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Abstract

Let σ =
(
a b
c d

)
be the coefficient matrix with nonzero determinant ∆ := detσ of

the linear fractional transformation σ(x) = (ax + b)/(cx + d), where a, b, c, d ∈ Z.
In this paper we introduce a new concept called natural leaping convergents. Such
convergents are defined in terms of combinatorial pairings between the rational
convergents of an irrational number ξ and those of its transformation σ(ξ). The
structural properties of natural leaping convergents are then studied and sufficient
conditions are given for determining whether σ(pn/qn) ∈ C(σ(ξ)) ∩ σ(C(ξ)), where
C(η) denotes the set of convergents of the number η. We then present a theorem for
expressing the convergents for all quadratic irrationals in closed form and establish
for the quadratic irrationals, as well as for transcendental numbers, that given
a suitable value for ∆, there are at most finitely many convergents pn/qn of ξ
satisfying σ(pn/qn) ∈ C(σ(ξ))∩σ∗(C(ξ)), where * indicates the added property that
gcd(apn + bqn, cpn + dqn) = 1.

1. Introduction

It has long been observed that certain Hurwitz-type continued fractions, for example

e =
[

2, 1, 2k, 1
]∞
k=1

, possess partitions among their convergents according to certain

structural properties. The investigation into such structural properties led to the

study of leaping convergents [1], [6], [7]. Later, in [4] non-linear leaping convergents

were found after transforming Hurwitz-type continued fractions using a certain ra-
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tional function, also known as a linear fractional transformation (lft)

σ(x) =
ax+ b

cx+ d
,

with integer coefficients a, b, c, d and a nonzero determinant ∆ := ad− bc. Without

loss of generality, we may assume that gcd(a, b, c, d) = 1. In the case µ := σ(ξ)

with an lft satisfying ∆ = ±1, the two numbers ξ and µ are called equivalent. A

well-known result of Serret [9, 8, §17], from the 19th century states:

The necessary and sufficient condition for the regular continued fractions

of two irrational numbers ξ, µ to agree from a certain partial denomi-

nator consists in the equivalence of the numbers ξ and µ.

From the proof of this statement in [8] it also follows that there is a certain index ν

such that all convergents pn/qn of ξ with n ≥ ν become convergents of σ(ξ) by the

mapping σ
(
pn/qn

)
. In this way one obtains all convergents of σ(ξ) up to at most

finitely many exceptions.

In this paper, we shift our focus to lfts with determinants |∆| ≥ 2. In Section

2, the linear fractional transformations σ(x) are at first very generally assumed

with four rational coefficients, from which a suitable equivalent lft with integer

coefficients (and nonzero determinant) is formed. Again we want to ask the question

of transferring convergents of ξ to convergents of σ(ξ). For this purpose, we define

natural leaping convergents in terms of combinatorial pairings between p/q ∈ C(ξ)
and p′/q′ ∈ C(σ(ξ)), where C(α) denotes the set of convergents of α. The set of

such pairings is called a σ-relation, Rσ. We thus generalize the notion of leaping

convergents in such a way that σ-relations between the convergents of both ξ and

σ(ξ) can be formulated.

The extent to which the sets of convergents of ξ and σ(ξ) are σ-related depends

mainly on approximation properties with rationals and thus on the irrationality

measure of ξ. We then establish conditions for

σ

(
pn

qn

)
∈ C(σ(ξ)) ∩ σ(C(ξ)) ,

based on the arithmetical properties of the convergents, and the proofs of these

results are then provided in Section 4.

Finally in Section 5, auxiliary results including new closed form formulae for

all convergents of the class of quadratic irrational numbers are established. These

results are applied to examples around natural leaping convergents and minor con-

vergents.
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2. Definitions

Let ξ = [a0, a1, a2, . . . ] be a real irrational number. We denote the convergents of ξ

by pn/qn and the convergents of the transformed number σ(ξ) by p′n/q
′
n. Let

C(ξ) :=
{pn
qn

: n > 0
}
,

C
(
σ(ξ)

)
:=

{p′n
q′n

: n > 0
}
,

σ
(
C(ξ)

)
:=

{apn + bqn
cpn + dqn

:
pn
qn
∈ C(ξ)

}
,

σ∗
(
C(ξ)

)
:=

{apn + bqn
cpn + dqn

: gcd(apn + bqn, cpn + dqn) = 1,
pn
qn
∈ C(ξ)

}
, (1)

Cf(n)(ξ) :=
{pf(n)
qf(n)

∈ C(ξ) : n ≥ 0
}
.

It is clear that σ∗
(
C(ξ)

)
⊆ σ

(
C(ξ)

)
and for the indexed sets, Cf(n)(ξ) ⊆ Cn(ξ) = C(ξ).

The starting point is a quite general approach for introducing a suitable set of lfts

with rational coefficients that do not even have to be in truncated form. Let

σ1(x) :=
q1x+ q2
q3x+ q4

and σ2(x) :=
q′1x+ q′2
q′3x+ q′4

,

where qν , q
′
ν ∈ Q (ν = 1, 2, 3, 4), ∆(σ1) = q1q4−q2q3 6= 0 and ∆(σ2) = q′1q

′
4−q′2q′3 6=

0. We now define a relation ∼, on the set M of all such lfts, by

σ1 ∼ σ2 if and only if
(
q1q
′
2 = q′1q2 and q2q

′
3 = q′2q3 and q3q

′
4 = q′3q4

)
.

The relation ∼ is an equivalence relation on M. Next, for an lft

σ1(x) =
q1x+ q2
q3x+ q4

we want to find an uniquely determined integer z 6= 0 such that σ1 takes the form

(q1z)x+ q2z

(q3z)x+ q4z

of an lft in x with coprime integer coefficients. For this purpose, let

r := lcm
(
denom(q1),denom(q2),denom(q3),denom(q4)

)
,

s := gcd
(
rq1, rq2, rq3, rq4

)
,

where denom(0) := 1. Moreover, let

a := ±rq1
s
, b := ±rq2

s
, c := ±rq3

s
, d := ±rq4

s
,
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where the upper signs + are used if(
q1 = q2 and q3 > q4

)
or

(
q1 > q2

)
,

and the lower signs − are used otherwise. Note that q1 = q2 and q3 = q4 is

impossible by our assumption q1q4 − q2q3 6= 0. By this construction, the integers

a, b, c and d are uniquely determined. Now put z := ±r/s, and we have reached our

goal by setting

σ(x) :=
ax+ b

cx+ d
∈ M . (2)

The lft σ is uniquely defined, and we have

gcd
(
a, b, c, d

)
= 1 , ∆(σ) = ad− bc =

( r
s

)2(
q1q4 − q2q3

)
6= 0 ,

and

aq2 = ±rq1q2
s

= q1b , bq3 = ±rq2q3
s

= q2c , cq4 = ±rq3q4
s

= q3d ,

so that σ ∼ σ1. Of course, for all real numbers x from the domain of σ we have the

identity σ(x) = σ1(x). If [σ]∼ is an equivalence class of ∼ containing σ, we have

σ1 ∈ [σ]∼.

Let an arbitrary lft σ′ ∈ M with σ ∼ σ′ be given. Then we will agree to work

exclusively with the lft σ from Equation (2). We write σ = proj(σ′). If σ has

coprime integer entries and a non-zero determinant, then σ = proj(σ) if and only if

(a = b and c > d) or a > b. The inverse lft σ−1 corresponding to σ from Equation

(2) is uniquely given by

σ−1(x) =


dx− b
−cx+ a

, if (d = b and −c < a) or (d > −b)

− dx+ b

cx− a
, otherwise.

In any case we have σ−1 = proj(σ−1). Let

L :=
{
σ(x) =

ax+ b

cx+ d
: σ = proj(σ′) and σ′ ∈M

}
.

L consists of exactly those lfts σ that are of interest to us in the context of leaping

convergents, namely lfts satisfying σ = proj(σ). We write σ1 ◦ σ2 to denote the

usual composition of two lfts from M. We now define a binary operation ◦L on L.

For two lfts σ1, σ2 ∈ L, let

σ1 ◦L σ2 := proj
(
σ1 ◦ σ2

)
.
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Then,
(
L, ◦L

)
is a non-Abelian group. The neutral element is the lft x ∈ L, because

for every lft σ ∈ L we have

σ ◦L x = proj
(
σ(x) ◦ x

)
= proj

(
σ
)

= σ .

Any inverse element σ−1 of an lft σ is uniquely determined satisfying σ◦Lσ−1 = x =

σ−1 ◦L σ. Note that the set of all rational functions with real coefficients provided

with the usual composition ◦ of two functions has no group structure.

The definitions of the generalized terms of leaping convergents and natural leap-

ing convergents now follow, with the latter explained in the context of an lft. For

all remaining considerations, we will only consider lfts σ from the set L.

Definition 1. Any subset Cf(n)(ξ) of C(ξ) is said to be a set of leaping convergents

of ξ, and as well, any subset Cg(n)
(
σ(ξ)

)
of C

(
σ(ξ)

)
is said to be a set of leaping

convergents of σ(ξ), for some indexing functions f, g : N0 → N0.

In the special cases∣∣C(ξ) \ Cf(n)(ξ)∣∣ <∞ or
∣∣C(σ(ξ)

)
\ Cg(n)

(
σ(ξ)

)∣∣ <∞ ,

the sets Cf(n)(ξ) or Cg(n)
(
σ(ξ)

)
are said to be sets of conformal leaping convergents

of ξ or σ(ξ), respectively.

Definition 2. Let

p

q
∈ C(ξ) and

p′

q′
∈ C

(
σ(ξ)

)
.

A relation Rσ ⊆ C(ξ)× C
(
σ(ξ)

)
is given by( p

q
,
p′

q′

)
∈ Rσ if and only if σ

( p
q

)
=

p′

q′
.

Since ∆ 6= 0, the inverse linear fractional transformation σ−1 exists. Therefore

the inverse relation of Rσ is given by the relation Rσ−1 :( p
q
,
p′

q′

)
∈ Rσ if and only if σ

( p
q

)
=

p′

q′

if and only if σ−1
( p′
q′

)
=

p

q

if and only if
( p′
q′
,
p

q

)
∈ Rσ−1 .

This motivates the following definition.
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Definition 3. Let ( p
q
,
p′

q′

)
∈ Rσ .

Then the two convergents p/q and p′/q′ are said to be σ-related.

The range of the relation Rσ is given by

Ran
(
Rσ
)

:=
{ p′
q′
∈ C

(
σ(ξ)

) ∣∣∣ there exists
p

q
∈ C(ξ) :

( p
q
,
p′

q′

)
∈ Rσ

}
.

The domain of the relation Rσ is given by

Dom
(
Rσ
)

:=
{ p
q
∈ C(ξ)

∣∣∣ there exists
p′

q′
∈ C
(
σ(ξ)

)
:
( p
q
,
p′

q′

)
∈ Rσ

}
.

Note that

Dom
(
Rσ−1

)
= Ran

(
Rσ
)

and Ran
(
Rσ−1

)
= Dom

(
Rσ
)
.

Definition 4. Let f : A → B and g : C → D be two arbitrary indexing functions

with A,B,C,D ⊆ N0. Any subset Cf(n)(ξ) of Dom
(
Rσ
)

is said to be a set of

natural leaping convergents with respect to the set σ
(
Cf(n)(ξ)

)
⊆ Ran

(
Rσ
)

of σ-

related convergents of σ(ξ). Any subset Cg(n)
(
σ(ξ)

)
of Ran

(
Rσ
)

is said to be a set

of natural leaping convergents with respect to the set σ−1
(
Cg(n)

(
σ(ξ)

))
⊆ Dom

(
Rσ
)

of σ-related convergents of ξ.

Remark 1. In the definition above, we point out that since σ
(
Cf(n)(ξ)

)
⊆ Ran

(
Rσ
)

and σ−1
(
Cg(n)

(
σ(ξ)

))
⊆ Dom

(
Rσ
)
, then

σ
(
Cf(n)(ξ)

)
= Cg(n)

(
σ(ξ)

)
and σ−1

(
Cg(n)

(
σ(ξ)

))
= Cf(n)(ξ) ,

respectively, for some functions f and g.

Definition 5. Let either N ⊆ C(ξ) or N ⊆ C
(
σ(ξ)

)
, and let i, r ∈ Z where r > 2

and 0 6 i < r. N is said to be a set of arithmetical ordered leaping convergents with

respect to the residue class i mod r if and only if pm/qm ∈ N implies that m ≡ i

(mod r).

In the papers [1], [6], and [7], only sets of arithmetical ordered leaping convergents

are studied, whereas sets of nonlinear leaping convergents occur in [4].

Definition 6. If there is a subset Cf(n)(ξ) ⊆ C(ξ) such that∣∣C(ξ) \ Cf(n)(ξ)∣∣ <∞ and
∣∣C(σ(ξ)

)
\ σ
(
Cf(n)(ξ)

)∣∣ <∞ ,

then the pattern of the natural leaping convergents, Cg(n)
(
σ(ξ)

)
, of σ

(
Cf(n)(ξ)

)
(with respect to the set Cf(n)(ξ) of σ-related convergents of ξ) is said to σ-conform.

If, on the other hand, the two statements∣∣C(ξ) \ Cf(n)(ξ)∣∣ <∞ and
∣∣C(σ(ξ)

)
∩ σ
(
Cf(n)(ξ)

)∣∣ <∞
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are true, then the pattern is said to be σ-adverse. Moreover, if σ
(
Cf(n)(ξ)

)
is

replaced by σ∗
(
Cf(n)(ξ)

)
, we speak of σ∗-conform or σ∗-adverse, respectively.

Recall that if for some n ∈ N0 we have σ
(
Cf(n)(ξ)

)
∈ C
(
σ(ξ)

)
, then σ

(
Cf(n)(ξ)

)
∈

Cg(n)
(
σ(ξ)

)
for some g : N0 → N0. As well, if for all n ∈ N0 we have σ

(
Cf(n)(ξ)

)
∈

C
(
σ(ξ)

)
, then σ

(
Cf(n)(ξ)

)
= Cg(n)

(
σ(ξ)

)
. Intuitively, Definition 6 states that for a

subset Cf(n)(ξ) ⊆ C(ξ), the natural leaping convergents of σ
(
Cf(n)(ξ)

)
have a leaping

pattern g(n), that is said to σ-conform if at most finitely many of the convergents

from Cf(n)(ξ) and σ
(
Cf(n)(ξ)

)
are not σ-related. Similarly, if at most a finite amount

of convergents from Cf(n)(ξ) and σ
(
Cf(n)(ξ)

)
are σ-related, then the pattern is σ-

adverse. As mentioned in the introduction of Section 1, in the case |∆| = 1 there is

always a set Cf(n)(ξ) ⊆ C(ξ) , so that the pattern of natural leaping convergents of

σ
(
Cf(n)(ξ)

)
σ-conforms.

3. Theorems

We introduce some notation and quantities where n > 0 is a fixed integer:

ξ := [ a0, a1, a2, . . . ] ∈ R \Q ,

pn
qn

:= [ a0, a1, a2, . . . an] ,

Gn := gcd
(
apn + bqn, cpn + dqn

)
,

un :=
apn + bqn

Gn
,

vn :=
cpn + dqn

Gn
.

We recall that

σ
( pn
qn

)
=

apn + bqn
cpn + dqn

=
un
vn

and
1

qn(qn+1 + qn)
<
∣∣∣ ξ − pn

qn

∣∣∣ < 1

qnqn+1
6

1

q2n
.

Theorem 1. Let ξ be a real irrational number, and let 0 < ε < 1. Then there is

a positive integer n0 depending at most on ε so that for n > n0 the following three



INTEGERS: 23 (2023) 8

statements hold:

G2
nan+1 > 2(1 + ε)|∆| implies

un
vn
∈ C

(
σ(ξ)

)
∩ σ
(
C(ξ)

)
; (3)

G2
n

(
2 + an+1

)
6 (1− ε)|∆| implies

un
vn
6∈ C

(
σ(ξ)

)
; (4)

Gn = 1 and an+1 > 2(1 + ε)|∆| implies
un
vn
∈ C

(
σ(ξ)

)
∩ σ∗

(
C(ξ)

)
. (5)

The right-hand side in Equation (3) is equivalent to
(
pn/qn, un/vn

)
∈ Rσ, so

that by Definition 4 the number pn/qn in the set A := {pn/qn} is a natural leaping

convergent with respect to the set σ(A), and, vice versa, the number un/vn in the

set B := {un/vn} is a natural leaping convergent with respect to the set σ−1(B).

Using the definition of σ∗
(
C(ξ)

)
, the statement in Equation (5) follows from the

statement in Equation (3). Setting ε = |∆|−1, we obtain a corollary.

Corollary 1. Let ξ be a real irrational number, and |∆| > 2. Then there is a

positive integer n0 depending at most on ∆ so that for n > n0 the following three

statements hold.

G2
nan+1 > 2( |∆|+ 1 ) implies

un
vn
∈ C

(
σ(ξ)

)
∩ σ
(
C(ξ)

)
; (6)

G2
n

(
2 + an+1

)
6 |∆| − 1 implies

un
vn
6∈ C

(
σ(ξ)

)
; (7)

Gn = 1 and an+1 > 2( |∆|+ 1 ) implies
un
vn
∈ C

(
σ(ξ)

)
∩ σ∗

(
C(ξ)

)
.

Example 1. Let

σ(x) :=
ax+ b

cx+ d
,

such that |∆| > 4 and 2( |∆|+ 1 ) > 10. Since

e = exp(1) =
[

2, 1, 2m, 1
]∞
m=1

,

we know by Equation (6) that for all sufficiently large integers k, the fractions

u3k+1

v3k+1
=

ap3k+1 + bq3k+1

cp3k+1 + dq3k+1

are convergents of σ(e). Indeed, for all large k we have G2
3k+2a3k+2 > a3k+2 =

2(k + 1) > ∆.
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Conversely, let gcd(apn + bqn, cpn + dqn) = Gn = 1 for some sufficiently large

integer n with either n ≡ 0 (mod 3) or n ≡ 2 (mod 3). Applying Equation (7)

and the fact that G2
n(2 + an+1) = 3 6 |∆| − 1, we conclude that un/vn is not a

convergent of σ(e).

For some applications, a variant of Theorem 1 proves more practical. We need

some new quantities. We denote by p∗n/q
∗
n the convergents of ξ satisfying the in-

equality ∣∣∣ ξ − p∗n
q∗n

∣∣∣ < 1√
5q∗n

2
.

It is well-known that for any three consecutive convergents to ξ, at least one satisfies

this inequality, see [5, Theorem 195]. Furthermore, let

G∗n := gcd(ap∗n + bq∗n, cp
∗
n + dq∗n) ,

u∗n :=
ap∗n + bq∗n

G∗n
,

v∗n :=
cp∗n + dq∗n

G∗n
.

Theorem 2. Let ξ be a real irrational number, and let 0 < ε < 1. Then there is

a positive integer n0 depending at most on ε so that for n > n0 the following four

statements hold:

G2
n

qn+1

qn
> 2(1 + ε)|∆| implies

un
vn
∈ C

(
σ(ξ)

)
∩ σ
(
C(ξ)

)
;

G2
n

(
1 +

qn+1

qn

)
6 (1− ε)|∆| implies

un
vn
6∈ C

(
σ(ξ)

)
; (8)

√
5
(
G∗n
)2

> 2(1 + ε)|∆| implies
u∗n
v∗n
∈ C

(
σ(ξ)

)
∩ σ
(
C(ξ)

)
;

Gn = 1 and
qn+1

qn
> 2(1 + ε)|∆| implies

un
vn
∈ C

(
σ(ξ)

)
∩ σ∗

(
C(ξ)

)
.

Because a proof of the statements in Theorem 2 is analogous to the proof of

Theorem 1, we state Theorem 2 here without proof.

Example 2. Let

ξ :=
1 +
√

5

2
= [ 1, 1, 1, . . . ] = 1.61803 . . . .
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Then we have
pn
qn

=
qn+1

qn
=

Fn+2

Fn+1

n→∞−→ ξ ,

where Fn = Fn−1 +Fn−2 is the nth Fibonacci number for n > 2, with F0 = 0, F1 =

1 . Let 0 < ε 6 (2− ξ)/3 be a real number, and σ a linear fractional transformation

with |∆| > 3. When n > n0 is some sufficiently large number and Gn = 1, then

un/vn is not a convergent of σ(ξ), since the inequality on the left-hand side in

Equation (8) holds:

G2
n

(
1 +

qn+1

qn

)
= 1 +

Fn+2

Fn+1
< 1 + ξ < 3(1− ε) 6 (1− ε)|∆| .

Let ξ be a real irrational number. The irrationality measure of ξ is the uniquely

determined positive real number w = w(ξ), which allows the following two inequal-

ities in the rational approximation of ξ:

for all ε > 0 there exist infinitely many
p

q
∈ Q such that∣∣∣ ξ − p

q

∣∣∣ < 1

qw−ε
,

and for all ε > 0 there exist at most finitely many
p

q
∈ Q such that∣∣∣ ξ − p

q

∣∣∣ < 1

qw+ε
.


(9)

The second statement can be formulated differently: For all ε > 0 there exists a

positive integer q0 such that we have, for all fractions p/q ∈ Q with q ≥ q0, the

inequality ∣∣∣ ξ − p

q

∣∣∣ > 1

qw+ε
.

The irrationality measure of any real number ξ is greater than or equal to 2.

Theorem 3. Let

σ(x) :=
ax+ b

cx+ d

be an lft from L. Then we have for every real irrational number ξ the identity

w
(
ξ
)

= w
(
σ(ξ)

)
.

In the proof of this theorem, natural leaping convergents are used. For simplicity,

let w−ε > 0. Then, the infinite (truncated) fractions p/q from the upper statement

in Equation (9) are convergents of ξ. Let Cf(n)(ξ) be the set of these convergents

p/q. The main argument in the proof of Theorem 3 is that σ
(
Cf(n)(ξ)

)
is an infinite

set of σ-related convergents of σ(ξ), and vice versa (see Definition 4).
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The following theorem deals with quadratic irrational numbers ξ. It shows that

each such ξ has only at most finitely many convergents, which are immediately

mapped from any lft with sufficiently large determinant to truncated convergents of

C(ξ). The theorem builds mainly on Corollary 2 in [1] and on the second statement

in the above Corollary 1.

Theorem 4. Let ξ be a real quadratic irrational number. Then there is a positive

integer D, depending at most on ξ, such that for every linear fractional transfor-

mation σ ∈ L and determinant ∆ > D, there are at most finitely many convergents

p/q of ξ satisfying

σ
( p
q

)
∈ C

(
σ(ξ)

)
∩ σ∗

(
C(ξ)

)
.

In the sense of Definition 6 with Cf(n)(ξ) = C(ξ), the statement of Theorem 4 is:

The pattern of the natural leaping convergents of σ
(
C(ξ)

)
with respect

to C(ξ) is σ∗-adverse.

A statement analogous to Theorem 4 can also be made for transcendental numbers.

Theorem 5. There are uncountably many transcendental numbers ξ with the fol-

lowing property. For every linear fractional transformation σ ∈ L and determinant

∆ > 5, there are at most finitely many convergents p/q of ξ satisfying

σ
( p
q

)
∈ C

(
σ(ξ)

)
∩ σ∗

(
C(ξ)

)
.

Our last theorem in this section shows that the transition from an untruncated

transformed approximate fraction σ(pn/qn) to its truncated form un/vn requires

only dividing by an integer which depends on σ but not on n. Thus, for fixed

σ ∈ L, the truncation factor is absolutely bounded.

Theorem 6. Let a, b, c, d be the integer coefficients of an lft σ ∈ L. Then there is a

constant C, depending at most on a, b, c, d, such that for any real irrational number

ξ and its convergents pn/qn the inequality

gcd
(
apn + bqn, cpn + dqn

)
6 C

holds for all integers n > 0.

4. Proof of the Theorems

Proof of Theorem 1. We apply the Intermediate Value Theorem to the function σ(x):

For all nonnegative integers n, there exists a real number ηn such that the inequality
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|ξ − ηn| 6 |ξ − pn/qn| hold as well as the identity∣∣∣σ(ξ)− σ
(pn
qn

) ∣∣∣ =
∣∣σ′(ηn)

∣∣ · ∣∣∣ ξ − pn
qn

∣∣∣ , (10)

where

σ′(x) =
∆

(cx+ d)
2 .

Since ξ 6∈ Q, we have cξ+d 6= 0. Moreover, ηn tends to ξ for increasing n; therefore

cηn + d 6= 0 holds for all sufficiently large n. Thus,

lim
n→∞

∣∣σ′(ηn)
∣∣ = lim

n→∞

∣∣∆∣∣
(cηn + d)

2 =

∣∣∆∣∣
(cξ + d)

2 > 0 .

Hence, for all real numbers ε between 0 and 1 there is an integer n0 > 0 such that

for all integers n > n0 we have

ω :=
|∆|
√

1− ε
(cξ + d)

2 <
∣∣σ′(ηn)

∣∣ < |∆|√1 + ε

(cξ + d)
2 =: Ω . (11)

To prove Equation (3), we now assume G2
nan+1 > 2(1 + ε)|∆| for some sufficiently

large integer n. Now, for ε > 0 and large n, we get( cpn
qn

+ d
)2

=
∣∣∣ c( pn

qn
− ξ

)
+ (cξ + d)

∣∣∣2
6 c2

∣∣∣ ξ − pn
qn

∣∣∣2 + 2|c|
∣∣∣ ξ − pn

qn

∣∣∣∣∣cξ + d
∣∣+
∣∣cξ + d

∣∣2
<

c2

q4n
+

2|c|| cξ + d |
q2n

+
(
cξ + d

)2
<

(
cξ + d

)2√
1 + ε .

It follows that

2Ω
( cpn
qn

+ d
)2

<
2|∆|
√

1 + ε

(cξ + d)
2

(
cξ + d

)2√
1 + ε

= 2(1 + ε) |∆|

6 G2
nan+1 < G2

n

(
an+1 +

qn−1
qn

)
; (12)

the penultimate inequality is based on our assumption in Equation (3). Multiplying

Inequality (12) with q2n, we obtain

2Ω
(
cpn + dqn

)2
< qn(an+1qn + qn−1)G2

n = qnqn+1G
2
n . (13)

Hence, using Equation (10), the right-hand part of Inequality (11), and Inequality

(13),∣∣∣σ(ξ)−un
vn

∣∣∣ =
∣∣∣σ(ξ)−σ

( pn
qn

) ∣∣∣ < Ω
∣∣∣ ξ−pn

qn

∣∣∣ < Ω

qnqn+1
<

G2
n

2(cpn + dqn)
2 =

1

2v2n
.
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We know from [5, Theorem 184] that un/vn is a convergent of σ(ξ), as stated in

Equation (3).

To prove Equation (4), we next assume G2
n

(
2 + an+1

)
6 (1 − ε)|∆| for some

sufficiently large integer n. Here, we obtain the following for 0 < ε < 1 and large n:( cpn
qn

+ d
)2

>
∣∣cξ + d

∣∣2 − c2∣∣∣ ξ − pn
qn

∣∣∣2 − 2|c|
∣∣∣ ξ − pn

qn

∣∣∣∣∣cξ + d
∣∣

>
(
cξ + d

)2 − c2

q4n
− 2|c|| cξ + d |

q2n

>
(
cξ + d

)2√
1− ε .

Hence,

ω
( cpn
qn

+ d
)2

>
|∆|
√

1− ε
(cξ + d)

2

(
cξ + d

)2√
1− ε

= (1− ε) |∆|
> G2

n(2 + an+1) .

From this, after multiplication by q2n, we obtain

ω
(
cpn + dqn

)2
> qn(an+1qn + 2qn)G2

n

> qn(an+1qn + qn−1 + qn)G2
n

= qn(qn+1 + qn)G2
n . (14)

Again using Equation (10), and additionally the left-hand part of Inequality (11),

and Inequality (14), we obtain∣∣∣σ(ξ)−un
vn

∣∣∣ =
∣∣∣σ(ξ)−σ

(pn
qn

) ∣∣∣ > ω
∣∣∣ ξ−pn

qn

∣∣∣ > ω

qn(qn+1 + qn)
>

G2
n

(cpn + dqn)
2 =

1

v2n
.

By construction, gcd(un, vn) = 1. We conclude from [5, Theorem 171] that un/vn
is not a convergent of σ(ξ). This proves Equation (4). 2

Proof of Theorem 3. For brevity, we write w instead of w(ξ). There is an infinite

sequence (pn/qn)n>0 of leaping convergents with positive denominators qn so that

for any ε > 0 the inequality ∣∣∣ ξ − pn
qn

∣∣∣ < 1

q
w−ε/2
n

(15)

holds. We apply the Intermediate Value Theorem to the function σ(x): For all non-

negative integers n, there exists a real number ηn, such that we have the inequality

|ξ − ηn| 6 | ξ − pn/qn| and the identity∣∣∣σ(ξ)− σ
(pn
qn

) ∣∣∣ =
|∆|

(cηn + d)
2 ·
∣∣∣ ξ − pn

qn

∣∣∣ . (16)
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Therefore, we obtain by Inequality (15) and by |ξ − ηn| 6 | ξ − pn/qn|:∣∣ξ − ηn∣∣ < 1

q
w−ε/2
n

. (17)

Case 1. c 6= 0. Then,∣∣cηn + d
∣∣ = |c| ·

∣∣∣ηn +
d

c

∣∣∣ = |c| ·
∣∣∣(ξ +

d

c

)
+
(
ηn − ξ

)∣∣∣
> |c| ·

( ∣∣∣ξ +
d

c

∣∣∣− ∣∣ηn − ξ∣∣ )
> |c| ·

( ∣∣∣ξ +
d

c

∣∣∣− 1

q
w−ε/2
n

)
.

The last estimate is based on Inequality (17). Thus, for all sufficiently large integers

n, the inequality ∣∣cηn + d
∣∣ > α|c| (18)

is guaranteed, where α > 0 is a constant depending only on ξ and on the fraction

d/c, but not on n. Note that ξ 6= −d/c by the irrationality of ξ. From Equation

(16), using Inequality (18), we claim the existence of a positive integer n0 such that

we have for all integers n > n0,∣∣∣σ(ξ)− σ
(pn
qn

) ∣∣∣ < |∆|
c2α2

·
∣∣∣ ξ − pn

qn

∣∣∣ . (19)

Case 2. c = 0. We have d 6= 0 by ad − bc 6= 0. Following directly from Equation

(16), we have for all integers n > 0:∣∣∣σ(ξ)− σ
(pn
qn

) ∣∣∣ =
|∆|
d2
·
∣∣∣ ξ − pn

qn

∣∣∣ . (20)

We define the number β by

β :=
∣∣∆∣∣ ·

 c−2α−2 , when c 6= 0 ,

d−2 , when c = 0 .

Above, we see that β > 0 and it depends at most on ξ and on a, b, c and d. Now

we can combine Inequality (19) and Equation (20) from the two cases, still using

Inequality (15): There is a positive integer n0 such that we obtain, for all integers

n > n0: ∣∣∣σ(ξ)− σ
(pn
qn

) ∣∣∣ 6 β ·
∣∣∣ ξ − pn

qn

∣∣∣ < β

q
w−ε/2
n

. (21)

Now we have

σ
( pn
qn

)
=

(apn + bqn)D−1n
(cpn + dqn)D−1n

=:
un
vn

,
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where Dn := gcd(apn + bqn, cpn + dqn) and

un :=
apn + bqn

Dn
, vn :=

cpn + dqn
Dn

.

Set T := max{|c|, |d| }. Then,

|vn| =
1

Dn

∣∣cpn + dqn
∣∣ 6 1

Dn

(
|c| · |pn|+ |d| · qn

)
6

T

Dn

(
|pn|+ qn

)
=

Tqn
Dn

(
1 +
|pn|
qn

)
6

Tqn
Dn

(2 + |ξ| ) , (22)

because ∣∣∣ ξ − pn
qn

∣∣∣ 6 1 implies
|pn|
qn

=
∣∣∣pn
qn

∣∣∣ 6 1 + |ξ| .

We solve Inequality (22) for qn and thus find another upper bound for the right-

hand side of Inequality (21). There is a positive integer n0 such that we obtain, for

all integers n > n0, the inequalities

∣∣∣σ(ξ)− σ
(pn
qn

) ∣∣∣ 6 β
(
T (2 + |ξ| )

)w−ε/2
D
w−ε/2
n |vn|w−ε/2

6
β
(
T (2 + |ξ| )

)w
|vn|w−ε/2

; (23)

note that |T | > 1 and Dn > 1. We must now convince ourselves that |vn| grows

unboundedly as n takes larger and larger values. This is not self-evident and can be

justified by Theorem 6: by this theorem, there is a constant C depending at most

on a, b, c, d, so that Dn 6 C holds. Then,

|vn| =
|cpn + dqn|

Dn
>
|cpn + dqn|

C
→ ∞ ,

if either (
c = 0 and d 6= 0

)
or

(
c 6= 0 and d = 0

)
.

By the fact that ∆ 6= 0 it remains to consider the case when c 6= 0 and d 6= 0.

Because ξ as an irrational number is different from −d/c, the sequence of numbers

cpn/qn + d converges to the nonzero number cξ + d. This means |cξ + d| > 0, and

so

|vn| >
|cpn + dqn|

C
=

qn
C

∣∣∣cpn
qn

+ d
∣∣∣ > qn

C
· |cξ + d|

2
→ ∞

for n tending to infinity. It follows that

β
(
T (2 + |ξ| )

)w
|vn|ε/2

< 1
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for all large n, since β, T , w and 2 + |ξ| depend at most on a, b, c, d and ξ (and not

on n). Therefore, we can further simplify Inequality (23) for n > n0 into∣∣∣σ(ξ)− σ
(pn
qn

) ∣∣∣ 6 β
(
T (2 + |ξ| )

)w
|vn|ε/2

· 1

|vn|w−ε
<

1

|vn|w−ε
. (24)

Finally, set

rn := un and sn := vn (if vn > 0) ,

and

rn := −un and sn := −vn (if vn < 0) .

This gives σ(pn/qn) = un/vn = rn/sn with sn > 0 and gcd(rn, sn) = 1. So far we

have proven by Equation (24) that for every positive real number ε there exists a

positive integer n0 such that we have for all integers n > n0 the inequality∣∣∣σ(ξ)− rn
sn

∣∣∣ < 1

sw−εn
. (25)

It is well known that w = w(ξ) > 2, and from Inequality (25) we have by definition

of the irrationality measure:

w(ξ) 6 w
(
σ(ξ)

)
. (26)

Case 1. w = 2. In this case, Inequality (25) is trivial, and the sequence of ap-

proximation fractions rn/sn constructed for Inequality (25) can be replaced by the

sequence of all convergents of the irrational number σ(ξ); Inequality (25) then still

holds. The set of all convergents may be considered as a conformal set of leaping

convergents by Definition 1.

Case 2. w > 2. We choose ε in Inequality (25) to be small enough that w − ε > 2.

For large n, we then have
1

sw−εn
<

1

2s2n
.

We know from [5, Theorem 184] that rn/sn is a convergent of σ(ξ). Hence, the

truncated fractions rn/sn form a set of leaping convergents of σ(ξ). So, in any case,

in Inequality (25) there are underlying leaping convergents rn/sn, and therefore we

have the same initial situation as in Inequality (15). Therefore, we now repeat the

previous construction for the number σ(ξ), but we apply it with the linear fractional

transformation σ−1 inverse to σ, which, as is well known, is also represented by a

fraction of the shape

σ−1(x) =
a′x+ b′

c′x+ d′
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with integer coefficients a′, b′, c′ and d′ and with a nonzero determinant. Instead of

Inequality (25) we then obtain for every positive real number ε a positive integer

n0 such that we have for all integers n > n0 the inequality∣∣∣ ξ − r′n
s′n

∣∣∣ =
∣∣∣σ−1(σ(ξ)

)
− r′n
s′n

∣∣∣ < 1

(s′n)w−ε
.

Now we get analogously to Inequality (26):

w
(
σ(ξ)

)
6 w(ξ) . (27)

Inequalities (26) and (27) prove Theorem 3. 2

Proof of Theorem 4. Let

ξ =
[
a0, a1, . . . , aρ, T1, . . . , Tw

]
be the continued fraction expansion of ξ, where ρ > 0 and w > 1, and

A := max{|a0|, a1, . . . , aρ, T1, . . . , Tw} .

Moreover, we assume that p/q ∈ C(ξ) and σ(p/q) ∈ σ∗
(
C(ξ)

)
with p = pm and

q = qm, say, for some pm/qm ∈ C(ξ). In particular, we have by Equation (1):

Gm := gcd
(
apm + bqm, cpm + dqm

)
= 1 .

For every lft σ with |∆| > A + 3, the inequality on the left-hand side of Equation

(7) in Corollary 1 is fulfilled, since

Gm(2 + am+1) = am+1 + 2 6 A+ 2 6 |∆| − 1 .

From Corollary 1 we conclude that

σ
( p
q

)
= σ

( pm
qm

)
6∈ C

(
σ(ξ)

)
.

This proves the theorem. 2

Proof of Theorem 5. As is known, there are uncountably many infinite number

sequences whose elements consist only of the numbers 1 and 2. As a sequence of

partial denominators, a real irrational number is thus uniquely assigned to each

number sequence via the continued fraction expansion. Since the set of the real-

algebraic numbers is countable, we have thus an uncountable set of transcendental

numbers ξ with partial denominators 1 and 2 in their continued fraction expansion.

For any such ξ, the statement of Theorem 5 follows from Equation (1) and from

Equation (4) in Theorem 1 by setting Gn = 1 and ε = 1/10. Then we have:

(1− ε)|∆| > 9

10
· 5 > 4 > Gn(2 + an+1) (n > 1) ,
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so that

σ
( pn
qn

)
6∈ C

(
σ(ξ)

)
∩ σ∗

(
C(ξ)

)
for all sufficiently large integers n. This completes the proof of Theorem 5. 2

Note that almost all real numbers (in the sense of the Lebesgue measure) have

an unbounded continued fraction expansion.

Proof of Theorem 6. Let p be a prime and k a positive integer such that

gcd
(
apn + bqn, cpn + dqn

)
≡ 0 (mod pk) . (28)

Let us consider the identity

a
(
cpn + dqn

)
− c
(
apn + bqn

)
= (ad− bc)qn = ∆qn . (29)

From Equation (28) and Equation (29) we have simultaneously,

apn + bqn ≡ 0 (mod pk) , cpn + dqn ≡ 0 (mod pk) , ∆qn ≡ 0 (mod pk) .

(30)

Let k = k1 + k2 with non-negative integers k1 and k2 satisfying ∆ ≡ 0 (mod pk1)

and qn ≡ 0 (mod pk2).

Case 1. k2 = 0, i.e., ∆ ≡ 0 (mod pk). This gives

pk 6 |∆| .

Case 2. k2 > 0. From ∆ ≡ 0 (mod pk1) we have pk1 6 |∆|, and moreover,

qn ≡ 0 (mod pk2) with k2 > 1. Since pn and qn are coprime, the first and second

congruences in Equation (30) yield

a ≡ 0 (mod pk2) and c ≡ 0 (mod pk2) ;

note that k2 < k. Thus, we obtain

pk2 6 min
{
|a|, |c|

}
.

If we summarize the results, we obtain the inequality

pk = pk1pk2 6
∣∣∆∣∣ ·min

{
|a|, |c|

}
. (31)

If we assume the identity

d
(
apn + bqn

)
− b
(
cpn + dqn

)
= (ad− bc)pn = ∆pn ,

instead of Equation (29), we obtain in an analogous way the inequality

pk 6
∣∣∆∣∣ ·min

{
|b|, |d|

}
. (32)
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If we combine the results from Inequalities (31) and (32), we get

pk 6
∣∣∆∣∣ ·min

{
|a|, |b|, |c|, |d|

}
(33)

for all primes p and all positive integers k satisfying Equation (28). With respect

to Equation (28), the special case for k = 1 means that there are at most finitely

many prime divisors of gcd
(
apn + bqn, cpn + dqn

)
for all integers n > 0. And if we

apply Inequality (33) for a second time with k > 1, we obtain the statement of the

theorem. 2

We give an explicit bound C for the greatest common divisor in Theorem 6. It has

been shown that every prime power pk dividing the gcd of apn + bqn and cpn + dqn
is bounded by D := |∆|min{|a|, |b|, |c|, |d|} (see Equation (31)). Now, let π(x) be

the prime counting function over the interval [2, x]. Let

gcd
(
apn + bqn, cpn + dqn

)
= pk11 p

k2
2 · · · pkrr

be the prime factorization of the greatest common divisor. Then we have

gcd
(
apn + bqn, cpn + dqn

)
6 Dr 6 Dπ(D) =: C .

This number C can be chosen for the constant C in Theorem 6. Applying the prime

number theorem, we have

e(1−ε)D � C � e(1+ε)D

for every real number 0 < ε < 1 and implicit constants depending at most on ε. 2

5. Supplementary Results

Lemma 1. Let n > 2 be an integer, and let c1, . . . , cn be real numbers. We consider

the sum of two determinants of order n and n− 2, respectively,

U(c1, . . . , cn) :=

∣∣∣∣∣∣∣∣∣∣∣

c1 −1
1 c2 −1 0

. . .

0 cn−1 −1
1 cn

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

c2 −1
1 c3 −1 0

. . .

0 cn−2 −1
1 cn−1

∣∣∣∣∣∣∣∣∣∣∣
.

For n = 2 the value of the second determinant is set to 1. In this case, we have

U(c1, . . . , cn) = U(cn, c1, c2, . . . , cn−1).

Proof. Let

A(c1, . . . , cn) :=

∣∣∣∣∣∣∣∣∣∣∣

c1 −1
1 c2 −1 0

. . .

0 cn−1 −1
1 cn

∣∣∣∣∣∣∣∣∣∣∣
.
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We shall prove the following two identities,

det
(
A(cn, c1, . . . , cn−1)

)
− det

(
A(c2, c3, . . . , cn−1)

)
= cn det

(
A(c1, c2, . . . , cn−1)

)
= det

(
A(c1, c2, . . . , cn)

)
− det

(
A(c1, c2, . . . , cn−2)

)
.

(34)

This can in fact be changed to

det
(
A(c1, c2, . . . , cn)

)
+ det

(
A(c2, c3, . . . , cn−1)

)
= det

(
A(cn, c1, . . . , cn−1)

)
+ det

(
A(c1, c2, . . . , cn−2)

)
,

which is equivalent to the assertion of the lemma.

To prove the first identity in Equation (34), we expand the determinant

A
(
cn, c1, . . . , cn−1

)
=

∣∣∣∣∣∣∣∣∣∣∣

cn −1
1 c1 −1 0

. . .

0 cn−2 −1
1 cn−1

∣∣∣∣∣∣∣∣∣∣∣
according to its first line,

det
(
A(cn, c1, . . . , cn−1)

)

= cn det
(
A(c1, . . . , cn−1)

)
− (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1
0 c2 −1 0
0 1 c3 −1

. . .

0 cn−2 −1
1 cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= cn det

(
A(c1, . . . , cn−1)

)
+ det

(
A(c2, c3, . . . , cn−1)

)
,

where the last determinant resulted from an expansion according to the first col-

umn. In an analogous way, the second identity in Equation (34) is proved. Here,

A(c1, c2, . . . , cn) is expanded first according to the last column, and the remaining

second determinant then according to its last line:

det
(
A(c1, c2, . . . , cn)

)

= cn det
(
A(c1, . . . , cn−1)

)
− (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 −1
1 c2 −1 0

. . .

cn−3 −1
0 1 cn−2 −1

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= cn det

(
A(c1, . . . , cn−1)

)
+ det

(
A(c1, c2, . . . , cn−2)

)
.
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The two identities in Equation (34) are shown, and thus the lemma is proved.

Proposition 1. Let

ξ :=
[
a0, a1, . . . , aρ, T1, . . . , Tw

]
(35)

be the continued fraction expansion of a real quadratic irrational number ξ, where

ρ > 0 and w > 2. The convergents of ξ are denoted by pn/qn. Let

U :=

∣∣∣∣∣∣∣∣∣∣∣

−T1 −1
1 −T2 −1 0

. . .

0 −Tw−1 −1
1 −Tw

∣∣∣∣∣∣∣∣∣∣∣
+ . . .

+

∣∣∣∣∣∣∣∣∣∣∣

−T2 −1
1 −T3 −1 0

. . .

0 −Tw−2 −1
1 −Tw−1

∣∣∣∣∣∣∣∣∣∣∣
(36)

and

ψ1 :=
1

2

(
(−1)

w
U +

√
U2 + 4(−1)

w−1
)
,

ψ2 :=
1

2

(
(−1)

w
U −

√
U2 + 4(−1)

w−1
)
,

 (37)

C
(i)
1 :=

pi+w − piψ2

ψ1 − ψ2
,

C
(i)
2 :=

piψ1 − pi+w
ψ1 − ψ2

,

C
(i)
3 :=

qi+w − qiψ2

ψ1 − ψ2
,

C
(i)
4 :=

qiψ1 − qi+w
ψ1 − ψ2

.



(ρ 6 i 6 ρ+ w − 1) (38)

Then, U 6= 0, ψ1 6= ψ2, and for n > 0 and ρ 6 i 6 ρ+ w − 1, we have

pnw+i = C
(i)
1 ψn1 + C

(i)
2 ψn2 , (39)

qnw+i = C
(i)
3 ψn1 + C

(i)
4 ψn2 , (40)

pnw+i

qnw+i
=

pi+w
(
ψn1 − ψn2

)
+ (−1)

w−1
pi
(
ψn−11 − ψn−12

)
qi+w

(
ψn1 − ψn2

)
+ (−1)

w−1
qi
(
ψn−11 − ψn−12

) . (41)
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Remark 2. For w = 2 the value of the second determinant in Equation (36) is set

to 1.

Proof. We apply Corollary 1 from [2] in the particular cases where the Hurwitz-type

continued fraction α = ξ is a real quadratic irrational number, and with r = w. Let

T (a) := Tw{(a−ρ−1)/w}+1 ,

where {.} denotes the fractional part function, and

Dl(a) :=

∣∣∣∣∣∣∣∣∣∣∣

−T (a) −1
1 −T (a+ 1) −1 0

. . .

0 −T (a+ l − 2) −1
1 −T (a+ l − 1)

∣∣∣∣∣∣∣∣∣∣∣
for integers a. Then, for w > 2 and 0 6 ρ 6 i 6 ρ+ w − 1, the identity

0 = (−1)
w−1

Dw−1(M − w) · zn

+
(
Dr−1(M)Dw(M − w) +Dw−1(M − w)Dw−2(M + 1)

)
· zn−1

−Dw−1(M) · zn−2

 (42)

holds for zn = pwn+i and zn = qwn+i with M := (n− 1)w + i+ 2 and n > 2. Now,

we observe that

T (M + t) = Tw{((n−1)w+i+t+2−ρ−1)/w}+1 = Tw{(i+t−ρ+1)/w}+1 ,

and

T (M − w + t) = Tw{(i+t−ρ+1)/w}+1 = T (M + t)

hold for 0 6 t 6 w − 2. Therefore, the two integers Dw−1(M) and Dw−1(M − w)

in Equation (42) coincide, and because of the fact that Dw−1(M) 6= 0, they do not

both disappear. Thus, Equation (42) can be simplified as follows:

0 = (−1)
w−1

zn +
(
Dw(M − w) +Dw−2(M + 1)

)
zn−1 − zn−2 ; (43)

see Theorem 2 in [3]: Dl(M) =: (−1)
l
Kl(M) 6= 0 with U(M + 1) = U(M + 2) =

· · · = U(M + l− 1) = 1. In Equation (43), the determinant Dw(M −w) is given by∣∣∣∣∣∣∣∣∣∣∣

−Tw{(i+1−ρ)/w}+1 −1
1 −Tw{(i+2−ρ)/w}+1 −1

. . .

0 −1
−Tw{(i+w−ρ)/w}+1

∣∣∣∣∣∣∣∣∣∣∣
, (44)
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whereas the determinant Dw−2(M + 1) is∣∣∣∣∣∣∣∣∣∣∣

−Tw{(i+2−ρ)/w}+1 −1
1 −Tw{(i+3−ρ)/w}+1 −1

. . .

0 −1
−Tw{(i+w−1−ρ)/w}+1

∣∣∣∣∣∣∣∣∣∣∣
. (45)

The sum Dw(M −w) +Dw−2(M + 1) of the determinants from Equation (44) and

Equation (45) does not depend on i, which follows from Lemma 1. We specifically

choose i = w − 1 + ρ such that ρ + 1 6 i < ρ + w holds because w > 2. Following

from Equation (36), we have

U = Dw(M − w) +Dw−2(M + 1) ,

so that Equation (43) takes the form

0 = zn + (−1)
w−1

Uzn−1 + (−1)
w
zn−2 (n > 2) . (46)

Assuming that U = 0, Equation (46) would then simplify to zn = ±zn−2, or qnw+i =

±q(n−2)w+i, which is impossible. Therefore, we have U 6= 0. The characteristic

polynomial P (X) of Equation (46) is

P (X) = X2 + (−1)
w−1

UX + (−1)
w

(47)

with the roots

ψ1 =
1

2

(
(−1)

w
U +

√
U2 + 4(−1)

w−1
)
,

ψ2 =
1

2

(
(−1)

w
U −

√
U2 + 4(−1)

w−1
)
.

 (48)

Next, let us assume that ψ := ψ1 = ψ2 6= 0. In particular, ψ is a rational number.

Now, it is well known from combinatorics that a sequence (zn)n>0 of numbers

satisfying the recurrence formula in Equation (46), whose characteristic polynomial

of degree two has a non-vanishing double zero ψ, is given by

zn =
(
C1n+ C2

)
ψn .

We know that C1 and C2 are two real constants depending only on z0 = pi and

z1 = pw+i (for zn = pnw+i) as well as on z0 = qi and z1 = qw+i (for zn = qnw+i).

They are given by z0 = pi = C
(i)
2 and

z1 = pw+i = (C
(i)
1 + C

(i)
2 )ψ = (C

(i)
1 + pi)ψ ,
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such that

C
(i)
1 =

pw+i − piψ
ψ

.

Similarly, we calculate constants C
(i)
3 and C

(i)
4 = qi for the numbers zn = qnw+i. In

particular,

C
(i)
3 =

qw+i − qiψ
ψ

.

Therefore, we get

pnw+i

qnw+i
=

C
(i)
1 n+ C

(i)
2

C
(i)
3 n+ C

(i)
4

n→∞−→ ξ =
C

(i)
1

C
(i)
3

∈ Q .

For the rational number C
(i)
1 /C

(i)
3 , we know that neither the cases C

(i)
1 6= 0 and

C
(i)
3 = 0 nor the case C

(i)
1 = 0 = C

(i)
3 occurs. In the latter case we would obtain

pw+i

pi
= ψ =

qw+i

qi
, or

pw+i

qw+i
= ψ =

pi
qi
,

a contradiction. But ξ was assumed to be irrational, again a contradiction. This

shows that ψ1 6= ψ2.

It is well known from combinatorics that a sequence (zn)n>0 of numbers satisfying

the recurrence formula in Equation (46) can be represented by an explicit formula

of the form

zn = C1ψ
n
1 + C2ψ

n
2 (n > 0) , (49)

where ψ1 and ψ2 with ψ1 6= ψ2 are the roots of the characteristic polynomial of the

recurrence formula in Equation (46), and C1, C2 are two real numbers depending

only on z0 = pi and z1 = pw+i (for zn = pnw+i) as well as on z0 = qi and z1 = qw+i

(for zn = qnw+i). In order to compute C1 and C2 we write down Equation (49) for

n = 0 and n = 1. It suffices to show the argument for zn = pnw+i, as the arguments

for zn = qnw+i are the same:

pi = C
(i)
1 + C

(i)
2 ,

pw+i = C
(i)
1 ψ1 + C

(i)
2 ψ2 .

We solve this quadratic, inhomogeneous and linear system of equations with un-

knowns C
(i)
1 and C

(i)
2 by Cramer’s rule. Since ψ1 6= ψ2 holds by the hypothesis of

Theorem 1, we have

C
(i)
1 =

∣∣∣∣ pi 1
pw+i ψ2

∣∣∣∣∣∣∣∣ 1 1
ψ1 ψ2

∣∣∣∣ =
pi+w − piψ2

ψ1 − ψ2
, (50)
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C
(i)
2 =

∣∣∣∣ 1 pi
ψ1 pw+i

∣∣∣∣∣∣∣∣ 1 1
ψ1 ψ2

∣∣∣∣ =
piψ1 − pi+w
ψ1 − ψ2

. (51)

The statements in Equations (37) to (40) follow from Equations (48), (49), (50) and

(51). It remains to prove Equation (41), which follows from Equations (38) to (40)

as shown below:

pnw+i

qnw+i
=

(pi+w − piψ2)ψn1 + (piψ1 − pi+w)ψn2
(qi+w − qiψ2)ψn1 + (qiψ1 − qi+w)ψn2

=
pi+w

(
ψn1 − ψn2

)
− ψ1ψ2pi

(
ψn−11 − ψn−12

)
qi+w

(
ψn1 − ψn2

)
− ψ1ψ2qi

(
ψn−11 − ψn−12

)
=

pi+w
(
ψn1 − ψn2

)
+ (−1)

w−1
pi
(
ψn−11 − ψn−12

)
qi+w

(
ψn1 − ψn2

)
+ (−1)

w−1
qi
(
ψn−11 − ψn−12

) ;

the last equality is based on the identity ψ1ψ2 = (−1)
w

. This completes the proof

of the proposition.

We still need a supplementary theorem for real square numbers with a period

length of w = 1.

Proposition 2. Let

ξ :=
[
a0, a1, . . . , aρ, T

]
be the continued fraction expansion of a real quadratic irrational number ξ, where

ρ > 0. The convergents of ξ are denoted by pn/qn. Let

ψ1 :=
1

2

(
T +

√
T 2 + 4

)
,

ψ2 :=
1

2

(
T −

√
T 2 + 4

)
,

 (52)

C1 :=
ψ2pρ+1 − pρ+2

ψρ+1
1 ψ2 − ψρ+2

1

,

C2 :=
ψ1pρ+1 − pρ+2

ψ1ψ
ρ+1
2 − ψρ+2

2

,

C3 :=
ψ2qρ+1 − qρ+2

ψρ+1
1 ψ2 − ψρ+2

1

,

C4 :=
ψ1qρ+1 − qρ+2

ψ1ψ
ρ+1
2 − ψρ+2

2

.



(53)
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Then we have for n > ρ+ 1:

pn = C1ψ
n
1 + C2ψ

n
2 , (54)

qn = C3ψ
n
1 + C4ψ

n
2 , (55)

pn
qn

=
pρ+2

(
ψn−ρ−11 − ψn−ρ−12

)
+ pρ+1

(
ψn−ρ−21 − ψn−ρ−22

)
qρ+2

(
ψn−ρ−11 − ψn−ρ−12

)
+ qρ+1

(
ψn−ρ−21 − ψn−ρ−22

) . (56)

Proof. For zn = pn and zn = qn, we have the recurrence formula

zn = Tzn−1 + zn−2 (n > ρ+ 1) .

Its characteristic polynomial is

P (X) := X2 − TX − 1

with two real roots given by ψ1 and ψ2 in Equation (52). Since ψ1 6= ψ2, we

know the explicit formulas in Equations (54) and (55) for zn = pn and zn = qn,

respectively, where the constants Cj (j = 1, 2, 3, 4) can again be determined from

initial conditions using Cramer’s rule:

pρ+1 = C1ψ
ρ+1
1 + C2ψ

ρ+1
2 ,

pρ+2 = C1ψ
ρ+2
1 + C2ψ

ρ+2
2 .

Then,

C1 =

∣∣∣∣ pρ+1 ψρ+1
2

pρ+2 ψρ+2
2

∣∣∣∣∣∣∣∣ ψρ+1
1 ψρ+1

2

ψρ+2
1 ψρ+2

2

∣∣∣∣ =
ψ2pρ+1 − pρ+2

ψρ+1
1 ψ2 − ψρ+2

1

,

and

C2 =

∣∣∣∣ ψρ+1
1 pρ+1

ψρ+2
1 pρ+2

∣∣∣∣∣∣∣∣ ψρ+1
1 ψρ+1

2

ψρ+2
1 ψρ+2

2

∣∣∣∣ =
ψ1pρ+1 − pρ+2

ψ1ψ
ρ+1
2 − ψρ+2

2

.

The formulas for C3 and C4 in Equation (53) result accordingly. By directly re-

calculating with the formulas from Equations (53) to (55), and using the identity

ψ1ψ2 = −1, one verifies the identity in Equation (56).

Example 3. Let

ξ :=
[

0, 1, 2, 3, 4, 5
]

=
85 + 2

√
1297

3
(
39 +

√
1297

) = 0.69777201 . . . .
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By Proposition 1 we have:

ρ = 2 , w = 3 , a0 = 0 , a1 = 1 , a2 = 2 , T1 = 3 , T2 = 4 , T3 = 5 .

The convergents pn/qn for n = 0, . . . , 9 are

1 ,
2

3
,

7

10
,

30

43
,

157

225
,

501

718
,

2161

3097
,

11306

16203
,

36079

51706
,

155622

223027
.

We compute

U =

∣∣∣∣∣∣
−3 −1 0

1 −4 −1
0 1 −5

∣∣∣∣∣∣+ (−4) = −72 ,

ψ1 = 36 +
√

1297 ,

ψ2 = 36−
√

1297 .

We now write down Equation (41) for 2 6 i 6 4:

p3n+2

q3n+2
=

157
(
ψn1 − ψn2

)
+ 2
(
ψn−11 − ψn−12

)
225
(
ψn1 − ψn2

)
+ 3
(
ψn−11 − ψn−12

) ,
p3n+3

q3n+3
=

501
(
ψn1 − ψn2

)
+ 7
(
ψn−11 − ψn−12

)
718
(
ψn1 − ψn2

)
+ 10

(
ψn−11 − ψn−12

) ,
p3n+4

q3n+4
=

2161
(
ψn1 − ψn2

)
+ 30

(
ψn−11 − ψn−12

)
3097

(
ψn1 − ψn2

)
+ 43

(
ψn−11 − ψn−12

) .
These three formulas can be applied for all integers n > 0.

Example 4. Let a > 1 be an integer, and

ξ :=
[
a
]

=
1

2

(
a+

√
a2 + 4

)
.

Again, by Proposition 2 we have:

ρ = 0 , a0 = a , T = a .

The convergents pn/qn for n=0,1,2 are

a ,
a2 + 1

a
,

a3 + 2a

a2 + 1
.

We compute the numbers from Equations (52) and (53) in Proposition 2:

ψ1 =
1

2

(
a+

√
a2 + 4

)
= ξ ,

ψ2 =
1

2

(
a−

√
a2 + 4

)
,
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C1 =
(a2 + 1)ψ2 − a3 − 2a

ψ1ψ2 − ψ2
1

=
ψ2
1√

a2 + 1
,

C2 =
(a2 + 1)ψ1 − a3 − 2a

ψ1ψ2 − ψ2
2

= − ψ2
2√

a2 + 1
,

C3 =
aψ2 − a2 − 1

ψ1ψ2 − ψ2
1

=
ψ1√
a2 + 1

,

C4 =
aψ1 − a2 − 1

ψ1ψ2 − ψ2
2

= − ψ2√
a2 + 1

.

Then we obtain from Equations (54) and (55):

pn =
ψn+2
1 − ψn+2

2√
a2 + 4

,

qn =
ψn+1
1 − ψn+1

2√
a2 + 4

.

In the above Proposition 2 we can also use Equation (56):

pn
qn

=
(a3 + 2a)

(
ψn−11 − ψn−12

)
+ (a2 + 1)

(
ψn−21 − ψn−22

)
(a2 + 1)

(
ψn−11 − ψn−12

)
+ a
(
ψn−21 − ψn−22

) =
ψn+2
1 − ψn+2

2

ψn+1
1 − ψn+1

2

.

Example 5. Let r > 1 be an integer, and

ξ :=
[
r, 2r

]
=
√
r2 + 1 .

Again, by Proposition 2 we have

ρ = 0 , a0 = r , T = 2r .

We compute the numbers from Equations (52) and (53) in Proposition 2:

ψ1 = r +
√
r2 + 1 ,

ψ2 = r −
√
r2 + 1 ,

C1 =
(2r2 + 1)ψ2 − 4r3 − 3r

ψ1ψ2 − ψ2
1

=
rψ1 + 1

2
√
r2 + 1

,

C2 =
(2r2 + 1)ψ1 − 4r3 − 3r

ψ1ψ2 − ψ2
2

= − rψ2 + 1

2
√
r2 + 1

,

C3 =
2rψ2 − 4r2 − 1

ψ1ψ2 − ψ2
1

=
ψ1

2
√
r2 + 1

,

C4 =
2rψ1 − 4r2 − 1

ψ1ψ2 − ψ2
2

= − ψ2

2
√
r2 + 1

.
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Then we obtain from Equations (54) and (55):

pn =
(rψ1 + 1)ψn1 − (rψ2 + 1)ψn2

2
√
r2 + 1

,

qn =
ψn+1
1 − ψn+1

2

2
√
r2 + 1

.

If for all n > 0 we have indexing functions f(n) and g(n) such that(
pf(n)

qf(n)
,
p′g(n)

q′g(n)

)
∈ Rσ ,

then we say that g(n) is the leaping pattern of the natural leaping convergents from

the set C(σ(ξ)). Consider a family of continued fractions, ξ(a), and an lft σ, where

the above σ-relation holds so that

σ

(
pf(n)

qf(n)

)
=

p′g(n)

q′g(n)
∈ C

(
σ(ξ(a))

)
,

for sufficiently large a. In general, the family σ
(
ξ(a)

)
= [b0, b1, b2, . . . ] has the

leaping pattern g(n), except possibly for the special cases when a is not sufficiently

large, resulting in the occurrence of indices j such that bj ≤ 0. Letting a = x

be such a special case, we have two possibilities. There will be no natural leaping

convergents whatsoever, or the leaping pattern will be transformed into one that is

adverse or conformal. The behavior is described as follows.

When zeroes occur among the partial denominators of a continued fraction, we

can treat strings of an odd number k, of consecutive zeroes using the simplification

rule

[... , a, b,

k-zeroes︷ ︸︸ ︷
0, . . . , 0, c, d, ...]simplified = [... , a, b+ c, d, ...] .

We then obtain σ
(
ξ(x)

)
= [b0, b1, b2, . . . ]simplified = [c0, c1, c2, . . . ]. Consequently,

if we have σ
(
Cf(n)(ξ(x))

)
∩Cg(n)

(
σ
(
ξ(x))

)
= ∅, then for all n ∈ N, it must be the case

that ch(n) 6= bg(n), where the indexing function h(n) is determined from g(n) after

taking into consideration a collapsing of zeroes among the partial denominators in

the continued fraction σ(ξ(x)) = [b0, b1, b2, . . . ]. Thus we have

σ

(
pf(n)

qf(n)

)
=
bg(n)p

′
h(n)−1 + p′h(n)−2

bg(n)q
′
h(n)−1 + q′h(n)−2

/∈ C
(
σ(ξ(x))

)
,

or equivalently,

σ
(
Cf(n)(ξ(x))

)
= bg(n)Ch(n)−1

(
σ(ξ(x))

)
⊕ Ch(n)−2

(
σ(ξ(x))

)
/∈ C
(
σ(ξ(x))

)
,

for all n ∈ N. This is demonstrated in the following example.
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Example 6. Let ξ(a) = [ a ] and σ =
(
2 0
1 1

)
∈ L so that for a ≡ 0 (mod 2) we have

σ
(
ξ(a)

)
=

[
1, 1,

a− 2

2

]
=
[

1, 1, k − 1
]

= σ
(
ξ(2k)

)
. (57)

The statement in Equation (57) is easily seen by showing only that σ
(
ξ(a)

)
=[

1, 1, k − 1
]
, as the remaining identities follow from a = 2k. We have

σ
(
ξ(a)

)
=

2(k +
√
k2 + 1)

k +
√
k2 + 1 + 1

=
k − 1 +

√
k2 + 1

k
,

which is the positive root of the polynomial identity kX2 − 2(k − 1)X − 2 = 0,

satisfying

X = 1 +
1

1 +
1

k − 1 +
1

X

.

It follows that σ
(
ξ(a)

)
=
[

1, 1, k − 1
]
, as desired. Now for sufficiently large a ≡ 0

(mod 2), we have

σ

(
pn

qn

)
=

p′3n+4

q′3n+4

=
b3n+4p

′
3n+3 + p′3n+2

b3n+4q′3n+3 + q′3n+2

∈ C
(
σ(ξ(a))

)
,

or equivalently,

σ
(
Cn(ξ(a))

)
= C3n+4

(
σ(ξ(a))

)
= b3n+4C3n+3

(
σ(ξ(a))

)
⊕ C3n+2

(
σ(ξ(a))

)
∈ C
(
σ(ξ(a))

)
.

Structurally the natural leaping pattern is g(n) = 3n+4, however by Equation (57)

we see that when a = 2, an exception occurs, where we have

σ

(
pn

qn

)
=

b3n+4p
′
n+1 + p′n

b3n+4q′n+1 + q′n
/∈ C

(
σ(ξ(2))

)
,

or

σ
(
Cn(ξ(2))

)
= b3n+4Cn+1

(
σ(ξ(2))

)
⊕ Cn

(
σ(ξ(2))

)
6∈ C

(
σ(ξ(2))

)
.

From

σ
(
ξ(2)

)
= [ 1, 1, 0 ] = [ 1, 1, 0, 1 ]simplified = [1, 2 ] ,

we see that g(n) is essentially reduced by a factor of 3 through the collapsing of

zeroes, and so in this case, after taking into consideration a preperiod of length 1,

we have h(n) = n+ 2. Because bg(n) = b3n+4 = 1 < 2 = cn+2 = ch(n) for all n ∈ N,

we see that σ
(
C(ξ(2))

)
are minor convergents of σ

(
ξ(2)

)
.
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Example 7. Consider σ and ξ from Example 6 and let a ≡ 0 (mod 2) so that

a = 2k. Then for all n ≥ 0,

(i) we have the expressions

p′3n+4

q′3n+4

=
4k(ϕn+1

1 − ϕn+1
2 ) + 2(ϕn1 − ϕn2 )

(2k + 1)(ϕn+1
1 − ϕn+1

2 ) + (ϕn1 − ϕn2 )

=
2ϕn+2

1 − 2ϕn+2
2

ϕn+1
1 (ϕ1 + 1)− ϕn+1

2 (ϕ2 + 1)
,

(ii) for k > 1, the convergents pn/qn and p′3n+4/q
′
3n+4 are σ-related,

(iii) for k = 1, we have the minor convergents, σ
(
Cn(ξ(2))

)
, of the continued

fraction σ
(
ξ(2)

)
in closed form

b3n+4Cn+1

(
σ(ξ(2))

)
⊕ Cn

(
σ(ξ(2))

)
=

2(1 +
√

2)n+2 − 2(1−
√

2)n+2

(2 +
√

2)(1 +
√

2)n+1 + (2−
√

2)(1−
√

2)n+1
.

Here we have ϕ1 = ψ1 = k +
√
k2 + 1, and ϕ2 = ψ2 = k −

√
k2 + 1.

Beginning with (i), we show that

p′3n+4

q′3n+4

=
4k(ϕn+1

1 − ϕn+1
2 ) + 2(ϕn1 − ϕn2 )

(2k + 1)(ϕn+1
1 − ϕn+1

2 ) + (ϕn1 − ϕn2 )
.

Using Proposition 1, we let k ≥ 2 be an integer and

σ
(
ξ(2k)

)
= [ 1, 1, k − 1 ] = [1, 1, k − 1, 1 ] .

We then have the values

ρ = 0 , w = 3 , a0 = 1 T1 = T3 = 1 , T2 = k − 1 .

The convergents of p′n/q
′
n for n = 0, 1, 2, 3, 4 and 7 are

p′0
q′0

=
1

1
,

p′1
q′1

=
2

1
,

p′2
q′2

=
2k − 1

k
,

p′3
q′3

=
2k + 1

k + 1
,

p′4
q′4

=
4k

2k + 1
, and

p′7
q′7

=
8k2 + 2

4k2 + 2k + 1
.

Computing from Equations (36), (37) and (38) we have

ψ1 = k +
√
k2 + 1 and ψ2 = k −

√
k2 + 1
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where

U =

∣∣∣∣∣∣
−1 −1 0
1 (k − 1) −1
0 1 −1

∣∣∣∣∣∣+
∣∣−(k − 1)

∣∣ = −2k .

Now from Equation (41) we have for all m ≥ 0 and for 0 ≤ i ≤ 2:

p′mw+i

q′mw+i

=
p′i+w(ψm1 − ψm2 ) + (−1)w−1p′i(ψ

m−1
1 − ψm−12 )

q′i+w(ψm1 − ψm2 ) + (−1)w−1q′i(ψ
m−1
1 − ψm−12 )

,

so that for m = n+ 1

p′3m+1

q′3m+1

=
4k(ψm1 − ψm2 ) + 2(ψm−11 − ψm−12 )

(2k + 1)(ψm1 − ψm2 ) + (ψm−11 − ψm−12 )

=
4k(ψn+1

1 − ψn+1
2 ) + 2(ψn1 − ψn2 )

(2k + 1)(ψn+1
1 − ψn+1

2 ) + (ψn1 − ψn2 )
=
p′3n+4

q′3n+4

.

From the last line above and from 2kϕi + 1 = ϕ2
i , we obtain

p′3n+4

q′3n+4

=
2ϕn1 (2kϕ1 + 1)− 2ϕn2 (2kϕ2 + 1)

ϕn1
(
(2kϕ1 + 1) + ϕ1

)
− ϕn2

(
(2kϕ2 + 1) + ϕ2

)
=

2ϕn1ϕ
2
1 − 2ϕn2ϕ

2
2

ϕn1 (ϕ2
1 + ϕ1)− ϕn2 (ϕ2

2 + ϕ2)

=
2(ϕn+2

1 − ϕn+2
2 )

ϕn+1
1 (ϕ1 + 1)− ϕn+1

2 (ϕ2 + 1)
,

as claimed.

We are now ready to show that for all n ≥ 0, the convergents pn/qn and

p′3n+4/q
′
3n+4 are σ-related. Let S(n) be the statement that for all n ≥ 0

σ

(
pn

qn

)
=

p′3n+4

q′3n+4

.

S(0) is the statement that

σ

(
p0

q0

)
= σ

(
2k

1

)
=

2(2k) + 0

1(2k) + 1
=

4k

2k + 1
=

p′4
q′4
,

which is true. Similarly, S(1) is the statement that

σ

(
p1

q1

)
= σ

(
4k2 + 1

2k

)
=

2(4k2 + 1)

2k
+ 0

1(4k2 + 1)

2k
+ 1

=
8k2 + 2

4k2 + 2k + 1
=

p′7
q′7
,

which is also true.



INTEGERS: 23 (2023) 33

Now suppose S(n− 1) holds, so that for all n ≥ 1 we have

σ

(
pn−1

qn−1

)
=

p′3n+1

q′3n+1

.

For brevity, we will write Xi = ϕn+i1 − ϕn+i2 so that pn/qn = X2/X1, and similarly

pn−1/qn−1 = X1/X0. Adding

2X0X2 − 2X2
1

(X2 +X1)(X1 +X0)

to both sides, we obtain

σ

(
pn−1

qn−1

)
+

2X0X2 − 2X2
1

(X2 +X1)(X1 +X0)
=

p′3n+1

q′3n+1

+
2X0X2 − 2X2

1

(X2 +X1)(X1 +X0)
.

We first show that the left-hand side is equal to σ(pn/qn) and following, that the

right-hand side is equal to p′3n+4/q
′
3n+4. For σ(pn/qn), we obtain

σ

(
pn

qn

)
=

2X2

X2 +X1
=

2X1

X1 +X0
+

2X2

X2 +X1
−

2X1

X1 +X0
(58)

= σ

(
X1

X0

)
+

2X2

X2 +X1
−

2X1

X1 +X0

= σ

(
pn−1

qn−1

)
+

2X0X2 − 2X2
1

(X2 +X1)(X1 +X0)
. (59)

Next, we have from (i) that

p′3n+4

q′3n+4

=
2(ϕn+2

1 − ϕn+2
2 )

ϕn+1
1 (ϕ1 + 1)− ϕn+1

2 (ϕ2 + 1)

=
2(ϕn+2

1 − ϕn+2
2 )

ϕn+2
1 − ϕn+2

2 + ϕn+1
1 − ϕn+1

2

=
2X2

X2 +X1

Eq.(58),(59)
=

p′3n+1

q′3n+1

+
2X0X2 − 2X2

1

(X2 +X1)(X1 +X0)
.

This completes the inductive step, thus showing that for all n ≥ 0, S(n− 1) implies

S(n). Therefore, S(n) holds for all n ≥ 0.

We claim in Example 6 that

σ
(
Cn(ξ(2))

)
= b3n+4Cn+1

(
σ(ξ(2))

)
⊕ Cn

(
σ(ξ(2))

)
/∈ C
(
σ(ξ(2))

)
,
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and indeed since ξ(2k) is σ-related for k ≥ 1 we have

σ

(
pn

qn

)
=
p′3n+4

q′3n+4

=
b3n+4p

′
3n+3 + p′3n+2

b3n+4q′3n+3 + q′3n+2

.

However, when k = 1 the indices for the convergents according to the natural

leaping pattern g(n) are transformed to h(n) = n + 2. Thus from Example 5 we

have for σ
(
ξ(2)

)
the closed form formulae:

p′n
q′n

=
(ψ1 + 1)ψn1 − (ψ2 + 1)ψn2

ψn+1
1 − ψn+1

2

,

and similarly
p′n+1

q′n+1

=
(ψ1 + 1)ψn+1

1 − (ψ2 + 1)ψn+1
2

ψn+2
1 − ψn+2

2

. (60)

We multiply the numerator and denominator of p′n+1/q
′
n+1 by bg(n), where g(n) =

3n + 4 is the natural leaping pattern of the σ-related convergents of σ
(
ξ(x)

)
, for

x > 2. Note that bg(n) = 1. We then take the mediant to obtain

b3n+4p
′
n+1 + p′n

b3n+4q′n+1 + q′n
=

(ψ1 + 1)ψn+1
1 − (ψ2 + 1)ψn+1

2 + (ψ1 + 1)ψn1 − (ψ2 + 1)ψn2

ψn+2
1 − ψn+2

2 + ψn+1
1 − ψn+1

2

=
(ψ1 + 1)(ψ1 + 1)ψn1 − (ψ2 + 1)(ψ2 + 1)ψn2

ψn+2
1 − ψn+2

2 + ψn+1
1 − ψn+1

2

=
2ψn+2

1 − 2ψn+2
2

ψn+2
1 − ψn+2

2 + ψn+1
1 − ψn+1

2

= σ

(
pn

qn

)
.

Observing that bg(n) = 1 < 2 = ch(n), the above shows that

σ
(
Cn(ξ(2))

)
= b3n+4Cn+1

(
σ(ξ(2))

)
⊕ Cn

(
σ(ξ(2))

)
/∈ C
(
σ(ξ(2))

)
.

Finally, by Equation (60), we have

b3n+4Cn+1

(
σ(ξ(2))

)
⊕ Cn

(
σ(ξ(2))

)
=

2ψn+2
1 − 2ψn+2

2

(ψ1 + 1)ψn+1
1 − (ψ2 + 1)ψn+1

2

=
2(1 +

√
2)n+2 − 2(1−

√
2)n+2

(2 +
√

2)(1 +
√

2)n+1 + (2−
√

2)(1−
√

2)n+1
.
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