified so that it evaluates the contributions from
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the partitions summing to k with only j parts. To accomplish this, we introduce

an extra constraint or restriction,
∑k
i=1 λi = j, into the partition operator. Hence

we have the following operator:

L
(j)
P,k

[
·
]
+

k,bk/2c,bk/3c,...,1∑
λ1,λ2,λ3,...,λk=0∑k

i=1 iλi=k,
∑k
i=1 λi=j

(
·
)
, (15)

Note that summing this operator from j= 1 to k produces the partition operator.

In the appendix we present the program numparts which is virtually a C-coded

version of the above operator in that it only considers partitions with j parts. Thus,

j must be specified by the user as input in order to run the code. As a result of

Definition (15), the Stirling numbers of the second kind can be expressed as

S(k, j) = k!L
(j)
P,k

[
k∏
i=1

1

i!λiλi!

]
. (16)

It should be mentioned here that the Worpitzky numbers [25, 35] are also related

to the Stirling numbers of the second kind. These numbers, which are denoted by

W
(n)
j,m, are defined as

W
(n)
j,m +

j∑
k=0

(−1)k
(
m

k

)
(j − k)n.

In addition, they satisfy the following recurrence relations:

W
(n)
j,m+1 − (−1)m+nW

(n)
m−j+1,m+1 =

{
0, m ≥ n ≥ 1,

(−1)j
(
m+1
j

)
, m ≥ n, n = 0,

W
(n+1)
j,m+1 = (m− j + 1)W

(n)
j−1,m + jW

(n)
j,m, m ≥ n+ 1 ≥ 1,

and

W
(n)
j,m+1 = W

(n)
j,m −W

(n)
j−1,m.

The first two relations are derived in Chapter 11 of [25], while the last one is obtained

by introducing the following identity into Equation (2):(
m

k

)
=

(
m+ 1

k

)
−
(

m

k − 1

)
.

From Equation (8), we find that

W
(n)
j,j = j!S(n, j). (17)

Therefore, if expressions for the Stirling numbers of the second kind can be de-

termined, then it follows that they will yield expressions for the special case of
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Worpitzky numbers, where j and m are equal to each other. In addition, by using

Equation (16), we arrive at

W
(k)
j,j = j!k!L

(j)
P,k

[
k∏
i=1

1

i!λiλi!
·

]
. (18)

The strength of the partition method for a power series expansion is its ability

to yield power series expansions for intractable problems where standard methods

such as Taylor series break down. Even when the power series is known, the method

can offer a different perspective and produce new results. A typical example is the

binomial theorem, which can be expressed as

∞∑
k=0

Γ(k − a)

Γ(−a) k!
(−z)k ≡ (z + 1)a. (19)

In Appendix A of [14] it is shown that the binomial series is absolutely convergent

for |z| < 1, and conditionally convergent for < z > −1 and |z| > 1. For these values

of z, the equivalence symbol in Equivalence (19) can be replaced by an equals

sign. That is, we have an equation. For the remaining values of z, the equivalence

statement is divergent with the rhs representing the regularized value of the series.

On the other hand, the rhs of Equivalence (19) can be written as

exp
(
a ln(1 + z)

)
=

∞∑
k=0

(
z − z2/2 + z3/3 + · · ·

)k ak
k!
. (20)

In obtaining this result, ln(1 + z) has been replaced by its Taylor series expan-

sion, which is again absolutely convergent for |z| < 1, conditionally convergent for

< z > −1 and |z| > 1, and divergent elsewhere. This is discussed at length in [16].

Therefore, the rhs of Equation (20) can be expressed in the form of Equivalence

(9), where according to Equation (10), the coefficients Dk(a) are given by

Dk(a) = (−1)k LP,k

[
(−a)l(λk)

k∏
i=1

1

iλiλi!

]
.

This is a similar situation to the Stirling numbers of the second kind except the

coefficients of the inner series are now given by pk = (−1)k+1/k as opposed to

1/k!. For < z > −1, we can replace the equivalence symbol by an equals sign

in Equivalence (19) and then equate Equivalence (19) with the resulting form of

Equivalence (9) with y = z. Hence we arrive at

∞∑
k=0

Γ(k − a)

Γ(−a) k!
(−z)k =

∞∑
k=0

(−1)k LP,k

[
(−a)l(λ)k

k∏
i=1

1

iλiλi!

]
zk.
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Since z is still fairly arbitrary or admits an infinite number of solutions to the above

equation, we can equate like powers on both sides of Equivalence (19), which, in

turn, yields

LP,k

[
(−a)l(λk)

k∏
i=1

1

iλiλi!

]
=

Γ(k − a)

Γ(−a) k!
. (21)

If we introduce Equation (1) into the rhs of Equation (21) and fix the partition

length to j, then we can equate like powers of a, thereby obtaining

L
(j)
P,k

[
k∏
i=1

1

iλiλi!

]
=

(−1)k+j

k!
s(k, j). (22)

By comparing the above result with the corresponding result for the Stirling num-

bers of the second kind, viz. Equation (16), we see that aside from the phase factor

of (−1)k+j , the main difference between them is that there is no factorial on the

parts inside the product for the Stirling numbers of the first kind. This means that

the analysis for one kind of the Stirling numbers will be similar to that for the other

kind, even though the final values will be vastly different from each other. Another

interesting property of both results is that j must be less than or equal to k or both

kinds of numbers do not exist.

To conclude this section, we now discuss the Stirling polynomials [7, 27], which

are related to both kinds of Stirling numbers. The Stirling polynomials Sn(x) are

defined in terms of the following generating function:

∞∑
n=0

Sn(x)
tn

n!
≡
( t

1− e−t
)x+1

. (23)

Note the appearance of the equivalence symbol because as we shall see, the lhs can

become divergent, while the rhs is always convergent. We now apply Theorem 4.1

from [14] by expressing the rhs as( t

1− e−t
)x+1

=
( ∞∑
n=1

(−t)n−1

n!

)−x−1
. (24)

In this instance the coefficients of the inner series or the bracketed series in Equation

(24) are given by pk = (−1)k/(k + 1)!. Furthermore, the series is convergent for all

values of t. However, the outer series becomes the binomial series, which as stated

earlier can become divergent. Hence the equivalence symbol appears in Equivalence

(23). Thus, the coefficients of the outer series are given by qk = (−1)k(x+ 1)k/k!,

where (x)k represents the Pochhammer notation for Γ(k + x)/Γ(x). By applying

Theorem 4.1 of [14] with a = 1 to the above, we arrive at

∞∑
k=0

Dk t
k ≡

( t

1− e−t
)x+1

. (25)
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where

Dk = (−1)kLP,k

[
(−1)l(λk)(x+ 1)l(λk)

k∏
i=1

1

(i+ 1)!
λiλi!

]
.

Since we know that there is a region in the complex plane or an infinite number

of values of t, where the equivalence symbols in Equivalences (23) and (25) can be

replaced by an equals sign, we can set the lhs’s of both statements equal to one

another for these values of t. Then we find that

∞∑
k=0

Sk(x)
tk

k!
=

∞∑
k=0

Dk t
k. (26)

Moreover, since t is fairly arbitrary, we can equate like powers on both sides of

Equation (26), thereby yielding

Sk(x) = (−1)kk! LP,k

[
(−1)l(λk)(x+ 1)l(λk)

k∏
i=1

1

(i+ 1)!
λiλi!

]
. (27)

This result yields the values of the Stirling polynomials listed in [33].

According to [27], the Stirling polynomials are related to the Stirling numbers of

the first kind by

Sk(m) = (−1)k
(
m

k

)−1
s(m+ 1,m− k + 1), (28)

for m ≥ k. Thus, with the aid of Equation (27) we arrive at

s(m− k + 1,m+ 1) =
1

(m− k)!
LP,k

[
(−1)l(λk)

(
m+ l(λk)

)
!

k∏
i=1

1

(i+ 1)!
λiλi!

]
.

On the other hand, in [20] the Stirling polynomials are found to be related to the

Stirling numbers of the second kind by

S(k + n, n) = (−1)k
(
k + n

n

)
Sk(−n− 1). (29)

Then from Equation (26), we find that

S(k + n, n) = (n+ 1)kLP,k

[
(−1)l(λk)(−n)l(λk)

k∏
i=1

1

(i+ 1)!
λiλi!

]
.
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3. Stirling Numbers of the First Kind

In the previous section we presented the two main results for both kinds of the

Stirling numbers via the application of the partition method for a power series

expansion. In the next two sections we shall reveal the large amount of information

that these results possess. Before doing so, however, we shall indicate how the

partition method for a power series expansion can be applied to the Pochhammer

polynomials [30], thereby yielding the results below Equation (1). As mentioned

previously, these results have been obtained by Comtet by using Bell polynomials

of the second kind. By applying the partition method for a power series expansion,

however, we shall be able to tabulate far more results than those presented in the

previous section.

It should also be pointed out that while Comtet’s approach and the partition

method for a power series both utilize integer partitions, they are, in fact, quite

different. In particular, Chapter 4 of [14] describes how the partition method for a

power series is actually the more general approach since the expressions that Comtet

uses, viz., the Bell polynomials of the second kind or partial Bell polynomials as he

refers to them, can be derived as a special case of Theorem 4.1.

To obtain the forms for the Stirling numbers of the first kind in terms of the

generalized harmonic numbers, we begin by exponentiating the logarithm of the lhs

of Equation (1), which gives

(y)n = y exp
(

ln(1 + y) + ln 2 + ln(1 + y/2) + ln 3 + ln(1 + y/3) · · ·+ ln(n− 1)

+ ln
(
1 + y/(n− 1)

))
. (30)

Next we expand each logarithm as a Taylor series. From [16], the Taylor series

expansion for ln(1 + z) is absolutely convergent for |z| < 1 and conditionally con-

vergent for |z| > 1 and < z > −1. For the other values of z, it is divergent. Because

the first logarithm in the above result possesses the most restrictive domain of con-

vergence, it determines the convergence conditions for the exponential when all the

logarithms are expanded into their Taylor series. Thus, we find that

(y)n ≡ y Γ(n) exp
(
Hn−1 y −H(2)

n−1
y2

2
+H

(3)
n−1

y3

3
− · · ·

)
. (31)

where the generalized harmonic numbers H
(r)
n−1 are defined below (4) in the intro-

duction. Note that the introduction of the Taylor series expansion for ln(1 + z) has

resulted in Equation (30) becoming an equivalence statement.

The rhs of Equivalence (31) is now in a form resembling Equivalence (9) except

that the coefficients of yk are now Dk−1(a) because of the external factor of y.

Nevertheless, the coefficients of the inner series, given earlier by pk, are equal to

(−1)k+1H
(k)
n−1/k and those for the outer series are again given by qk = 1/k!. Since
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a = 1, the coefficients of yk are given by

Dk−1 = (−1)k−1LP,k−1

[
(−1)l(λk−1)

k−1∏
i=1

1

λi!

(H(i)
n−1
i

)λi]
,

while Equivalence (31) reduces to

(y)n ≡
n∑
k=1

Γ(n)Dk−1 y
k. (32)

Ultimately, the aim is to equate Equivalence (32) with Equation (1) in order to

derive a formula for the Stirling numbers of the first kind, but this is not possible

since Equivalence (32) is not an equation That is, Equivalence (32) can become

divergent. Hence we need to establish the region or values of y where Equivalence

(32) is convergent. Then both statements can be equated to one another in that

region. By introducing Equation (32) into Equivalence (32), one obtains a series

with the following general form:

Sk−1(y) ≡
∞∑
k=1

(−y)k
k−1∏
i=1

1

λi!iλi

(
H

(i)
n−1

)λi
.

The series can be bounded by noting that

Sk−1(y) ≤
∞∑
k=1

|y|k
k−1∏
i=1

1

λi!iλi

(
H

(i)
n−1

)λi
.

Moreover, H
(i)
n−1 ≤ Hn−1 for all i. Hence the above inequality can be expressed

more simply as

Sk−1(y) ≤
∞∑
k=1

|y|k
k−1∏
i=1

1

λi!iλi
(Hn−1)

λi ≤
∞∑
k=1

|y|kHk−1
n−1.

The last series in the above result is effectively the geometric series with the variable

equal to |y|Hn−1, which according to [14, 16, 17, 18], is absolutely convergent for

|yHn−1| < 1 and conditionally convergent for |yHn−1| > 1 and |< yHn−1| < 1.

Hence Sk−1(y) is absolutely convergent for |y| < 1/Hn−1. This means that we can

replace the equivalence symbol in Equivalence (32) by an equals sign at least for

these values of y. Then the resulting equation can be equated to Equation (1).

Since y is still fairly arbitrary, like powers of y can be equated with each other on

both sides of the resulting equation, thereby yielding

s(n, k) = (−1)n+1 Γ(n)

Γ(k)
LP,k−1

[
(−1)l(λk−1)

k−1∏
i=1

Γ(k)

λi!

(H(i)
n−1
i

)λi]
. (33)
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λ6 λ1 λ2 λ3 λ4 λ5 λ6 l(λ6) T (λ6)

{16} 6 6 1

{14, 2} 4 1 5 15

{13, 3} 3 1 4 40

{12, 22} 2 2 4 45

{12, 4} 2 1 3 90

{1, 2, 3} 1 1 1 3 120

{23} 3 3 15

{1, 5} 1 1 2 144

{2, 4} 1 1 2 90

{32} 2 2 40

{6} 1 1 120

Table 1: Partitions summing to 6 with their multiplicities, lengths and refined
rencontres numbers.

Thus, we see that s(n, k) is determined by the contributions from the partitions

summing to the secondary variable, or more specifically, k − 1.

To develop an understanding of Equation (33), let us consider the evaluation of

s(n, 7), which requires calculating the contributions made by each partition sum-

ming to 6. Table 1 presents the 11 partitions summing to 6 together with their multi-

plicities and lengths. The final column gives the values of T (λk) =
∏k
i=1 k!/(iλiλi!).

When one types these numbers for k = 1 to 4 into the online encyclopedia of integer

sequences, one is referred to the sequence A181897, which are known as the trian-

gle of rencontres numbers [23]. Interestingly, these numbers appear in connection

with the higher degree symmetric polynomials derived by summing over the entire

sequence of quadratic or square powers of integers [6]. Furthermore, from Corollary

12.1 in [3], the number of permutations of k elements that can be decomposed into

j cycles yields the signless Stirling numbers of the first kind or |s(k, j)|. Thus, if

there is only one partition with j parts, then s(n, k) = T (λk). Unfortunately, there

are only a few instances where there is a single partition for a fixed number of parts.

These are: (1) the partitions composed of only ones as displayed in the second row

of Table 1, (2) the partitions with a single part as at the bottom of the table, and

(3) the partition with one two and the remaining parts equal to unity, which is the

only partition with five parts as displayed in the third row of the table.

Alternatively, if we sum the values of T (λk), where the lengths of the partitions

are set to a fixed value j, then we find that |s(k, j)| =
∑
l(λk)=j

T (λk). From Table

1 we observe that there are two partitions with four parts and three partitions with

three parts. Combining the values of T (λ6) for l(λ6) = 4, i.e., λ6 is set equal to the
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partitions {13,3} and {12,22} yields a value of 85 (40+45), which is indeed equal

to |s(6, 4)|, while doing the same whenever l(λ6) = 3 yields 225 (90+120+15) or

|s(6, 3)|.
Returning to Equation (33), we note that to obtain s(n, k), we require the par-

titions summing to k− 1. That is, the value of n in the refined rencontres numbers

is equal to k − 1, while n only appears in the generalized harmonic numbers. As

a result, the refined rencontres numbers become the coefficients of
∏k−1
i=1

(
H

(i)
n−1
)λi

for each partition. Hence Equation (33) reduces to

s(n, k) = (−1)n+1 Γ(n)

Γ(k)

∑
λk−1

(−1)l(λk−1)T (λk−1)

k−1∏
i=1

(
H

(i)
n−1
)λi
. (34)

For k = 7 and using the results in Table 1, we find that Equation (34) yields

s(n, 7) =(−1)n+1 Γ(n)

Γ(7)

(
H6
n−1 − 15H4

n−1H
(2)
n−1 + 40H3

n−1H
(3)
n−1 + 45H2

n−1(H
(2)
n−1)2

− 90H2
n−1H

(4)
n−1 − 120Hn−1H

(2)
n−1H

(3)
n−1 − 15(H

(2)
n−1)3 + 144Hn−1H

(5)
n−1

+ 90H
(2)
n−1H

(4)
n−1 + 40(H

(3)
n−1)2 − 120H

(6)
n−1

)
. (35)

The above result appears as the k = 7 result in Table 2, which displays the first ten

formulas of s(n, k) from Equation (33). Note that the number of terms in the poly-

nomials is equal to p(k), where p(k) represents the number of partitions summing

to k. They can also be obtained via the PartitionsP[k] routine in Mathematica.

Moreover, summing the powers and orders of the harmonic numbers yields k − 1,

which can also serve a check on the validity of the results in Table 2.

The results in Table 2 can be introduced into Mathematica to yield the values of

s(n, k) for k ≤ 10. All that is required is to replace H
(k)
n−1 in the tabulated results

by the routine, HarmonicNumber[n-1,k], in the software package. Then the major

problem becomes determining the refined rencontres numbers, especially for large

values of k where it is no longer feasible to evaluate them following the approach

of Table 1. Although not necessary, it is better to list these numbers in the same

order as they appear in the table because it would not be possible to identify them

as the refined rencontres numbers. Another advantage of this ordering is that the

partitions with the same length appear in groups or clusters and are, thus, more

easily combined to yield the signless Stirling numbers of the first kind.

The results for specific values of n and k in s(n, k) can be also obtained by

deriving the exponential complete Bell polynomials, Yn, from the exponential,

exp
(∑∞

k=1 xktk/k!
)
. These polynomials are discussed in Chapter 3.3 of [5] and

Chapter 2.8 of [26] where they are derived in terms of the partition operator. In

actual fact, the complete Bell polynomials represent a special case of the partition

method for a power series expansion as discussed in Chapter 4 of [14]. Therefore, we
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k s(n, k)

1 (−1)n+1(n− 1)!

2 (−1)n(n− 1)!Hn−1

3 (−1)n+1(n− 1)!
(
H2

n−1 −H
(2)
n−1

)
/2

4 (−1)n(n− 1)!
(
H3

n−1 − 3Hn−1H
(2)
n−1 + 2H

(3)
n−1

)
/6

5 (−1)n+1(n− 1)!
(
H4

n−1 − 6H2
n−1H

(2)
n−1 + 8Hn−1H

(3)
n−1 + 3(H

(2)
n−1)

2 − 6H
(4)
n−1

)
/24

6 (−1)n(n− 1)!
(
H5

n−1 − 10H3
n−1H

(2)
n−1 + 20H2

n−1H
(3)
n−1 + 15Hn−1(H

(2)
n−1)

2

−30Hn−1H
(4)
n−1 − 20H

(2)
n−1H

(3)
n−1 + 24H

(5)
n−1

)
/5!

7 (−1)n+1(n− 1)!
(
H6

n−1 − 15H4
n−1H

(2)
n−1 + 40H3

n−1H
(3)
n−1 + 45H2

n−1(H
(2)
n−1)

2

−90H2
n−1H

(4)
n−1 − 120Hn−1H

(2)
n−1H

(3)
n−1 − 15(H

(2)
n−1)

3 + 144Hn−1H
(5)
n−1

+90H
(2)
n−1H

(4)
n−1 + 40(H

(3)
n−1)

2 − 120H
(6)
n−1

)
/6!

8 (−1)n(n− 1)!
(
H7

n−1 − 21H5
n−1H

(2)
n−1 + 70H4

n−1H
(3)
n−1 + 105H

(3)
n−1(H

(2)
n−1)

2

−210H3
n−1H

(4)
n−1 − 420H2

n−1H
(2)
n−1H

(3)
n−1 − 105Hn−1(H

(2)
n−1)

3 + 504H2
n−1H

(5)
n−1

+630Hn−1H
(2)
n−1H

(4)
n−1 + 280Hn−1(H

(3)
n−1)

2 + 210(H
(2)
n−1)

2H
(3)
n−1 − 840Hn−1H

(6)
n−1

−504H(2)
n−1H

(5)
n−1 − 420H

(3)
n−1H

(4)
n−1 + 720H

(7)
n−1

)
/7!

9 (−1)n+1(n− 1)!
(
H8

n−1 − 28H6
n−1H

(2)
n−1 + 112H5

n−1H
(3)
n−1 + 210H4

n−1(H
(2)
n−1)

2

−420H4
n−1H

(4)
n−1 − 1120H3

n−1H
(2)
n−1H

(3)
n−1 − 420H2

n−1(H
(2)
n−1)

3 + 1344H3
n−1H

(5)
n−1

+2520H2
n−1H

(2)
n−1H

(4)
n−1 + 1120H2

n−1(H
(3)
n−1)

2 + 1680Hn−1(H
(2)
n−1)

2H
(3)
n−1

+105(H
(2)
n−1)

4 − 3360H2
n−1H

(6)
n−1 − 4032Hn−1H

(2)
n−1H

(5)
n−1 − 3360Hn−1H

(3)
n−1H

(4)
n−1

−1260(H(2)
n−1)

2H
(4)
n−1 − 1120H

(2)
n−1(H

(3)
n−1)

2 + 5760Hn−1H
(7)
n−1 + 3360H

(2)
n−1H

(6)
n−1

+2688H
(3)
n−1H

(5)
n−1 + 1260(H

(4)
n−1)

2 − 5040H
(8)
n−1

)
/8!

10 (−1)n(n− 1)!
(
H9

n−1 − 36H7
n−1H

(2)
n−1 + 168H6

n−1H
(3)
n−1 + 378H5

n−1(H
(2)
n−1)

2

−756H5
n−1H

(4)
n−1 − 2520H4

n−1H
(2)
n−1H

(3)
n−1 − 1260H3

n−1(H
(2)
n−1)

3 + 3024H4
n−1H

(5)
n−1

+7560H3
n−1H

(2)
n−1H

(4)
n−1 + 3360H3

n−1(H
(3)
n−1)

2 + 7560H2
n−1(H

(2)
n−1)

2H
(3)
n−1

+945Hn−1(H
(2)
n−1)

4 − 10080H3
n−1H

(6)
n−1 − 18144H2

n−1H
(2)
n−1H

(5)
n−1

−15120H2
n−1H

(3)
n−1H

(4)
n−1 − 11340Hn−1(H

(2)
n−1)

2H
(4)
n−1 − 10080Hn−1H

(2)
n−1(H

(3)
n−1)

2

−2520(H(2)
n−1)

3H
(3)
n−1 + 25920H2

n−1H
(7)
n−1 + 30420Hn−1H

(2)
n−1H

(6)
n−1

+24192Hn−1H
(3)
n−1H

(5)
n−1 + 11340Hn−1(H

(4)
n−1)

2 + 9072(H
(2)
n−1)

2H
(5)
n−1

+15120H
(2)
n−1H

(3)
n−1H

(4)
n−1 + 2240(H

(3)
n−1)

3 − 45360Hn−1H
(8)
n−1

−25920H(2)
n−1H

(7)
n−1 − 20160H

(3)
n−1H

(6)
n−1 − 18144H

(4)
n−1H

(5)
n−1 + 40320H

(9)
n−1

)
/9!

Table 2: The first 10 expressions for the Stirling numbers of the first kind in terms
of the generalized harmonic numbers.
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can apply Equation (10) to the exponential to determine the exponential complete

Bell polynomials, which are given by

exp
( ∞∑
k=1

xk
tk

k!

)
=

∞∑
k=0

Yk(x1, x2, . . . , xk)
tk

k!
,

with Y0 = 1. In order to apply Equation (10) to Equation (3), we set pk = xk/k!,

qk = 1/k!, and a = 1. Then we find that

Yk(x1, x2, . . . , xk) = k!LP,k

[
k∏
i=1

xλii
i!λiλi!

]
.

The first eleven polynomials are listed in Table 3. On the other hand, if one differ-

entiates Equation (3), then one obtains

∞∑
k=1

Yk(x1, x2, . . . , xk)
tk−1

(k − 1)!
=

∞∑
k=0

Yk(x1, x2, . . . , xk)
tk

k!

∞∑
k=1

xk
tk−1

(k − 1)!
.

Multiplying both series on the rhs of the above result and equating like powers of

t, one finally arrives at

Yk(x1, x2, . . . , xk) =

k−1∑
j=0

(
k − 1

j

)
xk−j Y (x1, x2, . . . , xj). (36)

If we replace n by n+1 in Equation (31) and introduce Equation (1), then the

following result is obtained

n+1∑
k=0

(−1)n+1−ks(n+ 1, k) yk−1 = n! exp
(
Hn y −H(2)

n

y2

2
+H(3)

n

y3

3
− · · ·

)
. (37)

On the lhs of the above result we replace k by k+1, while we note that the exponential

on the rhs can be expressed as

exp
(
−0!Hn

(−y)

1!
− 1!H(2)

n

(−y)2

2!
− 2!H(3)

n

(−y)3

3!
− · · ·

)
.

In other words, the above result has the same exponential form as Equation (3)

with xk = −(k − 1)!H
(k)
n and t = −y. Therefore, we can replace the exponential

on the rhs of Equation (37) by the rhs of Equation (3). Equating like powers of t

yields

(−1)ns(n+ 1, k + 1) =
n!

k!
Y
(
−Hn,−H(1)

n ,−2!H(3)
n , . . . ,−(k − 1)!H(k)

n

)
. (38)
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The quantities on the lhs of Equation (38) represent the unsigned Stirling numbers.

Moreover, by introducing the above result into Equation (36), we eventually arrive

at

s(n+ 1, k + 1) = −1

k

k−1∑
j=0

H(k−j)
n s(n+ 1, j + 1), for n, k ≥ 1. (39)

Though elegant, the above recurrence relation is of limited use for the purposes

of this work. First, when using the rhs to evaluate the lhs, one requires all the

previous values of Stirling numbers of the first kind from j = 0 to k − 1 for the

same arbitrary value of the primary variable n as on the lhs of the equation. That

is, if we want to keep n as a variable, one must have expressions in terms of n for

s(n + 1, j + 1) for each value of j between 0 and k − 1. Software packages such as

Mathematica possess routines for determining the Stirling numbers provided only

numerical values for both n and k are given. Likewise a similar situation applies

to the harmonic numbers, where again the input variables need to be specified.

One could, perhaps, argue that one can replace the HarmonicNumber routine in

Mathematica by one’s own form, say H[n,k-j], but then Mathematica would not be

able to provide values for s(n + 1, j + 1), when n is a variable. Finally, from a

purist’s point of view, Equation (34), which is valid for any value of n and k, does

not require previous values of the Stirling numbers in the evaluation of the Stirling

numbers of the first kind as in Equation (39). In fact, a simple calculator is all that

is needed to produce the results in Table 2.

If one looks closely at the order of the partitions in Table 1, then one can see

that the partitions have been listed with decreasing lengths l(λk) or by decrement-

ing the total number of parts. Ordering partitions by their lengths is regarded

as non-standard since most approaches for generating partitions are based on a

lexicographic order [14]. However, the partitions and their corresponding refined

rencontres numbers can be generated simply by implementing partition trees as

described in Chapters 3 and 6 of [14] and also here in the appendix. As can be

seen from the appendix, this means modifying the program numparts, which is

discussed in [14, page 180], but only appears here in its entirety in the appendix. To

run this program, the user must specify both the sum of the parts of a partition and

the number of parts. Basically, the code represents the computer implementation

of the operator in Equation (15). When the argument is set equal to unity in the

operator, it yields the number of partitions with a set number of parts or length.

For example, to run the code, one simply types a line such as ./numparts 9 3. This

results in the generation of those partitions summing to 9 with only three parts,

namely {12,7}, {1,2,6}, {1,3,5}, {1,42}, {22,5}, {2,3,4} and {33}. Hence, we observe

that L
(3)
P,9 [1] = 7.

As explained in the appendix, there are two necessary modifications before

numparts can print out the refined rencontres numbers or T (λk) for each par-

tition. First, instead of the user specifying the number of parts, the main function
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k Yk(x1, x2, . . . , xk)

0 1

1 x1

2 x21 + x2

3 x31 + 3x1x2 + x3

4 x41 + 6x21x2 + 3x22 + 4x1x3 + x4

5 x51 + 10x31x2 + 15x1x
2
2 + 10x21x3 + 10x2x3 + 5x1x4 + x5

6 x61 + 15x41x2 + 15x32 + 20x31x3 + 10x23 + 15x2x4 + 45x21x
2
2 + 15x21x4

+60x1x2x3 + 6x1x5 + x6

7 x71 + 21x51x2 + 35x41x3 + 105x22x3 + 35x3x4 + 35x31 + 105x31x
2
2 + 35x31x4

+21x2x5 + 210x21x2x3 + 21x21x5 + 105x1x
3
2 + 70x1x

2
3 + 105x1x2x4

+105x1x2x4 + 7x1x6 + x7

8 x81 + 28x61x2 + 105x42 + 56x51x3 + 210x22x4 + 35x24 + 210x41x
2
2 + 70x41x4

+56x3x5 + 560x31x2x3 + 56x31x5 + 280x2x
2
3 + 28x2x6 + 420x21x

3
2

+280x21x
2
3 + 420x21x2x4 + 28x21x6 + 840x1x

2
2x3 + 280x1x3x4

+168x1x2x5 + 8x1x7 + x8

9 x91 + 36x71x2 + 84x61x3 + 1260x32x3 + 280x33 + 378x51x
2
2 + 126x51x4

+378x22x5 + 126x4x5 + 1260x41x2x3 + 126x41x5 + 84x3x6 + 1260x31x
3
2

+840x31x
2
3 + 1260x31x2x4 + 84x31x6 + 1260x2x3x4 + 36x2x7

+3780x21x
2
2x3 + 1260x21x3x4 + 756x21x2x5 + 36x21x7 + 945x1x

4
2

+1890x1x
2
2x4 + 315x1x

2
4 + 504x1x3x5 + 2520x1x2x

2
3 + 252x1x2x6

+9x1x8 + x9

10 x101 + 45x81x2 + 945x52 + 120x71x3 + 3150x32x4 + 2100x23x4 + 630x61x
2
2

+210x61x4 + 126x25 + 2520x51x2x3 + 252x51x5 + 210x4x6 + 6300x22x
2
3

+630x22x6 + 3150x41x
3
2 + 2100x41x

2
3 + 3150x41x2x4 + 210x41x6 + 120x3x7

+12600x31x
2
2x3 + 4200x31x3x4 + 2520x31x2x5 + 120x31x7 + 1575x2x

2
4

+2520x2x3x5 + 45x2x8 + 4725x21x
4
2 + 9450x21x

2
2x4 + 1575x21x

2
4

+2520x21x3x5 + 12600x21x2x
2
3 + 1260x21x2x6 + 45x21x8 + 12600x1x

3
2x3

+2800x1x
3
3 + 3780x1x

2
2x5 + 1260x1x4x5 + 840x1x3x6 + 12600x1x2x3x4

+360x1x2x7 + 10x1x9 + x10

Table 3: The exponential complete Bell polynomials, Y (x1, x2, . . . , xk), up to k =
10.
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program called main now includes another for loop where the variable numparts

is decremented from tot parts down to unity. This enables all the refined rencon-

tres numbers of the partitions to be printed out. The second modification is the

inclusion of another for loop in the function subprogram called termgen, which

prints out the refined rencontres number in symbolic form with each partition. The

program called refined rencontres appears as the second code in the appendix.

As an example, when the code reaches the fourteenth partition summing to 9 or

encounters the partition {12,2,5}, it prints out

14: 2(1) 1(2) 1(5), and the refined rencontres number is: 9!/((2! 1∧(2))(1! 2∧(1))(1!

5∧(1))).

Then the symbolic forms for each refined rencontres number can be imported into

Mathematica to yield the actual integer value. When this is done with the above

output, a value of 18144 is printed out in Mathematica.

In the introduction it was stated that the general forms of s(n, n− k) for k = 1

to k = 4 in Equation (6) were evaluated via Equation (7), which, in turn, resulted

from expanding the lhs of Equation (1) in powers of y. Now we utilize Equation

(22) to develop more results in addition to investigating whether we can develop

an understanding of the coefficients of the resulting polynomials. If one puts j = k

in Equation (22), then one obtains L
(k)
P,k

[∏k
i=1 1/λi!i

λi
]

= 1/k! = s(k, k)/k! or

s(k, k) = 1. This is obvious because there is only one partition with k parts or

{1k}. Similarly, there is only one partition with j = k−1 parts, namely, {1k−2,2}.
Then one finds that L

(k−1)
P,k

[∏k
i=1 1/λi!i

λi
]

= 1/(2(k−2)!) = −s(k, k−1)/k!, which

leads to s(k, k−1) = −
(
k
2

)
. For j=k−2 parts, there are two partitions, {1k−3,3} and

{1k−4,22}, whereas for j= k−3 parts, three partitions exist: {1k−4,4}, {1k−5,2,3}
and {1k−6,23}. Thus, Equation (22) yields

L
(k−2)
P,k

[
k∏
i=1

1

iλiλi!

]
=

1

3(k − 3)!
+

1

22 × 2!(k − 4)!
=
s(k, k − 2)

k!
, (40)

and

L
(k−3)
P,k

[
k∏
i=1

1

iλiλi!

]
=

1

4(k − 4)!
+

1

2× 3(k − 5)!
+

1

23 × 3!(k − 6)!

=− s(k, k − 3)

k!
. (41)

Further simplification of the lhs’s of both results produces the third and fourth

results displayed in Equation (6).

From these results we observe that determining s(k, k − j) requires p(j) parti-

tions, where p(j) again represents the number of partitions summing to j. Since

p(4) = 5, we expect five distinct contributions to s(k, k − 4). Specifically, these are
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the partitions, {1k−5,5}, {1k−6,2,4}, {1k−6,32}, {1k−7,22,3}, and {1k−8,24}. Then

Equation (22) gives

L
(k−4)
P,k

[
k∏
i=1

1

iλiλi!

]
=

1

(k − 5)!

(1

5
+ (k − 5)

(
1

8
+

1

18

)
+

1

24
(k − 5)(k − 6)

+
1

384
(k − 5)(k − 6)(k − 7)

)
=
s(k, k − 4)

k!
. (42)

At this stage we need to modify the definition of the partition operator in order to

allow for the fact that we may wish to exclude certain parts from being included

in the analysis. For example, the coefficients of the product terms in the bracketed

term of Equation (42), viz., those terms of the form of
∏j
i=1(k−4− i) for j ranging

from 1 to 4, involve partitions that exclude unity since they have been removed

by the factor of 1/(k − 5)!. Hence the partition operator must exclude unity when

evaluating the coefficients. More generally, we modify the operator in Definition

(11) so that it now excludes the part l in partitions, which is achieved by ensuring

that il is always equal to zero. In other words, the index il is effectively excluded in

the sum over all partitions summing to k with j parts. Therefore, the new operator

is defined as

L
(j)
P,k/{l}

[
·
]
+

k,bk/2c,bk/3c,...,0,...,1∑
i1,i2,i3,...,il=0,...,ik=0∑k
i=1 iλi=k,

∑k
i=1 λi=j

(
·
)
. (43)

For example, to exclude unity from appearing in the partitions, the above result

becomes L
(j)
P,k/{1} [·]. Moreover, the definition can be used to restrict multiple parts

simply by introducing them in the subscripted curly brackets and setting their

respective indices in the summation to zero. Therefore, by employing this definition,

one can express Equation (42) as

s(k, k − 4) =

(
k

5

) 4∑
j=1

L
(j)
P,(j+4)/{1}

[
j+4∏
i=2

5!

iλiλi!

]
j−1∏
i=1

(k − i− 4). (44)

In Equation (44) the final product yields unity when j = 1. In addition, Equation

(42) can be simplified by using the Simplify routine in Mathematica, which yields

s(k, k − 4) =
1

48

(
k

5

)(
15k3 − 30k2 + 5k + 2

)
.

This agrees with the final result in (6).

We can generalize Equation (44) further by replacing 4 with l. Then we arrive

at

s(k, k − l) =

(
k

l + 1

) l∑
j=1

L
(j)
P,(j+l)/{1}

[
j+l∏
i=2

(l + 1)!

iλiλi!

]
j−1∏
i=1

(k − i− l). (45)
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For l = 5, Equation (45) gives

s(k, k − 5) =

(
k

6

)
6!

5∑
j=1

L
(j)
P,(j+5)/{1}

[
j+5∏
i=2

1

iλiλi!

]
j−1∏
i=1

(k − i− 5) =

(
k

6

)
6!

[
1

6

+
(1

2

1

5
+

1

3

1

4

)
(k − 6) +

( 1

22 · 2!

1

4
+

1

2

1

32 · 2!

)
(k − 6)(k − 7)

+
1

23 · 3!

1

3
(k − 6)(k − 7)(k − 8) +

1

25 · 5!

× (k − 6)(k − 7)(k − 8)(k − 9)
]
. (46)

Via the Simplify routine in Mathematica, one finds that the above result reduces to

s(k, k − 5) =− 1

16

(
k

6

)
k(k − 1)

(
3k2 − 7k − 2

)
=

1

16

(
k

6

)
(−3k4 + 10k3 − 5k2 − 2k). (47)

From the above results, the Stirling numbers of the first kind can be expressed

as

s(k, k − l) = (−1)l
(

k

l + 1

)
rl(k), (48)

where rl(k) are polynomials of degree l−1 in k. The latter polynomials are displayed

in Table 6.1 of [14]. For odd values of l, the polynomials begin at first order, while

for even values, they possess a constant. As an aside, it should be mentioned here

that there are transcription errors in some of the coefficients of the two lowest order

terms in the l = 8 result, while the l = 9 result is missing a minus sign and a factor

of (k − 1). Therefore, the correct forms should be

s(k, k − 8) =
1

3840

(
k

9

)(
135k7 − 1260k6 + 3150k5− 840k4 − 2345k3

− 540k2 +404k + 144
)
, (49)

and

s(k, k − 9) =− 1

768

(
k

10

)
k(k − 1)

(
15k6 − 165k5 + 465k4 + 17k3 − 648k2 − 548k

− 144
)
,

or

s(k, k − 9) =
1

768

(
k

10

)(
−15k8 + 180k7 − 630k6 + 448k5 + 665k4 − 100k3

− 404k2 − 144k
)
. (50)
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Table 3 displays the s(k, k− l) for fixed values of l up to 10 after they have been

processed with the aid of the Expand, FullSimplify and FunctionExpand routines in

Mathematica. They yield identical values for s(k, k − l) to the results in Table 6.1

of [14]. The coefficients, L
(j)
P,(j+5)/{1} in Equation (46), were obtained by running

the program numparts in the appendix and discarding all partitions containing

unity. From these results we observe that s(k, k− l) are polynomials in k of degree

2l. The surprising property of these results is that even though the coefficients are

improper fractions, they always yield an integer for s(k, k − l) for any value of k.

When the rl(k) polynomials are multiplied by k and are expressed in terms of

a lowest common denominator with the resulting integer coefficients arranged from

the lowest order k terms including the constant or k0 term up to the highest order

term, one obtains a sequence of integers. For example, in the case of s(k, k − 5) in

Equation (47), this sequence would be [0,0,2,-5,10,-3], while for s(k, k− 8) in Equa-

tion (49), it is [0,144,404,-540,-2345,-840,3150,-1260,135]. If all these sequences are

combined successively beginning with the l = 1 polynomial, the infinite sequence

becomes integer sequence A100655 in [28], where it is stated that the sequence rep-

resents the coefficients of the Nörlund polynomials, B
(z)
l , when they too share a

common denominator. The Nörlund polynomials [21] are programmed in Math-

ematica with the built-in instruction NorlundB[n,x]. By applying the Together

instruction, one can express all the coefficients of these polynomials as integers di-

vided by their lowest common denominator. For example, if we type the following

command into a notebook:

Together[NorlundB[7,k]],

then Mathematica prints out

(16k2 + 42k3 − 7k4 − 105k5 + 63k6 − 9k7)

1152
.

On the other hand, if we apply the Factor instruction to the l=7 result in Table 3,

then we find that Mathematica prints out:

− 1

5806080
(−7 + k)(−6 + k)(−5 + k)(−4 + k)(−3 + k)(−2 + k)(−1 + k)2k2

(16 + 59k + 51k2 − 54k3 + 9k4).

In order to obtain r7(k) from this result, we need to remove
(
k
8

)
. In other words, one

must multiply the above result by 8! and retain the quartic multiplied by k(k− 1).
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l s(k, k − l)

0 1

1 −1
2

(
k2 − k

)
2 1

8

(
k4 − 10

3
k3 + 3k2 − 2

3
k
)

3 − 1
48

(
k6 − 7k5 + 17k4 − 17k3 + 6k2

)
4 1

384

(
k8 − 12k7 + 166

3
k6 − 616

5
k5 + 403

3
k4 − 60k3 + 4

3
k2 + 16

5
k
)

5 − 1
3840

(
k10 − 55

3
k9 + 410

3
k8 − 1598

3
k7 + 3467

3
k6 − 4055

3
k5 + 2120

3
k4

−52
3
k3 − 80k2

)
6 1

46080

(
k12 − 26k11 + 285k10 − 15422

9
k9 + 6143k8 − 279142

21
k7

+16487k6 − 28886
3

k5 + 156k4 + 16232
9

k3 − 32k2 − 1280
7
k
)

7 − 1
645120

(
k14 − 35k13 + 1589

3
k12 − 40859

9
k11 + 217973

9
k10 − 249007

3
k9

+542959
3

k8 − 707651
3

k7 + 149422k6 + 5516
9
k5 − 374024

9
k4 + 288k3

+8960k2
)

8 1
10321920

(
k16 − 136

3
k15 + 2716

3
k14 − 94304

9
k13 + 2098754

27
k12

−385424k11 + 173988644
135

k10 − 2845216k9 + 34810009
9

k8 − 23420824
9

k7

−13192648
135

k6 + 3008192
3

k5 + 531632
27

k4 − 1089664
3

k3 + 56576
15

k2

+43008k
)

9 − 1
185794560

(
k18 − 57k17 + 1452k16 − 327148

15
k15 + 643538

3
k14

−4348450
3

k13 + 102846644
15

k12 − 22634716k11 + 50692273k10

−214300123
3

k9 + 753452672
15

k8 + 63997064
15

k7 − 76757776
3

k6 − 1705872k5

+69859968
5

k4 + 407808
5

k3 − 3483648k2
)

10 1
3715891200

(
k20 − 70k19 + 2215k18 − 125666

3
k17 + 527218k16

−41864540
9

k15 + 88466794
3

k14 − 1216903676
9

k13 + 443832229k12

−99888047818
99

k11 + 4398344897
3

k10 − 9570348094
9

k9 − 469781368
3

k8

+6221692976
9

k7 + 95289008k6 − 4782161632
9

k5 − 57906176
3

k4

+222504448k3 − 1413120k2 − 309657600
11

k
)

Table 4: Stirling numbers of the first kind, s(k, k − l), for fixed values of l.
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Then one arrives at

r7(k) =
8!

5806080
k(k − 1)(16 + 59k + 51k2 − 54k3 + 9k4)

=
1

144
(−16k − 42k2 + 7k3 + 105k4 − 63k5 + 9k6).

Multiplying r7(k) by k/8 yields NorlundB[7,k] as given above with the same com-

mom denominator of 1152. Hence we observe that

rl(k) =
( l + 1

k k!

)
B

(k)
l . (51)

Carlitz [2] defines the Nörlund polynomials by their generating function, which

is
∞∑
n=0

B(s)
n

xn

n!
+
( x

ex − 1

)s
. (52)

For s=1, these polynomials reduce to the Bernoulli polynomials, whereas for other

integer values, i.e., s=n, he expresses them in terms of the Stirling numbers of the

first kind as

s(n− 1, k) = (−1)k
(
n− 1

k

)
B

(n)
k . (53)

We can determine another result by combining Equation (48) with Equation (51).

Thus, it is found that

s(k, k − l) =

(
k − 1

l

)
B

(k)
l . (54)

To express the above result in a similar form to Carlitz’s result, we replace k and l,

respectively, by n and n− k in Equation (54). This yields

s(n, k) =

(
n− 1

n− k

)
B

(n)
n−k. (55)

Let us verify the two different forms for the Stirling numbers of the first kind by

putting n=68 and k=13. If we consider the Carlitz result first, then according to

Mathematica, s(67, 13) is equal to

386337636331425756359010590303024925586624321085088329810852198453

1301219926445228629688320.

The value of the rhs or (−1)(13)
(
67
13

)
NorlundB[13, 68] is given as

1372045130094133607002756589258832.

This, unfortunately, is nowhere near the value obtained for the lhs of Equation (53).

On the other hand, for the lhs of Equation (55), viz. s(68, 13), Mathematica prints

out
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-275870554911213017584867300082071301557129334314061522600050457372803918

468354582107956183040.

The rhs of Equation (55) becomes
(
67
55

)
NorlundB[55, 68], whose value is

-275870554911213017584867300082071301557129334314061522600050457372803918

468354582107956183040.

Thus, we find that the Carlitz result is erroneous, while Equation (55), which has

been determined by a combination of the partition method for a power series ex-

pansion and the sequence A100655 in [28], is correct. It should be mentioned that

Equation (55) has been tested for numerous values of n and k. On each occasion

both sides agreed with each other.

The rl(k) polynomials can also be obtained by applying the partition method for

a power series expansion directly to Equation (52). To accomplish this, we need to

identify the inner and outer series on the rhs of Equation (52) by expressing it as( x

ex − 1

)z
=
( 1

1 + x/2! + x2/3! + · · ·

)z
=

∞∑
k=0

(−1)kΓ(k + z)

k!Γ(z)

( x
2!

+
x2

3!
+ · · ·

)k
. (56)

Note that when |x2/2! + x3/3! + · · · | > 1, the equals sign in the final member of

Equation (56) needs to be replaced by the equivalence symbol. Thus, we observe

that the coefficients of the inner series are given by pk = 1/(k+ 1)!, while the outer

series has qk = (1)kΓ(k + z)/k!Γ(z). Introducing these results into (10) with a = 1

yields

Dk =
1

k!
B

(z)
k = LP,k

[
(−1)l(λk)

Γ(l(λk) + z)

Γ(z)

k∏
i=1

1

λi!(i+ 1)!λi

]
. (57)

As an example, if one inserts the multiplicities and lengths in Table 1 into Equation

(57), then one obtains

B
(z)
6 =6!

[
Γ(z + 6)

Γ(z)6!(2!)6
− Γ(z + 5)

Γ(z)4!(2!)41!3!
+

Γ(z + 4)

Γ(z)3!(2!)31!4!
+

Γ(z + 4)

Γ(z)2!(2!)22!(3!)2

− Γ(z + 3)

Γ(z)2!(2!)21!5!
− Γ(z + 3)

Γ(z)1!2!1!3!1!4!
− Γ(z + 3)

Γ(z)3!(3!)3
+

Γ(z + 2)

Γ(z)1!2!1!6!

+
Γ(z + 2)

Γ(z)1!3!1!5!
+

Γ(z + 2)

Γ(z)2!(4!)2
− Γ(z + 1)

Γ(z)1!7!

]
.

Furthermore, if one sets the rhs to Dk[6,1] in Mathematica and types in

Expand[FullSimplify[6! Dk[6,1]]],

then the following line is generated
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− z

252
− z2

96
+

13z3

576
+

5z4

64
− 5z5

64
+
z6

64
.

On the other hand, if the following line is typed into a notebook

Together[FullSimplify[6! Dk[6, 1] - NorlundB[6, z]]],

then the output is simply zero, which verifies that Equation (57) does yield the

Nörlund polynomials.

It should also be noted that if one replaces k and l in Table 3 by m + 1 and k

respectively, then using Equation (28) one can determine the Stirling polynomials,

Sk(m). If the results in Table 3 are denoted as skminuslk[k ,l ] in Mathematica,

where l is set to each value of l in the table, then typing

SP[ m ,n ]:=((-1)∧n (m-n)! n!/m!) skminuslk[m+1,n]

yields the Stirling polynomials. For example, typing

Expand[FullSimplify[SP[m, 10]]]

generates the following output for S10(m):

5

66
+

691m

3168
− 5m2

128
− 1421m3

2304
− 863m4

1536
+

115m5

9216
+

623m6

3072
+

77m7

1536

− 5m8

256
− 5m9

1024
+
m10

1024
.

Another interesting property is that one can develop general formulas for the

highest and lowest order coefficients of the product terms in Equation (45). For

j = 1, L
(j)
P,(j+l)/{1}

[∏j+l
i=2

(l+1)!

iλiλi!

]
reduces to

L
(1)
P,(l+1)/{1}

[
l+1∏
i=2

(l + 1)!

iλiλi!

]
= l!, (58)

while for j = 2, one finds that

L
(2)
P,(l+1)/{1}

[
l+1∏
i=2

(l + 1)!

iλiλi!

]
=
Hl−1 − 1

l + 1
− (1− (−1)l)

(l + 1)2
. (59)

The final term in Equation (59) has been introduced to compensate for the fact

that when l + 1 is even, the multiplicity of the part in the central partition of

{((l + 1)/2)2} equals 2.

For j= 3, the situation becomes more formidable since all the 3-part partitions

summing to l+3 need to be considered. This is accomplished by fixing the first part
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in a partition and counting all the contributions from the 2-part partitions summing

to a value of l + 3 minus the value of the first part. For example, if the first part

is equal to two, then one sums the contributions from the 2-part contributions

summing to l+ 1. This is virtually a repeat of the process used to obtain Equation

(59) except that one needs to account for the fact that the second part not only

equals the first part at the bottom limit of the sum, but that it also equals the third

part at the upper limit of the sum. For these partitions the multiplicity is equal to 2.

So one compensates by subtracting half the values at the limits of the summation.

After the first part has been set equal to two and the contributions from the 2-part

partitions have been evaluated, one sets the first part equal to 3 and determines the

contributions from the 2-part partitions summing to l with the parts greater than 2.

Again, the second part will equal the first part initially, while it will equal the third

part at the upper limit. Thus, half these contributions need to be removed. Then

we set the first part equal to 4 and determine all the 2-part partitions summing to

l− 1, where the parts are greater than 3. The process continues until the first part

is equal to bl/3c + 1. This, however, is not the end of the matter. When l + 3 is

a multiple of 3, one of the partitions will be {(l/3 + 1)3}, which has a multiplicity

equal to 3. It turns out that this contribution must be inserted into the result for

L
(3)
P,(l+3)/{1}

[∏l+1
i=2 1/iλiλi!

]
. Finally, one arrives at

L
(3)
P,(l+3)/{1}

[
l+1∏
i=2

1

iλiλi!

]
=

bl/3c+1∑
i=2

b(l+3−i)/2c∑
k=i

1

ik(l + 3− i− k)

−
bl/3c+1∑
i=2

1

2i2(l + 3− 2i)
−
bl/3c+1∑
i=2

(1 + (−1)l+3−i)

i(l + 3− i)2

−
(

1 + 2(−1)l cos(πl/3)

3 · 3!(b[l/3c+ 1)3

)
. (60)

The second term on the rhs of Equation (60) compensates for the double counting

in the first sum when k = i, while the third term, compensates for the double

counting when k = b(l+ 3− i)/2c and is an integer. The last term in Equation (60)

accounts for the case when there are 3 parts of equal magnitude. The factor in the

numerator yields a value of 3 only when l mod 3 ≡ 0 or l is divisible by 3. It arises

from putting l = 3 in the following identity:

l∑
j=1

e2πijk/l =

{
l , k ≡ 0 (mod l) ,

0 , k , otherwise.
(61)

For l = 14 and l = 15, Equation (60) yields values of 2913569/25225200 and

12867983/110073600 respectively in Mathematica, which agree with the results ob-

tained by: (1) running Program numparts with input values of 17 and 18 and the
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number of parts set equal to 3 and (2) applying the lhs of Equation (60) to only

the 3-part partitions that exclude unity. For example, the l = 14 case yields

L
(3)
P,(17)/{1}

[
13∏
i=2

1

iλiλi!

]
=

1

22 · 2! · 13
+

1

2 · 3 · 12
+

1

2 · 4 · 11
+

1

2 · 5 · 10
+

1

2 · 6 · 9

+
1

2 · 7 · 8
+

1

32 · 2! · 11
+

1

3 · 4 · 10
+

1

3 · 5 · 9
+

1

3 · 6 · 8
+

1

3 · 72 · 2!

+
1

42 · 2! · 9
+

1

4 · 5 · 8
+

1

4 · 6 · 7
+

1

52 · 2! · 7
+

1

5 · 62 · 2!

=
2913569

25225200
.

In principle, one can continue with this approach to evaluate the other coefficients

of
∏j−1
i=1 (k− i− l) in Equation (45). However, even for 4-part partitions it becomes

cumbersome having to adjust the varying multiplicities whenever two, three or four

parts are equal to one another. There is also the case when a partition is composed

of two pairs of parts. As a consequence, there are far more sums to compensate for

on the rhs than in Equation (60). On top of this, the equivalent of the first sum

on the rhs of Equation (60) becomes a three-dimensional sum, which contributes

greatly to the complexity of the problem. Nevertheless, after a substantial amount

of algebra, for the 4-part partitions one eventually obtains

L
(4)
P,(l+4)/{1}

[
l−2∏
i=2

1

iλiλi!

]
=

b(l+4)/4c∑
i1=2

b(l+4−i1)/3c∑
i2=i1+1

b(l+4−i1−i2)/2c∑
i3=i2

1

i1i2i3(l + 4− i1 − i2 − i3)

− 1

2

b(l+4)/4c∑
i1=2

b(l+4−i1)/3c∑
i2=i1+1

1

i1i22(l + 4− i1 − 2i2)
−
b(l+4)/4c∑
i1=2

b(l+4−i1)/3c∑
i2=i1+1

(1 + (−1)l+4−i1−i2)

i1i2(l + 4− i1 − i2)2

+
1

18

b(l+4)/4c∑
i1=2

(1 + 2(−1)l+4−i1 cos(π(l + 4− i1)/3))

i1((l + 4− i1)/3)3
− 1

2

b(l+4)/4c∑
i1=2

(1 + (−1)l+4−2i1)

i21(l + 4− 2i1)2

+
1

2

b(l+4)/4c∑
i1=2

b(l+4−2i1)/2c∑
i2=i1+1

1

i21i2(l + 4− 2i1 − i2)
+

1

6

b(l+4)/4c∑
i1=2

1

i31(l + 4− 3i1)

−
(

(1 + (−1)l + 2 cos(π(l + 4)/2))

4× 4!((l + 4)/4)4

)
. (62)

This result has been tested for various values of l in the same manner as Equation

(60). For example, when l = 12, the last term on the rhs, which arises from the

l = 4 case of Equation (61), contributes since there is now a partition with all

parts equal to one another, viz. {44}. Then we find that L
(4)
P,16/{1}[

∏12
i=2 1/iλiλi!] =

1235677/29030400.

So far, it has been observed that in order to derive general expressions for the

Stirling numbers of the first kind, j in Equation (22) has had to be fixed. This is
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despite the fact that the calculations become more formidable for j > 3. However,

if we wish to derive general expressions for the Stirling numbers in two variables,

then we are going to have to consider j = k − l or s(k, k − l) again, but this time

around we cannot fix l to specific values as in Table 3 since our aim is to determine

the coefficients of the powers of k in terms of l. Surprisingly, to accomplish this,

one requires the results in Table 3.

If we put j = k − l in Equation (22), then we obtain

L
(k−l)
P,k

[
k∏
i=1

1

iλiλi!

]
=

(−1)l

k!
s(k, k − l). (63)

We have seen that the highest order term in the polynomials of Table 3, viz. 2l,

emanates from the partitions with k− l parts. Moreover, this power occurs with the

least number of ones in these partitions. In other words, this is the partition with

the most number of twos or {1k−2l, 2l}. The contribution of this partition to the

lhs of Equation (22) is simply 1/2ll!(k− 2l)!. In order to obtain the contribution to

s(k, k − l), we need to multiply the above result by (−1)lk!. Then we find that

C0 =
(−1)l

2ll!

Γ(k + 1)

Γ(k − 2l + 1)
=

(−1)l

2ll!
k(k − 1) · · · (k − 2l + 1). (64)

Alternatively, we can use Equation (1) to express Equation (64) as

C0 =
(−1)l

2ll!

Γ(2l − k)

Γ(−k)
=

(−1)l

2ll!

2l∑
j=0

s(2l, j)kj . (65)

Both of the above results indicate that the contribution of {1k−2l, 2l} to s(k, k − l)
is a polynomial in k of degree 2l. Consequently, we shall denote the coefficients of ki

by C0,i. Thus, the coefficient C0,2l is equal (−1)l/2l · l! since s(2l, 2l) = 1 according

to Equation (6) or Table 3.

From Equation (65) we see that there will always be a contribution from the

partition {1k−2l, 2l} when we wish to evaluate the decreasing orders of k in s(k, k−l).
In addition, because k2l is the highest power, s(k, k − l) will be a polynomial in k

of degree 2l. Therefore, we can write as s(k, k − l) =
∑2l
j=1 s2l,j(l)k

2l−j . Hence we

observe that s2l,0(l) = (−1)l/2ll!.

To determine the coefficients, s2l,j(l), for the other powers of k, we require the

contributions from other partitions. For example, to calculate s2l,2l−1, we need to

evaluate the contribution from the next partition with the least number of ones,

but still with k − l parts, which is {1k−2l+1, 2l−2, 3}. The contribution from this

partition is 1/(3 · 2l−2(l − 2)!(k − 2l + 1)!. When multiplied by (−1)kk!, we obtain

C1 =
(−1)k−1

3 · 2l−2(l − 2)!
(−k)2l−1.
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Introducing Equation (1) into the above result gives

C1 =
(−1)l

3 · 2l−2(l − 2)!

2l−1∑
j=0

s(2l − 1, j)kj . (66)

As expected, the partition with the second most number of ones yields a polynomial

in powers of k as we found previously with {k − 2l, 2l}, but in this case the degree

of the polynomial is 2l− 1. Adopting a similar approach to Equation (65), we shall

denote the coefficients of ki in Equation (66) by C1,i. Thus, the coefficient of k2l−1

in s(k, k − l) becomes by the sum of two quantities, the first from the coefficient of

k2l−1 in Equation (65) and the second from the power of k2l−1 in Equation (66).

Hence we arrive at

s2l,2l−1(l) = C0,2l−1 + C1,2l−1 =
(−1)l

2l
s(2l, 2l − 1)

+
(−1)k

3 · 2l−2(l − 2)!
s(2l − 1, 2l − 1).

By introducing the results in Equation (6) or from Table 3 into the above equation,

we find that

s2l,2l−1(l) =
(−1)l

2l(l − 1)!

(2l + 1

3

)
. (67)

Note the appearance of (l− 1)! in the denominator, which indicates that s2l,2l−1(l)

vanishes for l = 0.

So far, the results have been simple. However, in order to determine C2, we

require two partitions with the next least number of ones and k − l parts. That is,

the least number of ones is now k− 2l+ 2. In general, to determine Cj , the number

of ones in each partition will be k−2l+ j. For C2, the two partitions with k−2l+2

ones and k−l parts, are {1k−2l+2, 2l−3, 4} and {1k−2l+2, 2l−4, 32}, which correspond

to the two standard partitions summing to 2. That is, the partitions can be viewed

as being homologous to {2} and {12} with the number of partitions given by p(2),

where, as before, p(k) represents the partition function or the number of partitions

summing to k.

To observe this homologous behaviour more clearly, let us consider the partitions

required to evaluate C5. As indicated above, this means that all partitions will have

k−l parts with k−2l+5 ones. Since p(5) = 7, we expect that there will be 7 distinct

partitions, which are displayed in the second column of Table 5. These partitions

have been arranged by beginning with the partition possessing the greatest number

of twos and then in the order that the third program in the appendix generates

them as the number of branches is incremented. The third column in the table

lists the corresponding standard partitions summing to 5 in reverse lexicographic

order as described in [14, page 127]. That is, they have been arranged beginning
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Partitions with k − l parts and k − 2l + 5 ones Partitions summing to 5

1 {1k−2l+5, 2l−6, 7} {5}
2 {1k−2l+5, 2l−7, 3, 6} {1,4}
3 {1k−2l+5, 2l−7, 4, 5} {2,3}
4 {1k−2l+5, 2l−8, 32, 5} {12, 3}
5 {1k−2l+5, 2l−8, 3, 42} {1,22}
6 {1k−2l+5, 2l−9, 33, 4} {13, 2}
7 {1k−2l+5, 2l−10, 35} {15}

Table 5: Homology between partitions with k− l parts and k−2l+5 ones and those
summing to 5.

with the least number parts or branches in a partition tree and ending with the

greatest number of parts or branches. If we examine the partitions in the columns,

then we find that those summing to 5 match those partitions in the second column

where the parts other than unity or two are incremented by 2. For example, the

partition {12, 3} in the third column corresponds to {1k−2l+5, 2l−8, 32, 5} in the

second column. Thus, parts 1 and 3 in the third column correspond to parts 3 and

5 in the second column.

Because of the homology between both classes of partitions, one does not need

to create an entirely new program to generate the partitions for calculating each

Cj . That is, all one needs to do is modify program numparts again, which is

discussed in the appendix before the listing of the third program, Cj Partitions.

This program prints out the partitions for any specified value of j denoted by the

variable tot in the same manner as the second column of Table 5. Since the number

of ones is fixed once j is specified, numparts has been modified so that it only

considers parts greater than or equal to two. Even the number of twos possesses a

constant value of l − j − 1. Hence the program prints out the fifth partition in the

second column of Table 5 as

5: (k-2l+5)(1) (l-8)(2) 1(3) 2(4).

From the foregoing analysis, Equation (63) can now be written as

s(k, k − l) = (−1)l
l−1∑
j=0

(−1)j
Γ(−k + 2l − j)

Γ(−k)
LR(l, j), (68)

where Euler’s reflection formula for the gamma function has been used to flip the

quotient of gamma functions and LR(l, j) is defined in terms of the reduced partition
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operator as

LR
(
l, j
)

= L
(l−j)
P,(2l−j)/{1}

[
j+2∏
i=2

f(i, λi)

]
,

with f(i, λi) = 1/iλiλi!. Note that in accordance with Equation (43), the reduced

partition operator only considers parts greater than unity up to j + 2. Moreover,

introducing Equation (1) into the above result yields

s(k, k − l) = (−1)l
l−1∑
j=0

2l−j∑
i=0

s(2l − j, i) ki LR(l, j). (69)

The above double sum can be decomposed further by expressing it into two separate

double sums as follows:

s(k, k − l) =(−1)l
l∑
i=0

ki
l−1∑
j=0

s(2l − j, i)LR(l, j)

+ (−1)l
2l∑

i=l+1

ki
2l−i∑
j=0

s(2l − j, i)LR(l, j). (70)

The first sum in Equation (70) possesses the lowest powers of k. In fact, the

double sum is evaluated quickly in Mathematica once expressions for the reduced

partition operator have been determined, which will be presented shortly. In addi-

tion, the i= 0 term vanishes since we have seen from the introduction that s(n, 0)

vanishes. Moreover, we shall see that the results obtained from the first term on

the rhs of Equation (69) can be neglected when determining general expressions of

s(k, k − l) for large values of l.

The highest powers of k occur at the upper end of the summation over i in the

second term on the rhs of Equation (70), which again requires expressions for the

reduced partition operator, but in this instance, the results for the Stirling numbers

of the first kind presented in Table 3 or given in Equation (6) are required. For

example, the highest power of k is given by i = 2l. From Equation (70) one finds

that the coefficient of this term is given by

s2l,0(l) = (−1)ls(2l, 2l)LR(l, 0) = (−1)ls(2l, 2l)L
(l)
P,(2l)/{1}

[
2∏

m=2

1

mλmλm!

]
,

while the coefficient of the next leading order term becomes

s2l,1(l) = (−1)l
(
s(2l, 2l − 1)LR(l, 0) + s(2l − 1, 2l − 1)LR(l, 1)

)
.
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or

s2l,1(l) =(−1)l

(
s(2l, 2l − 1)L

(l)
P,(2l)/{1}

[
2∏

m=2

1

mλmλm!

]

+ s(2l − 1, 2l − 1)L
(l)
P,(2l−1)/{1}

[
3∏

m=2

1

mλmλm!

])
.

To determine the coefficient of the leading order term, we require the contribution

from the reduced partition operator for the partition with only twos summing to

2l, i.e., l twos, multiplied by the value of s(2l, 2l). This partition, denoted by {2l},
contributes a value of 1/2ll!, while according to Equation (6) or Table 3, s(2l, 2l)

equals unity. Hence the coefficient of k2l for the Stirling numbers of the first kind

is s2l,0(l) = (−1)l/2ll!, as we have already found.

The next leading order coefficient, viz. the coefficient of k2l−1, is composed of the

contributions from two partitions. In the first instance we require the partition with

l twos summing to 2l as before, except that it is now multiplied by s(2l, 2l−1), which

also appears in both Equation (6) and Table 3. In the second instance we need the

contributions from all the l− 1-part partitions summing to 2l− 1 composed only of

twos and threes. There is only one such partition, {2l−2, 3}, whose contribution is

multiplied by s(2l − 1, 2l − 1) or unity. Hence the coefficient of k2l−1 in s(k, k − l)
reduces to

s2l,1(l) = (−1)l
(
− l(2l − 1)

2l l!
+

1

3 · 2l−2(l − 2)!

)
=

(−1)l−1(2l + 1)

3 · 2l(l − 1)!
.

More generally, for j ≤ l − 1, the coefficient, s2l,j , is given by

s2l,j(l) = (−1)l
j∑
i=0

s(2l − i, 2l − j)LR(l, i). (71)

For the remaining powers of k in the Stirling numbers of the first kind or j > l−1

in the above result, we need to include the first sum in Equation (70).

From the preceding analysis we have seen that in order to derive the coefficients

in terms of l, we require a program that enables us to calculate the contributions

from the reduced partition operator LR(l, j) for any value of j. Such a program

appears as Program 4 in the appendix. Once again, there is no need to create an

entirely new program because the partitions in the reduced partition operator are

homologous to or correspond with standard integer partitions as demonstrated by

Table 5. For example, if we consider LR(l, 5), then the required partitions will be

composed of parts greater than unity up to 7 that sum to 2l − 5 with l − i parts

and i ranging from 0 to 5. Specifically, these partitions are {2l−6, 7}, {2l−7, 3, 6},
{2l−7, 4, 5}, {2l−8, 32, 5}, {2l−8, 3, 42}, {2l−8, 33, 4} and {2l−8, 35}, which, in turn,

correspond with the partitions summing to 5, viz., {5}, {1,4}, {2,3}, {12, 3}, {1, 22},
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{13,2} and {15}. Neglecting the twos in the partitions for the reduced partition

operator for the time being, if one subtracts 2 from each remaining part, then one

obtains the partitions summing to 5. Therefore, to arrive at the partitions for the

reduced partition operator, all we need to do is increment all parts by 2 in an

existing code that calculates the coefficients via the partition method for a power

series expansion. This program mathparv.cpp appears in [14].

Another modification to the program is that it needs to determine the correct

number of twos for each partition. By examining the partitions in the reduced

partition operator, we see that each partition is accompanied by at least 2l− j − 1

twos. In fact, the precise number of twos is 2l − j − n, where n is the number of

parts in each partition summing to j. Therefore, before the other parts in each

partition can be processed, the program must print out this number of twos, which

is accomplished by the first and second print statements in termgen of Program

4 in the appendix. The final print statement appearing in the for loop prints out

the values of the remaining parts and their multiplicities. Note that each part i in

the code is incremented by 2 as discussed in the previous paragraph. Therefore,

running the program with tot set equal to 4 generates the following output:

LR[l−,4]:= l!/(2∧(l-5) (l-5)! 6∧(1) 1!) + l!/(2∧(l-6) (l-6)! 3∧(1) 1! 5∧(1) 1!)

+ l!/(2∧(l-7) (l-7)! 3∧(2) 2! 4∧(1) 1!) + l!/(2∧(l-8) (l-8)! 3∧(4) 4!) + l!/(2∧(l-

6) (l-6)! 4∧(2) 2!).

As can be seen in the above statement, there are five distinct contributions corre-

sponding to the number of integer partitions summing to 4. Furthermore, the above

output can be imported into Mathematica, whereupon by invoking FullSimplify and

Expand routines, one arrives at

In[5]:= FullSimplify[Expand[LR[l, 4]]]

Out[5]= (2∧( 1 - l) (-195 + l (487 + 40 l (-9 + 2 l))) l!)/(1215 Gamma[-4

+ l]).

Applying the Expand routine only to the polynomial in the above result, one obtains

the j = 4 result in Table 6, which also displays the first ten values of LR(l, j)

obtained by this procedure.

In Table 6 the binomial factor of
(
l

j+1

)
has been extracted for each value of

LR(l, j). Consequently, we observe that each expression possesses a polynomial of

degree j − 1 in l with the highest order coefficient always positive, while the other

coefficients alternate in sign. On this occasion, however, if one types the coefficients

from the polynomials into the online encyclopedia of integer sequences, there is no

sequence matching it.

Now that the LR(l, j) have been evaluated, we turn our attention to Equation

(71) so that we can determine the Stirling numbers of the first kind as functions of

both l and k. Previously, it was mentioned that the first sum on the rhs of Equation
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j LR(l, j)

0 1
2ll!

1 22−l

3(l−2)!

2 21−l

9(l−3)!

(
4l − 3

)
3 23−l

405(l−4)!

(
20l2 − 45l + 22

)
4 21−l

1215(l−5)!

(
80l3 − 360l2 + 487l − 195

)
5 23−l

25515(l−6)!

(
112l4 − 840l3 + 2177l2 − 2289l + 810

)
6 22−l

1148175(l−7)!

(
2240l5 − 25200l4 + 105980l3 − 206955l2

+185729l − 60228
)

7 24−l

3444525(l−8)!

(
320l6 − 5040l5 + 31220l4 − 96915l3

+157919l2 − 126708l + 38448
)

8 21−l

10333575(l−9)!

(
1280l7 − 26880l6 + 230048l5 − 1036560l4

+2642669l3 − 3784806l2 + 2789487l − 802710
)

9 23−l

15345358875(l−10)!

(
70400l8 − 1900800l7 + 21473760l6

−132224400l5 + 483575235l4 − 1070117730l3

+1389159277l2 − 956995182l + 263580120
)

10 22−l

322252536375(l−11)!

(
394240l9 − 13305600l8 + 191748480l7

−1545334560l6 + 7653524340l5 − 24064075035l4

+47782284242l3 − 57358923237l2 + 37381321242l

−9920458152
)

Table 6: LR(l, j) for j ≤ 10, where f(i, λi) = 1/iλiλi!.
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l s1(k, l)

0 0

1 1
2
k

2 3
8
k2 − 1

12
k

3 17
48
k3 − 1

8
k2

4 403
1152

k4 − 5
32
k3 + 1

288
k2 + 1

120
k

5 811
2304

k5 − 53
288

k4 + 13
2880

k3 + 1
48
k2

6 16487
46080

k6 − 14443
69120

k5 + 13
3840

k4 + 2029
51840

k3 − 1
1440

k2 − 1
252

k

7 101093
276480

k7 − 10673
46080

k6 − 197
207360

k5 + 6679
103680

k4 − 1
2240

k3 − 1
72
k2

8 34810009
92897280

k8 − 418229
1658880

k7 − 235583
24883200

k6 + 47003
483840

k5 + 33227
17418240

k4

− 8513
241920

k3 + 221
604800

k2 + 1
240

k

9 214300123
557383680

k9 − 840907
3110400

k8 − 7999633
348364800

k7 + 4797361
34836480

k6 + 5077
552960

k5

− 181927
2419200

k4 − 59
134400

k3 + 3
160

k2

10 4398344897
11147673600

k10 − 4785174047
16721510400

k9 − 8388953
199065600

k8 + 388855811
2090188800

k7

+ 5955563
232243200

k6 − 149442551
1045094400

k5 − 56549
10886400

k4 + 434579
7257600

k3 − 23
60480

k2

− 1
132

k

Table 7: Values of the first sum in Equation (70) as functions of k for l ≤ 10.
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(70) can be evaluated once the values of LR(l, j) are known. Let us denote this sum

as

s1(k, l) =(−1)l
l∑
i=0

ki
l−1∑
j=0

s(2l − j, i)LR(l, j). (72)

To evaluate these polynomials in Mathematica, first we need to introduce the values

of LR(l, j) in Table 6 into a notebook. Then we insert the following command:

s1[k−, l−] := (-1)∧l Sum[k∧i Sum[StirlingS1[2l-j, i] LR[l, j], {j,0,l-1}], {i, 0, l}] .

For example, typing in s1[k,5] into the notebook generates the following output for

l = 4:

Out[18]= k2

48 + 13k3

2880 −
53k4

288 + 811k5

2304 .

This result appears as the l=5 value of s1(k, l) in Table 7, which displays the values

of s1(k, l) generated by Mathematica up to l=10.

Again, it needs to be emphasized that the results in Table 7 represent the lowest

order terms in k for the Stirling numbers of the first kind, while the highest order

terms from l+ 1 to 2l are contained in the second sum on the rhs of Equation (70),

which has yet to be studied in terms of l. Hence the results in Table 7 are incapable

of providing a reasonable approximation to the Stirling numbers of the first kind

when k is large. For example, s1(k, 1) = k/2 provides the k/2 term for s(k, k − 1)

in Table 7, but the dominant term of −k2/2 is missing.

We have already determined the coefficients of the leading order and first order

terms, i.e., s2l,0 and s2l,1, in the Stirling numbers of the first kind. In these cases

there was only one partition that appeared in the analysis of the second sum on

the rhs of Equation (70). To allow for more partitions to appear in the lower order

coefficients, the second sum on the rhs of Equation (70) was developed further

resulting in Equation (71), where the coefficients are now expressed in terms of the

reduced partition operator displayed in Table 6. Therefore, we can now determine

the coefficient of the next leading order term or the terms comprising k2l−2 term

in the Stirling numbers of the first kind far more expediently. From Equation (71),

we obtain

s2l,2(l) =(−1)l
2∑
i=0

s(2l − i, 2l − 2)LR(l, i) = (−1)ls(2l, 2l − 2)LR(l, 0)

+ (−1)ls(2l − 1, 2l − 2)LR(l, 1) + (−1)ls(2l − 2, 2l − 2)LR(l, 2).

The Stirling numbers of the first kind on the rhs of the above result can be obtained

from Table 3. Thus, it was stated previously that to determine the l-dependence of

in the coefficients of the powers of k in the Stirling numbers of the first kind, one

requires them for the specific values of l in Table 3. Note also that the results in
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the table must have k replaced by 2l minus the value of summation index i. On the

other hand, the values of LR(l, i) for i ≤ 10 are presented in Table 6. Consequently,

s2l,2(l) can be expressed as

s2l,2(l) =
(−1)l

2ll!

(
2l4 − 10l3/3 + 3l2/2− l/6− 8l4/3 + 20l3/3− 16l2/3 + 4l/3

+ 8l4/9− 10l3/3 + 34l2/9− 4l/3
)
. (73)

Applying the Factor command in Mathematica to the polynomial in the above result

yields

In[12]:= Factor[-(l/6) - l∧2/18 + (2 l∧4)/9]

Out[12]= (1/18) (-1 + l) l (3 + 4 l + 4 l∧2).

By cancelling l(l − 1) with the l factorial in the denominator of Equation (73), we

arrive at the coefficient of k2l−2 in the Stirling numbers of the first kind. This is

displayed on the fourth or j = 3 row of Table 8.

Table 8 displays the highest order coefficients in k up to 2l − 10 for the two

parameter version of the Stirling numbers of the kind or s(k, k− l). As can be seen

from the table, all the coefficients possess (l − m)! in their denominators, where

m is an integer including zero, but is not related to the power of k. In fact, m

increments by unity when the leading power of l in the coefficient has increased

by unity compared to its immediate predecessor and remains the same value as

for the immediate predecessor when the leading power of l has increased by more

than unity. For example, the leading power of l in s2l,5(l) is 6 compared with 5 in

s2l,4(l). Thus, we see that the denominator in s2l,5(l) possesses (l − 4)! compared

with (l − 3)! in s2l,4(l). On the other hand, the leading power of l in s2l,6 is 8, but

the denominator possesses a factor of (l − 4)!, the same as s2l,5(l).

From the results in Table 8, we see that the coefficients, s2l,j(l), will only con-

tribute if l ≥ m. In addition, they possess a common factor of (−1/2)l in the

numerator, while the numerical value in the denominator corresponds with the fac-

tor in the denominator of the results for the LR(l, j) in Table 6. Although they

really apply for large values of l, they can be used in conjunction with the s1(k, l)

in Table 7 to determine the Stirling numbers of the first kind appearing in Table 3.

However, due care must be exercised as explained below.

Consider l = 1. From Table 8, s2,0(1) = −1/2. Hence this term yields the

dominant term of −k2/2 for s(k, k − 1). If we add the l = 1 result in Table 7 to

the dominant term, then we obtain s(k, k−1) or −k2/2 +k/2 as displayed in Table

3. However, we can put l = 1 into s2l,1(l) appearing in Table 8. Then we obtain

k/2. In this case we only accept the contribution from s1(k, 1) or from s2,1(1), but

not both. This is because, according to Equation (70), none of the powers of k
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j s2l,j(l)

0 (−1/2)l

l!

1 − (−1/2)l

3(l−1)!

(
2l + 1

)
2 (−1/2)l

18(l−2)!

(
4l2 + 4l + 3

)
3 (−1/2)l+1

405(l−2)!

(
40l4 − 20l3 − 22l2 − 85l + 48

)
4 − (−1/2)l+3

1215(l−3)!

(
80l5 − 80l4 − 56l3 − 304l2 + 405l − 207

)
5 (−1/2)l+3

25515(l−4)!

(
224l6 − 336l5 − 112l4 − 1176l3 + 106790l2

−935721l + 2075040
)

6 (−1/2)l+4

1148175(l−4)!

(
2240l8 − 13440l7 + 18480l6 − 15120l5

+122676l4 − 342432l3 + 384569l2 − 366513l + 32940
)

7 − (−1/2)l+4

3444525(l−4)!

(
640l10 − 7360l9 + 28320l8 − 44880l7

+89832l6 − 451812l5 + 1233710l4 − 1835975l3

+1958373l2 − 852588l + 1270080
)

8 (−1/2)l+7

10333575(l−5)!

(
1280l11 − 17920l10 + 86016l9 − 174336l8

+326112l7 − 1740288l6 + 6139312l5 − 11885264l4

+16332453l3 − 13062042l2 + 15149673l − 36384390
)

9 (−1/2)l+7

15345358875(l−6)!

(
140800l12 − 2323200l11 + 13418240l10

−33749760l9 + 63919680l8 − 335348640l7 + 1457426432l6

−3538048272l5 + 5957077510l4 − 6831367755l3

+4709121147l2 − 33568759422l + 37752946560
)

10 (−1/2)l+8

322252536375(l−6)!

(
394240l14 − 9856000l13 + 95701760l12

−4590924800l11 + 11213709091200l10 − 383166378672000l9

+5851111156004576l8 − 52579582441143296l7

+307925976912267796l6 − 1228034255151640996l5

+3377645217003820839l4 − 6326617033681706214l3

+7723529834025373749l2 − 5549283333556239654l

+1781922994140980880
)

Table 8: Highest order coefficients in powers of k2l−j for s(k, k − l).
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from the results in Table 8 should be the same as any of the powers of k in s1(k, l).

That is, double-counting of the coefficients of the lower powers must be avoided by

ensuring that the sum over s2l,j(l) ranges from 0 to l − 1. Hence the contribution

from s2,1(1) is discarded, while s1(k, 1) can be added directly to yield s(k, k − 1).

More generally, this can be written as

s(k, k − l) =

l−1∑
j=0

s2l,j(l) k
2l−j + s1(k, l). (74)

Since s1(k, l) is a polynomial of degree l, we see that there is no double-counting

of the coefficients because the lowest order of k from the first sum is l + 1. Note

also that each non-zero s2l,j(l) in s(k, k − l) yields the coefficient of k2l+2−j in

s(k, 2l + 2j − 1), but evaluated with l replaced by l + 1. Consequently, the results

in Table 7 yield the right diagonal coefficients for all s(k, k − l).
Let us confirm Equation (74) by considering l = 4. Then we find that

s(k, k − 4) =s8,0(4)k8 + s8,1(4)k7 + s8,2(4)k6 + s8,3(4)k5 +
403k4

1152

− 5k3

32
+

k2

288
+

k

120
. (75)

From Table 8 we find that

s8,0(4) = (−1/2)4/4! = 1/384, s8,1(4) = −(−1/2)4 × 9/(3× 3!) = −1/32,

s8,2(4) = (−1/2)4(4× 42 + 4× 4 + 3)/(18× 2!) = 83/576,

and

s8,3(4) = (−1/2)5(40× 44 − 20× 43 − 22× 42 − 85× 4 + 48)/(415× 2!)

= −2079/66540.

Therefore, Equation (75) becomes

s(k, k − 4) =
k4

384
− k7

32
+

83k6

576
− 77k5

240
+

403k4

1152
− 5k3

32
+

k2

288
+

k

120
,

which is identical to the l = 4 result in Table 3.

We can also use Equation (74) to check the resulting expressions obtained for the

s2l,j , which is recommended in view of how cumbersome or unwieldy they become

when j ≥ 5. In fact, this was done for all the results in Table 8. To see this more

clearly, suppose that we already know or have verified the results to j = 3 in Table

8. Next we determine the j = 4 result in the table by using the above method. At

this stage we do not know if the new expression for j = 4 is correct since it has not

been verified. From Table 8, we observe that s1(k, 5) is a quintic in k. So if we wish

to introduce it into Equation (74), then the lowest power in the first sum must be
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k6, which implies that l = 5. Since l = 5, we introduce s1(k, 5) into Equation (74),

which gives

s(k, k − 5) =s2l,0(5)k10 + s2l,1(5)k9 + s2l,2(5)k8 + s2l,3(5)k7 + s2l,4(5)k6

+
811

2304
k5 − 53

288
k4 +

13

2880
k3 +

1

48
k2.

Because the expressions for the four highest coefficients, i.e., s2l,0(l) to s2l,4(l) have

already been verified, all we need to do is put l = 5 in them. Consequently, s2l,0(5) =

−1/3840, s2l,1(5) = 11/2304, s2l,2 = 41/1152, and s2l,3(5) = 799/5760. These not

only represent the four highest order coefficients for the l = 5 result in Table 3,

but also the coefficients from k5 down also agree. Thus, we need to verify that the

expression for s2l,4(5) agrees with the coefficient of k6 in the l = 5 result in Table

3. Putting l = 5 into the s2l,4 result of Table 8 yields

s2l,4(5) =
(−1/2)8

2430

(
80
(
55
)
− 80

(
54
)
− 56

(
53
)
− 304(52) + 405× 5− 207

)
=

3467

11520
.

This agrees with the value of the coefficient of k6 in the l = 5 result of Table 3,

which is given as 3467/(3 × 3840). By adopting this approach, one can, therefore,

verify all the results in Table 8.

4. Stirling Numbers of the Second Kind

In Section 2, we found that the main difference between the formulations of the

Stirling numbers of both kinds via the partition method for a power series expansion

was that in the case of the Stirling numbers of the second kind, each part i was

assigned a value of i!, whereas for those of the first kind, each part i was assigned a

value of i only. This is readily observed by comparing Equation (16) with Equation

(22). In this section we apply the analysis of the previous section to determine the

corresponding results for the Stirling numbers of the second kind.

Let us review how Equation (16) can be used to obtain the Stirling numbers

of the second kind. It has already been stated that S(n, j) represents the number

of objects, n, which can be divided into j non-empty subsets or groups. From the

partition tree in Figure 1, we see that j corresponds to the paths terminating with j

branches. That is, if we fix a value of j, then the Stirling number of the second kind

will be determined from those partitions with a terminating tuple after j branches.

For example, S(6, 3) will be determined using those tuples with a zero vertically

after three branches, of which there are three. Specifically, these are the partitions,

{12,4}, {1,2,3} and {23}. Thus, the number of groups in the Stirling numbers of
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the second kind corresponds to using the same number of parts in the partitions

summing to n.

To evaluate the Stirling numbers of the second kind, we introduce the partitions

for that number of parts or j into Equation (16). Therefore, S(6, 3) is given by

S(6, 3) = 6!
( 1

2!1!

1

1!4!
+

1

1!1!

1

2!1!

1

3!1!
+

1

(2!)33!

)
= 15 + 60 + 15 = 90.

It is interesting to observe that the single discrete partition makes the biggest con-

tribution to S(6, 3), which is due to the fact that each part in a discrete partition

has a multiplicity of unity. This does not apply to the Stirling numbers of the first

kind because the values of the parts in the partitions are not factorials.

As was done for the Stirling numbers of the first kind, we can evaluate S(k, k− l)
for fixed values of l ranging from 0 to 10. In fact, all we need to do is replace the

value of each part i by i! instead of i. For l=0, which represents the case where k

objects are divided into a maximum of k groups, the corresponding result for the

Stirling numbers of the first kind appears in the paragraph above Equation (40). A

maximum of k groups only occurs when each part represents a group, i.e., the parts

are only equal to unity. In other words, we need to consider the partition, {1k}.
Then Equation (16) yields S(k, k) = k!L

(k)
P,k[
∏k
i=1 1/(i!)λiλi!] = k!/(1!)kk! = 1,

which is identical to s(k, k). For the situation where we wish to divide k objects

into k− 1 groups, this means we must have k− 2 single object groups and one

group with 2 objects, corresponding to the partition, {1k−1,2}. Thus, we find that

S(k, k − 1) = k!/(1!)k−1(k − 2)!(2!)1! = k(k − 1)/2 or S(k, k − 1) =
(
k
2

)
. Therefore,

except for a change of sign, we find that s(k, k − 1) and S(k, k − 1) agree. In other

words, S(k, k − 1) = |s(k, k − 1)|. In addition, from Equations (17) and (18), we

find that the special Worpitzky number with n = k and j = k − 1 is given by

W
(k)
k−1,k−1 = (k − 1)k!/2.

If we wish to divide k objects into k−2 groups, the situation is no longer as

simple as the first two examples since there is more than one method of creating

the groups. In this instance, we can have either k − 3 single object groups and one

group with 3 objects or we can have k−4 single object groups and two groups with

2 objects in them. In short, these correspond or are homologous to the partitions,

{1k−3,3} and {1k−4, 22}. Consequently, we arrive at

S(k, k − 2) = k!L
(k)
P,k

[
k∏
i=1

1/(i!)λiλi!

]
= k!

( 1

(1!)k−3(k − 3)!(3!)1!

+
1

(1!)k−4(k − 4)!(2!)22!

)
= k!

( 1

8(k − 4)!
+

1

(6(k − 3)!

)
=

1

24
(3k − 5)(k − 2)(k − 1)k.

Hence from Equations (17) and (18), W
(k)
k−2,k−2 = (3k − 5)(k − 2)k!/24.
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Since the same partitions apply in the evaluation of S(k, k − 2) as those for

s(k, k−2), the same three partitions for evaluating s(k, k−3) will apply to S(k, k−3),

which are {1k−4, 4}, {1k−5,2,3} and {1k−6, 23}. Therefore, S(k, k − 3) is composed

of p(3) or three different methods of arranging k objects into k − 3 groups. First,

we have the case where there are k − 4 single object groups and one group with 4

objects. Then we have the case of k − 5 single object groups, and two remaining

groups, one consisting of 2 objects and the other, 3 objects. Finally, there is the

case where there are k − 6 single object groups and three groups with 2 objects or

paired groups. Each case makes a contribution to S(k, k − 3). For example, the

contribution from the first case is obtained by taking the first term on the rhs of the

intermediate member of Equation (41), replacing 4 in the term by 4! and multiplying

by k!. This yields
(
k
4

)
. To obtain the contribution from the second case, we apply

the same procedure to the second term of the intermediate member in Equation

(41) except that 2 is replaced by 2! and 3 by 3!. Hence we find that arranging

k objects into k − 5 single object groups and two groups with 2 and 3 objects

contributes 10
(
k
5

)
to S(k, k − 3), while the final term in the intermediate member

of Equation (41) represents the case where there are k− 6 single object groups and

three paired groups. This contributes 15
(
k
6

)
. Summing these contributions yields

(k−2)(k−3)
(
k
4

)
/2 for S(k, k−3), while from Equations (17) and (18), we find that

W
(k)
k−3,k−3 = (k − 3)2(k − 2)k!/48.

From the above analysis, it is obvious that arranging k objects into k− l groups,

where l is fixed, is dependent upon determining the partitions summing to k with

k − l parts as was the case for s(k, k − l) in the previous section. Moreover, there

will be p(l) ways of arranging the k − l groups. For l = 4, p(4) = 5. However, in

the analysis of s(k, k− 4), a new operator was devised, which enabled the exclusion

of ones from appearing in the analysis. Thus, Equation (44) was used to evaluate

s(k, k−4). Since the same partitions are involved in the determination of S(k, k−4),

all that we need to do is adapt Equation (44) so that the parts i yield a value of i!

instead of i. Hence we arrive at

S(k, k − 4) =

(
k

5

) 4∑
j=1

L
(j)
P,(j+4)/{1}

[
j+4∏
i=2

5!

i!λiλi!

]
j−1∏
i=1

(k − i− 4). (76)

By excluding unity in the partitions, much computation is avoided with this result.

For j = 1, we need only consider the partitions summing to 5 with one part that

must be greater than unity. This is the sole partition {5}. For j = 2, we consider

the parts summing to 6 with two parts greater than unity, namely, {2,4} and {32}.
When j = 3, the three parts must sum to 7, resulting in the partition, {22, 3}.
The upper limit of the sum over j in Equation (76) is 4, which means partitions

summing to 8 with 4 parts greater than unity or {24}. Therefore, Equation (76)
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reduces to

S(k, k − 4) =

(
k

5

)( 1

120
+
( 1

48
+

1

72

)
(k − 5) +

1

48
(k − 5)(k − 6) +

1

384
(k − 5)

× (k − 6)(k − 7)
)

=
1

48

(
15k3 − 150k2 + 485k − 502

)(k
5

)
. (77)

For k=167, Equation (77) yields a value of 1 395 960 899 099 833, which agrees with

the value obtained from StirlingS2(167,163) in Mathematica.

Another advantage of Equation (76) is that it can easily be generalized to the

situation of arranging k objects into k − l groups by replacing 4 with l as follows:

S(k, k − l) =

(
k

l + 1

) l∑
j=1

L
(j)
P,(j+l)/{1}

[
j+l∏
i=2

(l + 1)!

i!λiλi!

]
j−1∏
i=1

(k − i− l). (78)

Hence there are p(l) ways of arranging k objects into k− l groups. Table 9 displays

S(k, k − l) for fixed values of l up to and including l = 10. These results were

obtained by implementing Equation (78) in Mathematica. An interesting property

of these results is that for odd values of l, the polynomials can be factored further,

always yielding (k− l+1)(k− l) times a polynomial of degree, l−3. This is different

from the odd l values of s(k, k−l), which always yielded k(k−1) times a polynomial

of degree, l − 3. Finally, multiplying each S(k, k − l) in the table by (k − l)! yields

W
(k)
k−l,k−l.

The results in Table 9 can be used in conjunction with Equation (29) to evaluate

polynomial expressions of the Stirling polynomials with negative integer arguments.

First, we replace k + n and n in Equation (29) by k and k − l, respectively. This

gives

Sl(l − k − 1) = (−1)l
(k − l)!l!

k!
S(k, k − l). (79)

The above result simplifies drastically because the results in Table 9 can be ex-

pressed in the form of S(k, k − l) = Clfl(k)
(
k
l+1

)
, where fl(k) is the polynomial in

powers of k with degree l − 1. This was first noticed on p. 50 of [14], where the Cl
are combined with fl(k) to form Rl(k), which are, in turn, tabulated in Table 2.1

of the same reference. Consequently, we can write

Sl(l − k − 1) =
(k − l
l + 1

)
Clfl(k).

For l = 10, where Cl = 1/9216, typing the following lines/instructions into Mathe-

matica

SP[k , l ] := (-1)∧l (k - l) Const[l] F[k, l]/(l + 1)

Const[10] := 1/9216

F[k , 10] := -10307425152 + 13175306672 k - 7220722828 k∧2 + 2242194529
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l S(k, k − l)

0 1

1
(
k
2

)
2 1

4

(
3k − 5

)(
k
3

)
3 1

2

(
k − 2

)(
k − 3

)(
k
4

)
4 1

48

(
15k3 − 150k2 + 485k − 502

)(
k
5

)
5 1

16

(
3k4 − 50k3 + 305k2 − 802k + 760

)(
k
6

)
6 1

576

(
63k5 − 1575k4 + 15435k3 − 73801k2 + 171150k

−152696
)(

k
7

)
7 1

144

(
9k6 − 315k5 + 4515k4 − 33817k3 + 139020k2

−295748k + 252336
)(

k
8

)
8 1

3840

(
135k7 − 6300k6 + 124110k5 − 1334760k4

+8437975k3 − 31231500k2 + 62333204k

−51360816
)(

k
9

)
9 1

768

(
15k8 − 900k7 + 23310k6 − 339752k5 + 3040975k4

−17065540k3 + 58415444k2 − 110941776k

+88864128
)(

k
10

)
10 1

9216

(
99k9 − 7425k8 + 244530k7 − 4634322k6

+55598235k5 − 436886945k4 + 2242194592k3

−7220722828k2 + 13175306672k − 10307425152
)(

k
11

)
Table 9: Stirling numbers of the second kind, S(k, k − l), for fixed values of l.
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k∧3 - 436886945 k∧4 + 5559823 k∧5 - 4634322 k∧6 + 244530 k∧7 - 7425 k∧8

+ 99 k∧9

Expand[SP[k, 10]]

generates the following output:

134211265

132
− 4439390371k

3168
+

107806231k2

128
− 14821334059k3

50688
+

2203687993k4

33792

− 54720575k5

11264
+

51903043k6

101376
− 107267k7

1536
+

805k8

256
− 85k9

1024
+

k10

1024
.

By replacing m in the expression for S10(m) above Equation (58) by 9 − k in

accordance with Equation (79), one obtains the same result as given above.

If one types the first few coefficients of the polynomials in Table 9 or the Rl(k)

in Table 2.1 of [14], into the online encyclopedia of integer sequences, viz., -5,3,6,-

5,1,-502,485, then one is immediately directed to Sequence A075264 [11]. Here the

unsigned versions of the coefficients are stated as being the triangle of numerators

of coefficients, where the n-th row forms a polynomial in z, denoted by P (n, z),

that corresponds to the coefficient of xn in the generating function of (− log(1 −
x)/x)z, for n>0. In addition, the denominators of the polynomials are represented

by Sequence A053657, while the polynomials can be related to the generalized

reciprocal logarithm numbers, Ak(s), discussed in Chapter 2.3 of [14], but which

were first studied extensively in [12]. Comparing Table 2.5 of [14] with Table 9

here, we see that each Ak is not only expressed as a monic polynomial of degree k

divided by 2kk!, but that the polynomials do not always possess integer coefficients

as those in Table 9 or Table 2.1 in [14]. To obtain the polynomials in the latter

tables, the lowest common denominator must be extracted from the forms in Table

2.5 of [14]. When this is done, the resulting polynomials are identical to those in

Tables 9 and 2.1 of [14], provided the latter are multiplied by k/l. This is similar to

the situation for the s(k, k − l), where we needed to extract k/l from the binomial

factor to relate the rl(k) to the Nörlund polynomials. That is, the Rl(k) need to

be multiplied by k/l in order to give the generalized reciprocal logarithm numbers.

Consequently, we arrive at

S(k, k − l) =
(k − 1)!

(k − l − 1)!
Al(k). (80)

In [12] it is shown that the generalized reciprocal logarithm numbers obey the

finite sum given by

Ak(s+ t) =

k∑
j=0

Ak−j(s)Aj(t). (81)

This equation also appears as (2.166) in [14]. By replacing s, t and k in the above

result by k1, k2 and l, respectively, and introducing Equation (80) into Equation



INTEGERS: 23 (2023) 47

(81), one obtains

S(k1 + k2, k1 + k2 − l) =
(k1 + k2 − 1)!

(k1 − 1)!(k2 − 1)!

l∑
j=0

(k1 − l + j − 1)!(k2 − j − 1)!

(k1 + k2 − l − 1)!

× S(k1, k1 − l + j)S(k2, k2 − j). (82)

More compactly, Equation (82) can be expressed as

S(k1 +k2, k1 +k2− l) =

l∑
j=0

B(k1 − l + j, k2 − j)
B(k1, k2)

S(k1, k1− l+j)S(k2, k2−j), (83)

where B(x, y) represents the beta function.

Let us verify that Equation (82) is indeed valid by setting k1 = 33, k2 = 34 and

l = 16. Then by typing into Mathematica

StirlingS2[67,51],

we obtain the following output:

73667502745983700604456744062272831426.

On the other hand, the rhs of Equation (82) must be typed in as:

S[k1−, k2−, l−] := ((k1 + k2 -1)!/((k1 - 1)! (k2 - 1)! (k1 + k2 - l - 1)!)) Sum[

StirlingS2[k1, k1 - l + j] StirlingS2[k2, k2 - j] ((k1 - l + j - 1)! (k2 - j - 1)!), j, 0, l].

By inserting the values of k1, k2 and l, one finds that

In[30]:= S[33, 34, 16]

Out[30]= 73667502745983700604456744062272831426.

Therefore, we have verified Equation (82) or its more elegant version, Equation

(83).

As an interesting conjecture, let us consider replacing the Stirling numbers of

the second kind by the Stirling numbers of the first kind in Equations (82) and

(83). In this instance, we shall let k1 = 34, k2 = 45 and l = 21. Now typing into

Mathematica the command StirlingS1[79,58] yields

-7012150967257561932831853219046166126571671650580282,

while the new instruction becomes

S1[k1−, k2−, l−] := ((k1 + k2 -1)!/((k1 - 1)! (k2 - 1)! (k1 + k2 - l - 1)!))

Sum[ StirlingS1[k1, k1 - l + j] StirlingS1[k2, k2 - j] ((k1 - l + j - 1)! (k2 - j -

1)!), j, 0, l].

Introducing the values of k1, k2 and l given above, we arrive at

In[5]:=S1[34,45,21]
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Out[5]:= -7012150967257561932831853219046166126571671650580282.

Therefore, S in Equations (82) and (83) can be either kind of Stirling number.

We can also consider small values of j, i.e., j = 1, 2, 3, . . . , in Equation (16).

For j = 1, we expect S(k, 1) to equal unity since there is only one group that can

contain all k objects. In this instance Equation (16) reduces to

S(k, 1) = k!L
(1)
P,k

[ k∏
i=1

1

i!λiλi!

]
. (84)

According to the definition of the above operator in Equation (15), the sum of

the multiplicities must equal unity in Equation (84), i.e.,
∑k
i=1 λi = 1, together

with the other constraint,
∑k
i=1 iλi = k. From the first constraint only one λi can

equal unity with all the remaining multiplicities vanishing, while from the second

constraint, this can only be λk. That is, λk = 1 with all the other multiplicities

vanishing. Consequently, Equation (84) simplifies to S(k, 1) = k!/k! = 1, while

from Equation (17), we have W
(k)
1,1 = 1.

For j = 2, Equation (16) gives

S(k, 2) = k!L
(2)
P,k

[ k∏
i=1

1

i!λiλi!

]
.

In this case, the constraints in the restricted partition operator require that
∑k
i=1 λi =

2 and
∑k
i=1 iλi = k. There are two separate solutions. Either one λi = 2 and the

other multiplicities are zero or there are two λi’s, both equalling unity, while the

other multiplicities equal zero. For the first solution, we also have 2i1 = k or

i1 = k/2, which means that there is only a solution when k is an even integer.

Hence the contribution from this solution in the partition operator must be mul-

tiplied by (1 + (−1)k)/2. For the second solution, we also have i1 + i2 = k or

i2 = k − i1. In addition, i1 < i2 to avoid duplicating or repeating partitions. Fur-

thermore, i1 ranges from unity to bk/2c when k is an odd integer and ranges from

unity to k/2− 1 when k is an even integer. Thus, Equation (16) becomes

S(k, 2) = k!
( k∗∑
i=1

1

i!(k − i)!
+
(1 + (−1)k

2

) 1

2((k/2)!)2

)
,

where

k∗ =

{
bk/2c, k odd,

k/2− 1, k even.

By writing 2k as (1+1)k and applying the binomial theorem, we find that S(k, 2) =

2k−1−1, irrespective of whether k is an odd or even integer. This agrees with (2.29)
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in [14] and (6) in [34]. It can also be obtained by putting j = 2 in Equation (8).

Furthermore, from Equation (17), we find that W
(k)
2,2 = 2k − 2.

To determine S(k, 3), we can use the above method, but it will be messy. How-

ever, we have already determined L
(3)
P,l+3/1

[∏l+1
i=2 1/iλiλi!

]
for the Stirling numbers

of the first kind, which is given by Equation (60). We can adapt this result by noting

that: (1) we are no longer excluding parts with ones, (2) l+ 3 must be substituted

by k and (3) all the quantities in the denominators need to be replaced by their

factorial forms. Then we arrive at

S(k, 3) =k!L
(3)
P,k

[
k−2∏
i=1

1

i!λiλi!

]
= k!

(bk/3c∑
i1=1

b(k−i1)/2c∑
i2=i1

1

i1!i2!(k − i1 − i2)!

−
bk/3c∑
i1=1

1

2i1!2(k − 2i1)!
−
bk/3c∑
i1=1

(
1 + (−1)k−i1

)
4i1!b(k − i1)/2c!2

+
(1 + 2(−1)k cos(πk/3)

18(k/3)!3

))
. (85)

More compactly, Equation (85) can be expressed as

S(k, 3) =

bk/3c∑
i1=1

b(k−i1)/2c∑
i2=i1

(
k

i1

)(
k − i1
i2

)
− 1

2

bk/3c∑
i1=1

(
k

i1

)(
k − i1
i1

)

−
bk/3c∑
i1=1

(1 + (−1)k−i1

4

)(k
i1

)(
k − i1

b(k − i1)/2c

)
+

k!

18(k/3)!3

×
(

1 + 2(−1)k cos(πk/3)
)
. (86)

Putting k=57 in Equation (86) yields a value of 261 673 816 441 622 674 568 827 825,

which agrees with StirlingS2[57,3] in Mathematica. Moreover, multiplying Equation

(86) by 3! yields W
(k)
3,3 .

The first sum on the rhs of Equation (86) is not only the dominant contribution

to S(k, 3), but also overestimates its value. The next two terms are of similar size

to each other and reduce the contribution made by the first sum. As k increases,

their relative sizes to the first sum decrease. The final sum, which is relatively

small to the other sums, only yields a positive value when k is a multiple of three.

Otherwise, it is zero.

It should be mentioned that the second sum on the rhs of Equation (86) can be
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evaluated in Mathematica and is given by

bk/3c∑
i1=1

(
k

i1

)(
k − i1
i1

)
= 2F1

(1− k
2

,−k
2

; 1; 4
)
− 1−

(
k

bk/3c+ 1

)(
k − 1− bk/3c
bk/3c+ 1

)
× 3F2

(
1, 1− k

2
+ bk

3
c, 3− k

2
+ bk

3
c; 2 + bk

3
c, 2 + bk

3
c; 4
)
.

Similarly, the inner sum of the first sum on the rhs of Equation (86) can be evaluated

in Mathematica and yields

b(k−i1)/2c∑
i2=i1

(
k − i1
i2

)
=

(
k − i1
i1

)
2F1

(
1, 2i1 − k; i1 + 1;−1

)
−
(

k − i1
b(k − i1)/2c+ 1

)
× 2F1

(
1, i1 − k + b(k − i1)/2c+ 1; b(k − i1)/2c+ 2;−1

)
.

Consequently, Equation (86) can be reduced to 1-dimensional sums over i1.

In spite of the preceding results a more compact result for S(k, 3) can be obtained

from Equation (8) with j = 3. Then one arrives at

S(k, 3) =
1

2

(
3k−1 − 2k + 1

)
.

In fact, we can use Equation (8) to express lk, where l is a positive integer, in terms

of the Stirling numbers of the second kind. For example, 2k = S(k + 1, 2) + 1.

Applying Equation (80) yields (k − 1)!Ak−1(k + 1) = 2k − 1. More generally, it is

found that

lk = 1 +

l−2∑
i=0

(l − 1)!

i!
S(k + 1, l − i).

Using Equation (80), we can express the above result in terms of the generalized

reciprocal logarithm numbers as follows:

lk = 1 + k!
l−2∑
i=0

(
l − 1

i

)
Ak+1+i−l(k + 1).

As an aside, if we sum l from unity to n, then according to No. 4.1.1.3 of [24],

more commonly known as Faulhaber’s formula, we can express the Bernoulli polyno-

mials with integer arguments as a two-dimensional finite sum involving the Stirling

numbers of the second kind. This is given by

1

k + 1

(
Bk+1(n+ 1)−Bk+1

)
= n+

n∑
j=2

S(k + 1, j)

n−j∑
i=0

(i+ j − 1)!

i!
. (87)
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Note also that Quaintance and Gould express the Bernoulli numbers in terms of

the Stirling numbers of the second kind in Chapter 15 of [25], specifically, by (15.2)

and (15.10). Furthermore, a similar result to Equation (87) can be obtained for the

Euler polynomials by summing powers of (−l)k via Nos. 4.1.1.4 and 4.1.1.5 in [24].
We can also evaluate S(k, 4) in a similar manner to S(k, 3) except the same

changes must now be made to Equation (62). Bear in mind, that the denominators
of 1/(l+4−i1−i2)2 in the third term and 1/(l+4−2i1)2 in the fifth term on the rhs
of Equation (62) become 1/((k − i1 − i2)/2)!2 and 1/((k − 2i1)/2)!2, respectively.
Consequently, we need to insert factors of 4 in these denominators to determine

S(k, 4) or k!L
(4)
P,k

[∏k−2
i=1

1
i!λiλi!

]
. Hence we arrive at

S(k, 4) =k!
(bk/4c∑

i1=2

b(k−i1)/3c∑
i2=i1+1

b(k−i1−i2)/2c∑
i3=i2

1

i1!i2!i3!(k − i1 − i2 − i3)!

− 1

2

bk/4c∑
i1=2

b(k−i1)/3c∑
i2=i1+1

1

i1!i2!2(k − i1 − 2i2)!

− 1

4

bk/4c∑
i1=2

b(k−i1)/3c∑
i2=i1+1

(1 + (−1)k−i1−i2)

i1!i2!((k − i1 − i2)/2)!2

+
1

18

bk/4c∑
i1=2

(1 + 2(−1)k−i1 cos(π(k − i1)/3))
i1!((k − i1)/3)!3

− 1

8

bk/4c∑
i1=2

(1 + (−1)k−2i1)

i1!2((k − 2i1)/2)!2

+
1

2

bk/4c∑
i1=2

b(k−2i1)/2c∑
i2=i1+1

1

i1!2i2!(k − 2i1 − i2)!
+

1

6

bk/4c∑
i1=2

1

i1!3(k − 3i1)!

− (1 + (−1)k + 2 cos(πk/2))

4× 4!(k/4)!4

)
. (88)

As a check, putting k= 12 in the above result yields 611501, which agrees with

StirlingS2[12,4] in Mathematica. As in the case of S(k, 3), a more compact result

can be obtained from Euler’s formula, viz., Equation (8). Therefore, we find that

S(k, 4) =
1

24

(
4k − 4× 3k + 6× 2k − 4

)
.

Multiplying either of the two preceding results by 4! gives W
(k)
4,4 . Moreover, from

Equations (86) and (88), we see that 4k and 3k together with the more familiar

2k, can be expressed as a series of combinatorial sums. However, this becomes

increasingly cumbersome or laborious when one considers lk for l > 4.

As in the case of the Stirling numbers of the first kind, we now turn to calculating

the Stirling numbers of the second kind, S(k, k− l), when l is no longer fixed, but is

a variable. In other words, we develop asymptotic results for large values of l and
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k, specifically for k � l� 1. Consequently, Equation (16) becomes

S(k, k − l) = k!L
(k−l)
P,k

[ k∏
i=1

1

i!λiλi!

]
. (89)

From Table 9, we observe that the highest order term of S(k, k − l) in k is 2l.

This represents the situation where we have k−2l single object groups and l paired

groups. Altogether we have k−l groups, whereas in the case of the Stirling numbers

of the first kind, we had to deal with k− 2l ones and the maximum number of twos

equal to l. The contribution from this partition in Equation (89) is given by

D0 =
k!

Γ(k − 2l + 1)

1

2ll!
. (90)

As expected, except for the phase factor of (−1)l, this is identical to Equation (64).

This only occurs because 1! and 2! are equal to 1 and 2, which will not occur when

other partitions or groups with more than two objects are considered. Applying the

reflection formula for the gamma function and introducing Equation (1), one can

express Equation (90) as

D0 =
1

2ll!

2l∑
j=0

s(2l, j)kj . (91)

Hence there is a contribution from the above result to each power of k in S(k, k− l).
The highest power in the above result yields the highest order term for S(k, k − l),
whose coefficient is equal to 1/2ll!, the same as s(k, k − l). In fact, as we did

for the Stirling numbers of the first kind in the previous section, we shall denote

the coefficients of k2l−j in S(k, k − l) by S2l,j(l) and let j range from zero to 2l.

Therefore, S2l,0(l) = 1/2ll!.

On the other hand, the coefficient of k2l−1 will not only include the j = 2l −
1 contribution from Equation (91), but will also include a contribution from the

partition with the next highest number of twos or paired groups (l − 2) that sums

to k− l groups. This case is represented by the partition, {1k−2l+1, 2l−2, 3} and its

contribution emanating from Equation (16) is given by

D1 =
Γ(k + 1)

Γ(k − 2l + 2)

1

2l−2 (l − 2)!3!
. (92)

Introducing Equation (1) into Equation (92) yields

D1 =
1

2l−2 (l − 2)! 3!

2l−1∑
j=0

s(2l − 1, j) kj .

Thus, the leading order term ofD1 is k2l−1. By combining the coefficient of this term

with the coefficient of the k2l−1 term in Equation (91), we find that the coefficient
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of k2l−1 in S(k, k − l) is given by

S2l,1(l) =
l(l − 1)

2l−2 3! l!
− l(2l − 1)

2l l!
= − (4l − 1)

3 2l (l − 1)!
.

The negative term arises from the k2l−1 term in Equation (60). The above result

has a similar structure to Equation (67) including the property that it vanishes

when l = 1.

From here on, the calculations begin to become more complicated. However, we

can exploit the homology in Table 5 to determine the successive coefficients. The

only difference is that the left column in Table 5 is now representing groups instead

of partitions. For example, the left column represents all the cases of determining

how k objects can be arranged into k− l groups with k−2l+5 unit groups. This is,

of course, 7 since p(5) = 7. Consequently, we can use the program, Cj Partitions,

in the appendix again, while Equation (89) can be expressed as

S(k, k − l) =

l−1∑
j=0

(−1)j
Γ(−k + 2l − j)

Γ(−k)
LR2

(
l, j
)
.

Aside from the phase factor of (−1)l occurring in the definition of the Stirling

numbers of the first kind, this is identical to Equation (68) except that the restricted

partition operator is given by

LR2

(
l, j
)

= L
(l−j)
P,(2l−j)/{1}

[
j+2∏
i=2

f2(i, λi)

]
, (93)

where f2(i, λi) = 1/i!λi λi!. Specifically, the argument inside the operator is different

since each part, i, now has a value of i!. Consequently, we still need to evaluate LR2

in the same manner as Table 6 so that general expressions for the coefficients of

S(k, k− l) in terms of k and l can be derived. Therefore, Program 4 in the appendix

has had to be adapted, which as explained in the previous section, is a modified

version of mathparv.cpp in [14]. Table 10 displays the values of LR2(l, j) for j

ranging from 0 to 10. For each value of j, they vanish whenever l ≤ (j + 1), while

the numerator possesses a polynomial in l of degree j − 1.

Since the LR2(l, j) have been determined for the Stirling numbers of the second

kind, we can now turn our attention to determining the equivalent polynomials of

those given by Equation (72), which, as we have seen, not only yielded the lowest

order terms in k for the Stirling numbers of the first kind, but were also required to

show how the results in Table 8 when combined with them yielded the results for

the specific Stirling numbers of the first kind displayed in Table 3. We shall denote

these polynomials by s2(k, l). Note that the phase factor of (−1)l in Equations

(71) and (72) must be neglected because it arises from the definition of the Stirling
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j LR2(l, j)

0 1
2ll!

1 21−l

3(l−2)!

2 2−l

9(l−3)!

(
2l − 3

)
3 21−l

405(l−4)!

(
10l2 − 45l + 47

)
4 2−1−l

1215(l−5)!

(
20l3 − 180l2 + 511l − 447

)
5 2−l

25515(l−6)!

(
28l4 − 420l3 + 2261l2 − 5103l + 3978

)
6 2−1−l

1148175(l−7)!

(
280l5 − 6300l4 + 54670l3 − 226485l2 + 441337l

−315774
)

7 2−l

3444525(l−8)!

(
40l6 − 1260l5 + 16030l4 − 104685l3 + 366412l2

−641847l + 428598
)

8 2−3−l

10333575(l−9)!

(
80l7 − 3360l6 + 58856l5 − 554400l4 + 3010901l3

−9330414l2 + 15036975l − 9469710
)

9 2−2−l

15345358875(l−10)!

(
4400l8 − 237600l7 + 5479320l6 − 70187040l5

+543204915l4 − 2581604190l3 + 7279178401l2

−10952824806l + 6551022600
)

10 2−3−l

322252536375(l−11)!

(
12320l9 − 831600l8 + 24412080l7

−407678040l6 + 4249907970l5 − 28518471135l4

+122236785748l3 − 319157419581l2 + 452863114182l

−258521202504
)

Table 10: LR2
(l, j) for j ≤ 10, where f2(i, λi) = 1/i!λiλi!.
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numbers of the first kind. As an aside, it is interesting to note that the Stirling

numbers of the first kind are required for evaluating the coefficients in the Stirling

numbers of the second kind in terms of k and l. This indicates that the Stirling

numbers of the first kind are more fundamental than their second kind counterparts.

Table 11 displays the polynomials, s2(k, l), for the Stirling numbers of the second

kind. Unlike the s1(k, l) polynomials displayed in Table 7, the coefficients oscillate

in sign. Since the s1(k, l) polynomials give the lowest order terms in k for s(k, k−l),
i.e., for powers of k ≤ l, we expect the same to occur with the s2(k, l) polynomials

and S(k, k − l), which will be confirmed shortly.

We have also seen that the highest order terms in powers of k occur in the second

sum on the rhs of Equation (70), which for the Stirling numbers of the second kind

is expressed as

S(k, k − l) =

l∑
i=0

ki
l−1∑
j=0

s(2l − j, i)LR2
(l, j) +

2l∑
i=l+1

ki
2l−i∑
j=0

s(2l − j, i)LR2
(l, j).

(94)

Here, LR2
(l, j) is given by Equation (93).

As for the Stirling numbers of the first kind, the coefficient of the leading order

term is found by evaluating the contribution from the reduced partition operator

for the partition with only twos summing to 2l, i.e., l twos, multiplied by the value

of s(2l, 2l). This partition, denoted by {2l}, contributes a value of 1/2!ll!, the same

as the Stirling numbers of the first kind. From Equation (6), s(2l, 2l) equals unity.

Therefore, if we denote the coefficients of k2l−j as S2l,j in S(k, k−l), i.e., S(k, k−l) =∑2l
j=0 S2l,j(l) k

2l−j , then S2l,0(l) = 2−l/l!, while S2l,1 = −2−l(4l − 1)/3(l − 1)!.

The next highest order term in S(k, k − l) is obtained by putting i = 2l − 2 in

Equation (94). Then one finds that

S2l,2(l) =

2∑
j=0

s(2l − j, 2l − 2)LR2
(l, j). (95)

Introducing the relevant results from Tables 3 and 10 yields

S2l,2 =
2−l(−3 + 2l)

9(−3 + l)!
+

2−l(−1 + 2l − (−1 + 2l)2)

3(−2 + l)!)

+
2−3−l(−((4l)/3) + 12l2 − (80l3)/3 + 16l4)

l!
.

This is the initial form produced by Mathematica for S2l,2. To simplify the result

further, one should take out a factor of l! in the denominator, which means that

the first and second terms on the rhs of Equation (95) need to be multiplied by

l(l− 1)(l− 2), and l(l− 1), respectively. Then by introducing the resulting material
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l s2(k, l)

0 0

1 1
2
k

2 7
8
k2 − 5

12
k

3 −97
48
k3 + 2k2 − 3

4
k

4 5971
1152

k4 − 757
96
k3 + 1837

288
k2 − 251

120
k

5 −10817
768

k5 + 1859
64

k4 − 106837
2880

k3 + 1903
72

k2 − 95
12
k

6 610009
15360

k6 − 7160267
69120

k5 + 2109037
11520

k4 − 10768279
51840

k3 + 97367
720

k2

−19087
504

k

7 -31768357
276480

k7 + 25078799
69120

k6 − 42739139
51840

k5 + 6766943
5184

k4

−164149417
120960

k3 + 296881
360

k2 − 5257
24

k

8 31475819161
92897280

k8 − 2084719939
1658880

k7 + 87172693177
24883200

k6

−10431979727
1451520

k5 + 182268754763
17418240

k4 − 7373396321
725760

k3

+3533679881
604800

k2 − 1070017
720

k

9 −565095881387
557383680

k9 + 1505173070029
348364800

k8 − 199327529047
13934592

k7

+6314626388839
174182400

k6 − 37965486053
552960

k5 + 3534223753
37800

k4

−11540264461
134400

k3 + 132101511
2800

k2 − 231417
20

k

10 1629168499097
530841600

k10 − 247120507816003
16721510400

k9 + 79067876871539
1393459200

k8

−359199693359141
2090188800

k7 − 93737943001543
232243200

k6 − 748648816815259
1045094400

k5

+40198331675479
43545600

k4 − 5873080029689
7257600

k3 + 6467854987
15120

k2

−26842253
264

k

Table 11: Values of the first sum in Equation (70) or Equation (94) using the results
from Table 10.



INTEGERS: 23 (2023) 57

into the FullSimplify routine in Mathematica, one obtains

S2l,2 =
2−1−l(3 + 2l(−1 + 8l))

9Γ[−1 + l]
.

Next one applies the Expand routine to the resulting polynomial, i.e.,

Expand[(3 + 2 l (-1 + 8 l))]=3 - 2 l + 16 l∧2.

For low values of l, one can obtain compact results directly by applying the Full-

Simplify routine in Mathematica. However, for higher values of l > 3, one not

only must follow the above method, but also one must apply the Factor routine to

expand and factor the polynomial. For example, factoring the polynomial for the

l = 5 coefficient yields

Factor[8640 + 3330 l - 9105 l2 + 22622 l3 - 116415 l4 + 224292 l5 - 245700 l6

+ 158928 l7 - 53760 l8 + 7168 l9]= (-2 + l) (-1 + l) (4320 + 8145 l + 5505 l2

+ 15496 l3-37716 l4 + 47824 l5 - 32256 l6 + 7168 l7).

Hence the first two factors and l, which appears from applying the Simplify routine

earlier, can be cancelled with l! in the denominator, thereby yielding (l− 3)! in the

final form of the result displayed in Table 12.

Table 12 lists all the coefficients for the powers of k in S(k, k − l) up to j = 10

after applying the above method to the output resulting from the first term on the

rhs of Equation (94). As can be seen, they have similar forms to the corresponding

coefficients for the Stirling numbers of the first kind given in Table 8. Despite the

fact that the leading terms for both kinds of Stirling numbers are identical and that

the coefficients change sign for odd values of j, the main differences between the

tabulated results occur in the powers of two outside the polynomials and in the

coefficients of the final polynomials. The j = 9 case is the only result where the

factorial in the denominator is different. In this case the Stirling numbers of the

first kind possess a factor of (l−6)! as opposed to (l−5)! for S2l,9. This means that

the resulting polynomial in the Stirling numbers of the second kind is one order

higher than the j = 9 result in Table 8.

We can check the results in Table 12, by combining them with the results for

s2(k, l) in Table 11 and observing if they yield the actual values for the Stirling

numbers of the second kind from mathematical software packages such as Mathe-

matica. Alternatively, they can be checked by observing if they produce the same

results appearing in Table 9. To see this more clearly, let us consider the j = 4

result in Table 12, which gives the coefficient of k2l−4 in the Stirling numbers of

the second kind. In order to obtain the entire expression for the Stirling numbers,

we need to add s2(k, l), but only for l = 4, because the j = 4 result will yield the

coefficient of k5, while s2(k, 4) yields the coefficients from k4 to k or the lowest four
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j S2l,j(l)

0 2−l

l!

1 − 2−l

3(l−1)!

(
4l − 1

)
2 2−l

18(l−2)!

(
16l2 − 2l + 3

)
3 − 2−l−1

405(l−2)!

(
320l4 − 520l3 + 202l2 − 185l − 48

)
4 2−l−3

1215(l−3)!

(
1280l5 − 2240l4 + 1372l3 − 1060l2 − 459l − 207

)
5 - 2−l−3

25515(l−3)!

(
7168l7 − 32256l6 + 47824l5 − 37716l4 + 15496l3

+5505l2 + 8145l + 4320
)

6 2−l−4

1148175(l−4)!

(
143360l8 − 698880l7 + 1202880l6 − 1086120l5

+417156l4 + 49158l3 + 259039l2 + 281487l + 32940
)

7 − 2−l−4

3444525(l−4)!

(
81920l10 − 727040l9 + 2415360l8 − 3940320l7

+3427224l6 − 1258908l5 + 325870l4 − 299455l3 − 995499l2

+259668l + 1270080
)

8 2−l−7

10333575(l−5)!

(
327680l11 − 3112960l10 + 11347968l9 − 20617728l8

+19537872l7 − 8029920l6 + 2674216l5 − 706208l4 − 6185331l3

+8390214l2 + 38193687l + 36384390
)

9 − 2−l−7

15345358875(l−5)!

(
72089600l13 − 1063321600l12 + 6284861440l11

−19271352320l10 + 32937051840l9 − 30477804720l8

+13520307328l7 − 4342455128l6 − 1480934740l5 + 16485376565l4

+7869687882l3 − 85934170017l2 − 226649809530l − 188764732800
)

10 2−l−8

322252536375(l−6)!

(
403701760l14 − 6307840000l13 + 39979089920l12

−132803686400l11 + 246743481600l10 − 247059970080l9

+117411003248l8 − 35870826992l7 − 9085023320l6 + 192883224734l5

+242794805847l4 − 811462211208l3 − 4118925793455l2

−7215470135334l − 4630998219120
)

Table 12: Highest order coefficients in powers of k2l−j for S(k, k − l).
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orders. Therefore, putting l = 4 yields

S(2k, 4) =

3∑
j=0

S8,j(l)k
2l−j + s2(k, 4),

where from the first four results in Table 12, we have

S8,0 =
1

384
, S8,1 = − 5

96
, S8,2 =

251

576
, and S8,3 = −473

240
.

Introducing s2(k, 4) from Table 11 into the above yields

S(2k, 4) =
1

384
k8 − 5

96
k7 +

251

576
k6 − 473

240
k5 +

5971

1152
k4 − 757

96
k3 +

1837

288
k2 − 251

120
k.

This agrees with the l=4 result in Table 9 when the latter is expanded in powers of

k. Moreover, if we put l= 101 in the above result, then we find that Mathematica

prints out a value of 23057744878245, while the same value is obtained when one

types in StirlingS2[101,97] into the mathematical software package. As was found

for the Stirling numbers of the first kind, even though the coefficients are often

improper fractions, the final results for the Stirling numbers of the second kind are

always positive integers, irrespective of the value of k. This behaviour only applies

to the results for S(k, k− l) listed in Table 9 since they are complete for each value

of l. However, the coefficients in Table 12 represent the coefficients of k2l−j in

S(k, k − l) for any value of l, provided j < l.

5. Conclusion

This paper has presented an extensive analysis based on the partition method for

a power series expansion into the structure and properties of both kinds of Stirling

numbers, s(k, n) and S(k, n), with reference to related topics such as the Worpitzky

numbers and Stirling polynomials. Exact polynomial expressions in the primary

variable, k, for these numbers have been determined for two cases: (1) where the

secondary variable is fixed for low positive integers, e.g., for s(k, l) and l ranging

from 0 to 10, and (2) where the secondary variable is set equal to k − l and l

becomes a variable such as S(k, k − l). In the first case, despite the fact that

the coefficients are often improper fractions, the polynomials always yield integers

when the primary variable is a positive integer. They also agree with specific values

for both kinds of Stirling numbers when they are evaluated in Mathematica. An

interesting question is whether these results have a meaning or application when k

is extended to complex or even just real values.

In the second case, the coefficient of the highest power of the polynomials, viz.,

k2l, was found to be identical for both kinds of Stirling numbers, but the coefficients
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of k2l−j , where j ranges from 1 to 10, though yielding higher order polynomials in

l as j increases, are different. For both kinds of Stirling numbers, one requires the

results for the first kind of Stirling numbers determined in the first case, which are

given in Table 3. The general results obtained in the second case are expected to

yield accurate approximations when k � l� 1.

It was found that the particular partitions required for applying the partition

method for a power series expansion to the Stirling numbers, were homologous

to standard integer partitions. This meant that the code, numparts, which is

discussed in detail in [14], only needed to be modified slightly to evaluate the Stirling

numbers. This code has been presented for the first time in its entirety in the

appendix in order for readers to understand how the brcp algorithm is applied to

partitions with a specific number of parts. As a consequence, this enables one to

observe how the required modifications for determining the results for the Stirling

numbers can be implemented and processed in Mathematica.
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Appendix

This appendix presents the various codes that have been developed in the course of

deriving the general formulas for the Stirling numbers of the first and second kinds.

These codes have been created by modifying the code numparts, which is described

in detail in [14], though not presented in its entirety. The code is presented here to

enable the reader to understand the modifications that are necessary for obtaining

the general formulas for both kinds of Stirling numbers. However, before we can

proceed, we need to introduce the concept of a partition tree and how they are

implemented in the codes.
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Figure 1: Partition tree for partitions summing to 6.
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Figure 1 presents the partition tree when the seed number is or the partitions

sum to 6. To construct a partition tree, one draws branches or lines to all pairs of

numbers that can be summed to the seed number k, where the first member in the

tuple is an integer less than or equal to bk/2c or the greatest integer less than or

equal to k/2. For example, to obtain Figure 1, we draw branches to (0,6), (1,5),

(2,4) and (3,3). Whenever a zero appears as the first member of a tuple, the path

terminates, as can be seen by (0,6) or (0,3) in Figure 1. For the remaining pairs,

one draws another set of branch lines to all pairs with integers that sum to the

second member of the preceding pair, but once again according to the prescription

that the first member of each new pair is less than or equal to half of the second

member of the previous tuple. For example, in the case of (1,5) one draws paths

branching out to (0,5), (1,4) and (2,3). This recursive approach is continued until

all paths in the tree are terminated by a tuple possessing a zero.

Unfortunately, this, is not all that is required to create a partition tree. There is

a possibility that duplicated paths or repeated partitions can occur. That is, each

partition should only appear once in the tree. To avoid this problem, we note that

the entire tree emanating from (1,5) in Figure 1 represents the same partition tree

as if the seed number were 5 instead of 6. Similarly, the partition tree emanating

from (1,4) is the same partition tree as if the seed number were equal to 4. This

recursive behaviour continues all the way down to the last partition whose parts are

only composed of ones, or the partition with the greatest length or longest path.

Next we note that only partitions with unity in them emanate from (1,5), whereas

the partitions emanating from (2,4) only possess parts that are greater than or

equal to 2. Similarly, the partitions emanating from (3,3) only possess parts that

are greater than or equal to 3. In fact, in the last instance since 3 is one half of 6,

there will only be threes involved along the path from (3,3). In summary, we observe

that for branches emanating from each tuple the left member of the new tuple must

be greater than or equal to the left member of the previous tuple. Furthermore, we

see that the last path represents the central partition {3, 3}, which would have been

{3, 4} had we constructed a partition with the seed number equal to 7. Therefore,

the second member in a tuple decreases by unity with each rightward or horizontal

movement, while the first member of each tuple increments with each downward or

vertical movement.

By counting the number of terminating tuples we find that there are eleven

partitions summming to 6, while extracting the first member of each tuple along

a path and the second member of the terminating tuple yields the partition itself.

As a result, the partitions summing to 6 are generated in the following order in

the partition tree: {6}, {1,5}, {12,4}, {13,3}, {14,2}, {16}, {12,22}, {1,2,3}, {2,4},
{23}, and {32}. This also represents the order in which the partitions are printed

out.

The program numparts, which is described in [14], but is not presented in its



INTEGERS: 23 (2023) 64

entirety as it is here, determines all the partitions summing to a value tot with a

specific number of parts, which is represented by the global variable numparts in the

code. This is accomplished by the bivariate recursive central partition algorithm,

which is implemented in the function subprogram called brcp. In terms of a par-

tition tree the partitions generated by the code below are those with a terminating

tuple after numparts branches from the seed number. For example, the partitions

summing to 6 with three parts in Figure 1 are those with the terminating tuples of

(0,4) and (0,3) in the vertical column three branches from the seed number. These

tuples correspond to the partitions, {12,4} and {1,2,3}.

Program 1 numparts

/* This program determines partitions that sum to tot

with numparts parts. */

#include <stdio.h>

#include <memory.h>

#include <stdlib.h>

int tot , numparts , *part;

/* numparts is the number of parts specified by the

user */

long unsigned int term =1;

void termgen ()

{

int freq ,i,sumparts =0;

/* sumparts is the number of parts in a partition */

for(i=0;i<tot;i++){

sumparts= sumparts+part[i];

\hline

537 \ }

if(sumparts != numparts) goto end;

else

printf("%ld: ",term ++);

for(i=0;i<tot;i++){

freq=part[i];

if(freq) printf("%i(%i) ",freq ,i+1);

}

printf("\n");

end: ;

}
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void brcp(int p,int q)

{

part[p -1]++;

termgen ();

part[p-1]--;

p -= q;

while(p >= q){

part[q -1]++;

brcp(p--,q);

part[q++ -1]--;

}

}

int main(int argc ,char *argv [])

{

int i;

if(argc != 3) printf( "usage: numparts <#partitions >

        <#parts > \n" );

else{

tot=atoi(argv [1]);

numparts=atoi(argv [2]);

part=(int *) malloc(tot*sizeof(int ));

if(part == NULL) printf("unable to allocate

                array\n\n");

else{

for(i=0;i<tot;i++) part[i]=0;

brcp(tot , 1);

free(part);

}

}

printf("\n");

return (0);

Now that we have presented program numparts, we turn our attention to mod-

ifying the code so that it can determine the refined rencontres numbers. To under-

stand these modifications, we need to study the partition tree. From Figure 1, we

observe: (1) {6} is the sole one-part partition, (2) {1,5}, {2,4} and {32} are the two-

part or paired partitions, (3) {12,4}, {1,2,3} and {23} are the three-part partitions,

(4) {13,3} and {12,22} are the four-part partitions, (5) {14,2} is the only five-part

partition, while (6) {16} is the sole 6-part partition. If we begin with the partition

possessing the most parts and move backwards to the partition possessing only one

part, i.e. numparts=1, then as we decrement the length or number of parts and

list the partitions with terminating tuples vertically from top to bottom, we obtain

the partitions as they are listed in Table 1. For example, by using this approach
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we begin with {16} and {14,2} and then the two four-part partitions, {13,3} and

{12,22} and so on. In other words, by decrementing the length of the partitions

or the number of branches and scanning downwards for terminating tuples, one

obtains the correct order of the refined rencontres numbers as described in [23].

Basically, we need to make two modifications to numparts in order to obtain

the refined rencontres numbers. The first of these is that we need to consider differ-

ent lengths in numparts. This means that the variable, numparts is no longer fixed

or specified by the user as input, but begins with tot and continues to decrement

to unity. This is accomplished by introducing a for loop in main and no longer

typing in numparts as a fixed value. The second change for determining the refined

rencontres number for each partition requires the introduction of another for loop in

termgen. This loop will be responsible for printing out the relevant partitions. In

this loop the rencontres number for each partition will also be generated in symbolic

form, which can be imported into Mathematica to yield the actual value. For exam-

ple, according to Table 1, the refined rencontres numbers for the partitions {13,3}
and 23} are 40 and 15, respectively. In the case of program refined rencontres

listed below, the code would simply print out 6!/((3! 1∧(3))(1! 3∧(1))) and 6!/((3!

2∧(3))).

Program 2 refined rencontres

/* This program determines the forms of the refined rencont

res numbers for partitions summing to a value tot. These

forms can be imported into Mathematica to determine the

actual sequence of numbers for tot. */

#include <stdio.h>

#include <memory.h>

#include <stdlib.h>

int tot , numparts , *part;

/* numparts represents the no. of parts in a partition */

long unsigned int term =1;

void termgen ()

{

int freq ,i,sumparts =0;

/* sumparts is the no. of parts for a partition */

for(i=0;i<tot;i++){

sumparts= sumparts+part[i];

}

if(sumparts != numparts) goto end;

else
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printf("%ld: ",term ++);

for(i=0;i<tot;i++){

freq=part[i];

if(freq) printf("%i(%i) ",freq ,i+1);

}

printf(" and the refined rencontres number is:

            %i!/(",tot);

for(i=0;i<tot;i++){

freq=part[i];

if(freq) printf("(%i! %i^(%i))",freq ,i+1,

freq);

}

printf(")");

printf("\n");

end: ;

}

void brcp(int p,int q)

{prod_{i=2}^{j+2}

\frac {1}{{i}^{\ lambda_i }\ lambda_i !}

part[p -1]++;

termgen ();

part[p-1]--;

p -= q;

while(p >= q){

part[q -1]++;

brcp(p--,q);

part[q++ -1]--;

}

}

int main(int argc ,char *argv [])

{

int i;

if(argc != 2) printf("usage: refined rencontres

        <sum of partitions > \n");

else{

tot=atoi(argv [1]);

for(numparts=tot;numparts >=1; numparts --){

part=(int *) malloc(tot*sizeof(int ));

if(part == NULL) printf("unable to allocate

                array\n\n");

else{

for(i=0;i<tot;i++) part[i]=0;

brcp(tot ,1);
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free(part);

}

}

}

printf("\n");

return (0);

}

In Section 3 the homology between partitions summing to a value j and those

possessing k−l parts and k−2l+j ones, was discussed. The latter class of partitions

are necessary to evaluate the contributions to Cj , which are, in turn, required to

determine the coefficients of k2l−j in the Stirling numbers of the first kind given by

s(k, k−l). Because of the homology between both classes of partitions, we only need

to modify numparts to generate all the partitions for determining the coefficients

of the powers of k in s(k, k− l). As in the case of the refined rencontres numbers,

we include a second for loop in main so that we can generate all partitions with

k−2l+j ones in reverse lexicographic order, which follows when the partitions with

terminating tuples are written vertically downwards as the number of branches is

increased from unity to j or the most number of branches. Note also that the

standard lexicographic order emerges when the process is reversed by considering

the most number of branches first and then moving down to unity.

The next modification occurs also at the input stage. In numparts one is re-

quired to state the value to which the parts in each partition are summed in addition

to the number of parts in each partition. This no longer applies when dealing with

k− l parts summing to k. Because both k and l are fixed, the only input value is j,

which, as stated earlier, determines the total number of partitions via the partition

function, p(j). Thus, j takes the role of tot in the original numparts, while there is

no need to provide the number of parts via the variable numparts. In addition, once

j or the value of tot is specified, each partition will possess k − 2l + j ones, which

becomes the first quantity to be printed out by the printf statement in termgen

below.

Since the number of ones is fixed, the partitions vary by decrementing the num-

ber of twos, instead of 1 as in numparts. In fact, the first partition becomes the

partition with the most number of twos, viz. {1k−2l+j , 2l−j−1, j + 2}, which corre-

sponds to the single-part partition {j} for the partitions summing to j as indicated

in Table 5. The other partitions possess parts greater than 2 as the number of twos,

represented by the variable numtwos is decremented.

Program 3 Cj Partitions

/* This program determines partitions possessing k-l

parts and summing to k. Both k and l are fixed

algebraic quantities. The input variable tot is
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responsible for generating the partitions which

all possess (k-2l+tot) ones.*/

#include <stdio.h>

#include <memory.h>

#include <stdlib.h>

int tot ,numparts ,numtwos =0,*part;

/* numparts is the number of parts excluding ones

and twos , while numtwos is used to determine

the number of twos in the final partition */

long unsigned int term =1;

void termgen ()

{

int freq ,i,sumparts =0;

/* sumparts is the number of parts or elements

in a partition excluding ones and twos */

for(i=0;i<tot;i++){

sumparts= sumparts+part[i];

}

if(sumparts != numparts) goto end;

else

numtwos=tot+numparts;

printf("%ld: (k-2l+%i)(1) (l-%i)(2) ",term++,

tot ,numtwos );

for(i=0;i<tot;i++){

freq=part[i];

if(freq) printf("%i(%i) ",freq ,i+3);

}

printf("\n");

end: ;

}

void brcp(int p,int q)

{

part[p -1]++;

termgen ();

part[p-1]--;

p -= q;

while(p >= q){

part[q -1]++;

brcp(p--,q);

part[q++ -1]--;
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}

}

int main(int argc ,char *argv [])

{

int i,j;

if(argc != 2) printf( "usage: numparts <#partitions >

        \n" );

else{

tot=atoi(argv [1]);

part=(int *) malloc(tot*sizeof(int ));

for (j=0;j<tot;j++){

numparts=j+1;

if(part == NULL) printf("cannot allocate

                  array \n\n");

else{

for(i=0;i<tot;i++) part[i]=0;

brcp(tot ,1);

}

}

free(part);

}

printf("\n");

return (0);

}

In order to determine the coefficients of the powers of k in s(k, k− l) as functions

of l, it is necessary to determine the contributions from partitions in the reduced

partition operator LR(l, j). For each power of ki, these partitions are composed

of 2l − j − l(λj) twos, where l(λj) is the number of partitions or length of the

corresponding partition summing to j, and all the parts that appear in the partitions

summing to j are to be incremented by 2. In the program displayed below, the

variable num−parts in termgen represents l(λj), while j is represented by tot,

which is in turn the input value for executing the program.

The first print statement in termgen prints out LR[l−,6]:= when tot is set equal

to 6. That is, the code begins with all contributions to LR(l, j) when j = 6.

Thus, partitions summing to 6 are considered first in termgen. The next print

statement prints out a plus sign every time three partitions have been parsed by

evaluating modulo 3 of the variable termcnt. This is necessary so that the output can

be interpreted properly in Mathematica, thereby avoiding the insertion of control

characters. The first for loop in termgen determines the total number of parts

in a partition or its length. Using this value, termgen proceeds to print out the

number of twos in the partition. Then it completes the processing of the partition

by printing out (i+ 2)λi+2λi+2! for each part i+ 2. In this instance the multiplicity,
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λi+2, of each part i+ 2 is given by the value stored in the array, part[i].

Program 4 Contributions to LR[l, j, f(i, λi)]

#include <stdio.h>

#include <memory.h>

#include <stdlib.h>

#include <time.h>

int tot , *part;

long unsigned int termcnt =1;

void termgen(int p)

{

int f=0,i,num_parts=0,l;

/* num_parts is the total # of parts in the partition.

*/

if(p==tot) printf("LR[l_ ,%i]:=",p--);

else {

if (termcnt >=1) printf("+");

if (termcnt % 3 == 0) printf("\n");

termcnt ++;

}

for (i=1;i<=tot; i++){

f=part[i];

if(f>0){

num_parts += l = f;

}

}

f=0;

if( num_parts >= l ){

printf(" l!/(2^(l-%i) (l-%i)!",tot+num_parts ,

tot+num_parts );

for (i=1; i<=tot; i++){

f=part[i];

if(f>0){

printf(" %i^(%i) %i!", i+2,f,f);

}

}

}

printf(") ");

}
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void brcp(int p1 , int q)

{

part[p1]++;

termgen(p1);

part[p1]--;

p1 -= q;

while(p1 >= q){

part[q]++;

brcp(p1 --,q);

part[q++]--;

}

}

int main( int argc , char *argv[] )

{

int i;

if(argc != 2) printf("execution: reduced part op

        <sum of partitions >\n" );

else{

tot=atoi(argv [1]);

/* tot is the sum of the partitions required by the

brcp function subprogram */

part=(int *) malloc ((tot +1) *sizeof(int ));

if(part == NULL) printf("unable to allocate

                array\n\n");

else{

for (i=0;i<tot;i++) part[i]=0;

brcp(tot ,1);

free(part);

}

}

printf("\n");

return (0);


