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Abstract

Let 0 = (‘({ Z) be the coefficient matrix with nonzero determinant A := deto of
the linear fractional transformation o(z) = (ax + b)/(cx + d), where a,b,¢,d € Z.
In this paper we introduce a new concept called natural leaping convergents. Such
convergents are defined in terms of combinatorial pairings between the rational
convergents of an irrational number ¢ and those of its transformation o(¢). The
structural properties of natural leaping convergents are then studied and sufficient
conditions are given for determining whether o(p,/qn) € C(c(£)) Na(C(§)), where
C(n) denotes the set of convergents of the number 7. We then present a theorem for
expressing the convergents for all quadratic irrationals in closed form and establish
for the quadratic irrationals, as well as for transcendental numbers, that given
a suitable value for A, there are at most finitely many convergents p,/q, of &
satisfying o(pn/qn) € C(a(€))No*(C(£)), where * indicates the added property that
ged(apn + bgn, cpn + dgp) = 1.

1. Introduction

It has long been observed that certain Hurwitz-type continued fractions, for example
e=[2,1,2k1],_,,
structural properties. The investigation into such structural properties led to the
study of leaping convergents [1], [6], [7]. Later, in [4] non-linear leaping convergents

were found after transforming Hurwitz-type continued fractions using a certain ra-

possess partitions among their convergents according to certain
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tional function, also known as a linear fractional transformation (1ft)

ar+b
cx+d’

o(x) =

with integer coefficients a, b, ¢, d and a nonzero determinant A := ad — bc. Without
loss of generality, we may assume that ged(a,b,c,d) = 1. In the case p := o(&)
with an Ift satisfying A = +1, the two numbers £ and p are called equivalent. A
well-known result of Serret [9, 8, §17], from the 19th century states:

The necessary and sufficient condition for the regular continued fractions
of two irrational numbers £, u to agree from a certain partial denomi-
nator consists in the equivalence of the numbers ¢ and p.

From the proof of this statement in [8] it also follows that there is a certain index v
such that all convergents p,, /¢, of & with n > v become convergents of (&) by the
mapping o (pn/gn). In this way one obtains all convergents of (&) up to at most
finitely many exceptions.

In this paper, we shift our focus to lfts with determinants |A| > 2. In Section
2, the linear fractional transformations o(x) are at first very generally assumed
with four rational coefficients, from which a suitable equivalent lft with integer
coefficients (and nonzero determinant) is formed. Again we want to ask the question
of transferring convergents of £ to convergents of o(£). For this purpose, we define
natural leaping convergents in terms of combinatorial pairings between p/q € C(€)
and p’'/q' € C(c(§)), where C(«) denotes the set of convergents of . The set of
such pairings is called a o-relation, R,. We thus generalize the notion of leaping
convergents in such a way that o-relations between the convergents of both ¢ and
o (&) can be formulated.

The extent to which the sets of convergents of £ and o(§) are o-related depends
mainly on approximation properties with rationals and thus on the irrationality
measure of £&. We then establish conditions for

Q'VL

a(p”) & C(a(€) N (C(e))

based on the arithmetical properties of the convergents, and the proofs of these
results are then provided in Section 4.

Finally in Section 5, auxiliary results including new closed form formulae for
all convergents of the class of quadratic irrational numbers are established. These
results are applied to examples around natural leaping convergents and minor con-
vergents.
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2. Definitions

Let & = [ag, a1, as, .. .| be a real irrational number. We denote the convergents of £
by pn/¢n and the convergents of the transformed number o (§) by p.,/q,. Let

cE) = {& : n}O},

Q'”/
C(o(e)) = {:’—7 n> 0},
o(C() = {ﬁ : an eC(f)},
n b n n
o* (C(,E)) = {% : ged(apn + bgn, cpn + dap) = 1, Z;—n € C(f)} , (1)
Crm (&) = {pf(”) €C() :n= 0}~

It is clear that o* (C(€)) C o(C(€)) and for the indexed sets, Cy(,)(§) € Cp (&) = C(£).
The starting point is a quite general approach for introducing a suitable set of 1fts
with rational coeflicients that do not even have to be in truncated form. Let

/ /
o1(x) = art o and oa(x) = w ,
43T + g4 43T + qy

where g, ¢, € Q (v = 1,2,3,4), A(01) = q194 — 293 # 0 and A(02) = ¢1¢4 — 4505 #
0. We now define a relation ~, on the set M of all such lfts, by

o1 ~ oy ifand only if (q1g5 =¢ig2 and gagy = gags and  g3q) = q3q4) -
The relation ~ is an equivalence relation on M. Next, for an 1ft

_ QT+ q2

o1(x
( q3T + q4

we want to find an uniquely determined integer z # 0 such that oy takes the form

(12)r + g2
(q32)x + qa2

of an 1ft in x with coprime integer coefficients. For this purpose, let
r := lcm(denom(g;), denom(gz), denom(gs), denom(qs)) ,
s = ng (TC]la rq2,743, 7”(]4) )

where denom(0) := 1. Moreover, let

r r r r
a:::l:ﬂ, b:::l:ﬂ, c::iﬁ7 d: q4
s s s
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where the upper signs + are used if

(n =g and g3 > qs) or (1> q2),

and the lower signs — are used otherwise. Note that ¢ = ¢ and g3 = ¢4 is
impossible by our assumption ¢1q4 — g2g3 # 0. By this construction, the integers
a, b, c and d are uniquely determined. Now put z := £r/s, and we have reached our

goal by setting
ax+b

o(x) == w1 d
The Ift o is uniquely defined, and we have

e M. (2)

2
gcd(a,b,c,d) =1, A<0) = ad—bc = (g) ((J1(Z4_Q2(J3) 7& 0,

and

rq192 74243 74344

= qac, cqs = % . = q3d,

agz =+ =qb, bgs = +
so that o ~ o1. Of course, for all real numbers = from the domain of ¢ we have the
identity o(z) = o1(z). If [o]
o1 € [o]..

Let an arbitrary 1ft ¢/ € M with o ~ ¢’ be given. Then we will agree to work
exclusively with the Ift o from Equation (2). We write 0 = proj(¢’). If ¢ has
coprime integer entries and a non-zero determinant, then o = proj(o) if and only if
(a =band ¢ > d) or a > b. The inverse Ift ¢=! corresponding to ¢ from Equation
(2) is uniquely given by

is an equivalence class of ~ containing o, we have

~

dr —b )
——, if(d=band —c<a) or (d > —b)
—cr +a
o Hz) =
—dr+b )
——, otherwise.
cx —a

In any case we have 0~ ! = proj(oc~!). Let

b
L= {a(x) = i;fj—_d : 0 = proj(c’) and o GM}.

L consists of exactly those 1fts o that are of interest to us in the context of leaping
convergents, namely lfts satisfying ¢ = proj(o). We write 01 o 02 to denote the
usual composition of two 1fts from M. We now define a binary operation o, on L.
For two Ifts 01,09 € L, let

01 0Op 09 = proj(01 o} 0’2) .
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Then, (ﬂ, o [;) is a non-Abelian group. The neutral element is the Ift € £, because
for every lft o € £ we have

corx = proj(a(x)ox) = proj(a) =o0.

Any inverse element o' of an Ift o is uniquely determined satisfying coo™ ! =2 =

o1 o, 0. Note that the set of all rational functions with real coefficients provided
with the usual composition o of two functions has no group structure.

The definitions of the generalized terms of leaping convergents and natural leap-
ing convergents now follow, with the latter explained in the context of an Ift. For
all remaining considerations, we will only consider 1fts o from the set L.

Definition 1. Any subset Cy(,,)(£) of C(€) is said to be a set of leaping convergents
of &, and as well, any subset Cy(,)(c(€)) of C(o()) is said to be a set of leaping
convergents of o(§), for some indexing functions f, g : Ng — Ny.

In the special cases

CEONCrmy(©)] <00 or  [C(a(8)) \ Cyqmy (0(€))] < 00,

the sets Cg(n)(€) or Cyen)(0(€)) are said to be sets of conformal leaping convergents
of £ or o(&), respectively.

Definition 2. Let

g cCE)  and zj € C(a(9)).

A relation R, C C(£) x C(o(€)) is given by

(

~

/
) € R, ifandonlyif o(2) =L
@/ 4

)

[SERS
»-Q\"U

1

Since A # 0, the inverse linear fractional transformation o~ exists. Therefore

the inverse relation of R, is given by the relation R,-1:

/
(5.5) e R, itandontyit o(2) =L
q q q

/
if and only if U_1<p—/> -2
q q

/
if and only if (p—, 3) € R,.
7’ q

This motivates the following definition.
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Definition 3. Let ,
(2.2) ¢ R,
qa q
Then the two convergents p/q and p’/q’ are said to be o-related.
The range of the relation R, is given by
/

Ran(Rg) = {Q € C(J(f)) ’ there exists%9 €C() : (27

q/

/

U

)€ R}

The domain of the relation R, is given by

Dom(R,) := {g € C(f)‘ there existsZ: €C(a(¢)) : (g, ZI) € R, }

~

Note that
Dom(Rafl) = Ran(RU) and Ran(R,rl) = Dom(RU).

Definition 4. Let f : A — B and g : C — D be two arbitrary indexing functions
with A, B,C,D C Ng. Any subset Cy,)(§) of Dom(RU) is said to be a set of
natural leaping convergents with respect to the set O'(Cf(n) (5)) C Ran(RU) of o-
related convergents of o(§). Any subset Cy(y,) (o(f)) of Ran(Rg) is said to be a set
of natural leaping convergents with respect to the set o1 (Cg(n) (U(f))) - Dom(RU)
of o-related convergents of &.

Remark 1. In the definition above, we point out that since O'(C Fn) (€ )) - Ran(RU)
and 071 (Cy(n)(0(€))) € Dom(R,), then

7 (Crny(€)) = Cymy (0(€))  and o™ (Cy(my (0(€))) = C(m) (£) -

respectively, for some functions f and g.

Definition 5. Let either N'C C(§) or N C C(0(€)), and let i,r € Z where r > 2
and 0 < ¢ < 7. N is said to be a set of arithmetical ordered leaping convergents with

respect to the residue class i mod r if and only if p,, /¢, € N implies that m = ¢
(mod r).

In the papers [1], [6], and [7], only sets of arithmetical ordered leaping convergents
are studied, whereas sets of nonlinear leaping convergents occur in [4].

Definition 6. If there is a subset Cy(,,)(§) C C(&) such that

CE)\ Crmy ()] <00 and [C(a(8)) \ o (Cremy ()] < 00,

then the pattern of the natural leaping convergents, Cy(y) (a(f)), of U(Cf(n)(f))
(with respect to the set Cy(,)(§) of o-related convergents of §) is said to o-conform.
If, on the other hand, the two statements

C()\ Csmy(€)| <00 and |C(a(€)) N (Crny())] < o0
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are true, then the pattern is said to be o-adverse. Moreover, if O‘(Cf(n) (5)) is
replaced by o* (Cf(n) (f))7 we speak of o*-conform or o*-adverse, respectively.

Recall that if for some n € Ny we have (Cy(n)(€)) € C(a(€)), then o (Cy(n)(€)) €
Cy(n) (0(§)) for some g : Ng — No. As well, if for all n € Ny we have o(Cy,(§)) €
C(co(£)), then o(Cyn)(€)) = Cy(m)(a(€)). Intuitively, Definition 6 states that for a
subset C¢(n)(§) € C(£), the natural leaping convergents of O'(Cf(n) (§)) have a leaping
pattern g(n), that is said to o-conform if at most finitely many of the convergents
from Cy () () and O’(C Fm) (€ )) are not o-related. Similarly, if at most a finite amount
of convergents from Cy,)(€) and o (Cy(n)(€)) are o-related, then the pattern is o-
adverse. As mentioned in the introduction of Section 1, in the case |A| = 1 there is
always a set Cyn)(§) € C(€) , so that the pattern of natural leaping convergents of
o (Cyn)(€)) o-conforms.

3. Theorems

We introduce some notation and quantities where n > 0 is a fixed integer:

5 = [a(]aal,GQ,...}eR\Q7
Pn
— = [ao7a17a27-~-an]v
qn
Gn = ged (apn + ban, cpn + dan) ,
w, = Pntban

n . Gn 9

v, = Pt dan

We recall that
( DPn ) apn + an Unp,
g —_— e —
dn

cpn + dgn Un
and ) 1 1
1 feem| Ll 1
qn(QnJrl + qn) qn dndn+1 dn

Theorem 1. Let & be a real irrational number, and let 0 < € < 1. Then there is
a positive integer ng depending at most on € so that for n = ng the following three
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statements hold:

GZany1 = 2(1+¢)|A|  implies :j—" € C(a(§))na(C(e));
G2+ an) < (L=2)[A] implies " ¢ C(o(8))3
Gn =1 and apy1 = 2(1+¢)|A|  implies % € C(a(&)) na*(Cg)).

The right-hand side in Equation (3) is equivalent to (pn [y Un /Un) € R,, so
that by Definition 4 the number p,, /g, in the set A := {p,/q,} is a natural leaping
convergent with respect to the set o(.A), and, vice versa, the number u, /v, in the
set B := {u,/v,} is a natural leaping convergent with respect to the set o=1(B).
Using the definition of ¢*(C(£)), the statement in Equation (5) follows from the

statement in Equation (3). Setting ¢ = |A| ™", we obtain a corollary.

Corollary 1. Let £ be a real irrational number, and |A| > 2. Then there is a
positive integer ng depending at most on A so that for n = ng the following three

statements hold.

Glanpy > 2|Al+1)  implies = € C(a(€)) Na(C(©)) 3
G2(2+ ans1) < |Al =1 implies In g C(a(9));

Gn =1landany1 = 2(|A|+1)  implies Un ¢ C(a(€)) Na*(C(9)).

Example 1. Let
ar +b

cx+d’
such that |A| >4 and 2(|A|+ 1) > 10. Since

o(x) =

e=exp(l) = [2,T,2m 1] _ ,
we know by Equation (6) that for all sufficiently large integers k, the fractions

U3k+1  apsk+1 + bG3k41

U3k+1 €P3k+1 + dq3r+1

(6)

(7)

are convergents of o(e). Indeed, for all large k we have G§k+2a3k+2 > asgpio =

2(k+1) > A.
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Conversely, let ged(apy, + bgn, cprn + dgn) = G, = 1 for some sufficiently large
integer n with either n = 0 (mod 3) or n = 2 (mod 3). Applying Equation (7)
and the fact that G2(2 + an11) = 3 < |A| — 1, we conclude that u, /v, is not a
convergent of o(e).

For some applications, a variant of Theorem 1 proves more practical. We need
some new quantities. We denote by pZ /¢ the convergents of £ satisfying the in-
equality

PP
a V5q3?
It is well-known that for any three consecutive convergents to £, at least one satisfies
this inequality, see [5, Theorem 195]. Furthermore, let

G, = ged(ap), +bqy,, cpy, +dgy,)
N Sl

n G; ’
o - Pntda

Theorem 2. Let & be a real irrational number, and let 0 < ¢ < 1. Then there is
a positive integer ng depending at most on € so that for n = ng the following four
statements hold:

qu’q‘zl > 2(1+e)|A]  implies %: e C(a(&)) na(Ce);

G+ T < (L=)IA] - implies ™ ¢ C(o(€)); (8)
VB(GE)? > 21+ o)A implies Z: € C(o(6) No(Ce);
Gn =1 and q’;—zl > 21+6)|A|  implies ;L: e C(o(&)) No*(C(©)).

Because a proof of the statements in Theorem 2 is analogous to the proof of
Theorem 1, we state Theorem 2 here without proof.

Example 2. Let

1+/5
¢ = +2‘f = [1,1,1,...] = 1.61803... .
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Then we have

Pn _ dn+1 _ Fryo ni>>o ¢,

dn qn Fot1
where F,, = F,,_1+ F, _5 is the nth Fibonacci number for n > 2, with Fy =0, F; =
1. Let 0 < € < (2—¢)/3 be a real number, and o a linear fractional transformation
with |A| > 3. When n > ng is some sufficiently large number and G,, = 1, then
Un /vy is not a convergent of o(§), since the inequality on the left-hand side in
Equation (8) holds:

F,
G2+ Iy 1422 o < 3(1-6) < (1-0)|Al
dn F%+1
Let € be a real irrational number. The irrationality measure of £ is the uniquely
determined positive real number w = w(§), which allows the following two inequal-
ities in the rational approximation of &:

for all € > 0 there exist infinitely many P € Q such that
1
e8] g

and for all € > 0 there exist at most finitely many P € Q such that
q

P 1
‘g_gl < qw+e'

The second statement can be formulated differently: For all ¢ > 0 there exists a
positive integer go such that we have, for all fractions p/q € Q with ¢ > g, the

inequality
1

qure '

p
S
q
The irrationality measure of any real number £ is greater than or equal to 2.

Theorem 3. Let
ar+b

ol@) = cx+d
be an Ift from L. Then we have for every real irrational number £ the identity

w(f) = w(a(ﬁ))

In the proof of this theorem, natural leaping convergents are used. For simplicity,
let w—e > 0. Then, the infinite (truncated) fractions p/q from the upper statement
in Equation (9) are convergents of £. Let Cy,)(£) be the set of these convergents
p/q. The main argument in the proof of Theorem 3 is that J(Cf(n)(f)) is an infinite
set of o-related convergents of o(£), and vice versa (see Definition 4).
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The following theorem deals with quadratic irrational numbers €. It shows that
each such ¢ has only at most finitely many convergents, which are immediately
mapped from any 1ft with sufficiently large determinant to truncated convergents of
C(&). The theorem builds mainly on Corollary 2 in [1] and on the second statement
in the above Corollary 1.

Theorem 4. Let & be a real quadratic irrational number. Then there is a positive
integer D, depending at most on &, such that for every linear fractional transfor-
mation o € L and determinant A > D, there are at most finitely many convergents
p/q of § satisfying
p *
U(g) € C(a(&) na*(C(9)).

In the sense of Definition 6 with Cs(, (&) = C(€), the statement of Theorem 4 is:

The pattern of the natural leaping convergents of O'(C (5)) with respect
to C(§) is o*-adverse.

A statement analogous to Theorem 4 can also be made for transcendental numbers.

Theorem 5. There are uncountably many transcendental numbers & with the fol-
lowing property. For every linear fractional transformation o € L and determinant
A > 5, there are at most finitely many convergents p/q of £ satisfying

o b IS C(U({)) N a*(C(g)).
q

Our last theorem in this section shows that the transition from an untruncated
transformed approximate fraction o(p,/q,) to its truncated form wu, /v, requires
only dividing by an integer which depends on ¢ but not on n. Thus, for fixed
o € L, the truncation factor is absolutely bounded.

Theorem 6. Let a, b, c,d be the integer coefficients of an lft o € L. Then there is a
constant C, depending at most on a,b, c,d, such that for any real irrational number
& and its convergents py/q, the inequality

ged (apn + bgn, cpn + dQn) <C

holds for all integers n > 0.

4. Proof of the Theorems

Proof of Theorem 1. We apply the Intermediate Value Theorem to the function o(x):
For all nonnegative integers n, there exists a real number 7,, such that the inequality
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|€ — nn| < |€ — pn/gn| hold as well as the identity

0@ (%) | = lo'tm|-[¢~ 22

: (10)
where

A
(cx +d)*
Since £ € Q, we have ¢ +d # 0. Moreover, 7, tends to £ for increasing n; therefore
ey + d # 0 holds for all sufficiently large n. Thus,

VRN Al _ (4]
lim |o'(n,)| = lim 5 = 5 > 0.
n—o0 n—o0 (Cnn + d) (Cf + d)
Hence, for all real numbers ¢ between 0 and 1 there is an integer ng > 0 such that
for all integers n > ng we have

o'(x) =

Y |Alv/1—¢ o |AlV1+¢e .
=t < lo'(m)| < €’ 0 (11)

To prove Equation (3), we now assume G2a,+1 = 2(1 + ¢)|A| for some sufficiently
large integer n. Now, for € > 0 and large n, we get

CPn 2 _ Pn 2
2
< 62‘5_% +2|c|‘§—z—” ]c§+d|+}c§+d]2
2
- C—+2|C||C§+d|+(c§+d)2

an I
< (ct+d)’Vite.
It follows that
20( L 4 d)"’ o 2BVi+e
I (& +d)?
2(1+¢)|4]
< Glanq < Gfl(anﬂ + o=t ) ; (12)

n

(c£—|—d)2 1+4¢

the penultimate inequality is based on our assumption in Equation (3). Multiplying
Inequality (12) with ¢2, we obtain

2
2Q (Cpn + dqn) < Qn(an+1qn + Qn—l)Gi = ann-i-leL . (13)

Hence, using Equation (10), the right-hand part of Inequality (11), and Inequality

(13),

PR U G2 1
Tndnt1  2(epn +dgn)® 203

- [ote-o(2) | <ofe-2e

n
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We know from [5, Theorem 184] that w, /v, is a convergent of (&), as stated in
Equation (3).

To prove Equation (4), we next assume G2 (2 + an41) < (1 — €)|A| for some
sufficiently large integer n. Here, we obtain the following for 0 < € < 1 and large n:

2 2
(Z2ta) > fec+df —c|e—22 —2pel| e~ 2 jeg +d
dn qn qn
2
2 & 2|c||c€+d]
> (c€+d)*Vi—e.
Hence,
2 AV =
w(P4a) > AIVIZE ey a)Pyi=
= (I-¢9)|A|
> GH(2+ans1).
From this, after multiplication by ¢2, we obtain
2
w(epn +dgn)” > qnlani1gn +240)G},
> gn(@ni1gn + an1 + 42)G5,
= QTL(QnJrl + Qn)Gi . (14)

Again using Equation (10), and additionally the left-hand part of Inequality (11),
and Inequality (14), we obtain

Un

(&)=

Un

w G? 1

> —_.
Gn(Gnir +an) ~ (cpn +dgn)® V2

= |- ()] >l

By construction, ged(uy,,v,) = 1. We conclude from [5, Theorem 171] that uy, /vy,
is not a convergent of o(£). This proves Equation (4). O

Proof of Theorem 3. For brevity, we write w instead of w(€). There is an infinite
sequence (py,/ qﬂ)n>o of leaping convergents with positive denominators ¢, so that
for any € > 0 the inequality

1

q$78/2

<

[ (15)

holds. We apply the Intermediate Value Theorem to the function o(z): For all non-
negative integers n, there exists a real number 7, such that we have the inequality
|€ = nn| < 1€ — pn/gn| and the identity

o=l - Gl nl

(16)
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Therefore, we obtain by Inequality (15) and by |£ — n,| < | € — pn/dnl:
1
(€= m| < =7 (17)
dn
Casel. ¢ # 0. Then,

et = lel-|m+ 2] =t |6+ 2) + (- 9)|

> 1l ([e+ ] = Imel)
>kl (Je+ 5| 7).

The last estimate is based on Inequality (17). Thus, for all sufficiently large integers
n, the inequality

|enn +d| > alc| (18)
is guaranteed, where a > 0 is a constant depending only on £ and on the fraction
d/c, but not on n. Note that £ # —d/c by the irrationality of £. From Equation
(16), using Inequality (18), we claim the existence of a positive integer ng such that
we have for all integers n > ng,

o0-o(2)| < e

c2a? Gn

(19)

Case2. ¢ = 0. We have d # 0 by ad — bc # 0. Following directly from Equation
(16), we have for all integers n > 0:

o6-a(2)] - B Je- 2

20

We define the number £ by

c 2072 when ¢ # 0,
N

d—2 , when ¢ =0.
Above, we see that § > 0 and it depends at most on £ and on a,b,c and d. Now
we can combine Inequality (19) and Equation (20) from the two cases, still using

Inequality (15): There is a positive integer ng such that we obtain, for all integers

B

qz)—s/Q :

n = ng:

<

o© —o(2)]| < B-|e-En (21)

qn dn

Now we have

O'( @) _ (apn +bg,) D5 Un
(cpn +dgn) Dt vy

an

)
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where Dn = ng(apn + bqn7 CPn + dq’ﬂ) and

. app + bqy, . CPn+ dqn
un Dl T Pl Un . T .
n n

Set T := max{|c|, |d| }. Then,
1

1
lon| = E’Cpn+dQn’ < E(‘C|'|pn‘+|d|'Qn)

T Tqy [pnl
Dn(lp|+q) Dn< T
Tqp

< 2 , 22
22+ ) 22)

because
‘57& <1 implies M: Pn <14+
dn

n n

We solve Inequality (22) for ¢, and thus find another upper bound for the right-
hand side of Inequality (21). There is a positive integer ng such that we obtain, for
all integers n > ng, the inequalities

w—e/2

pa| o BTER+IEND)" " _ BTE+IED)"
o§)—o(—=)| < < ; (23)

In DZJ—&/Z‘Un|w—s/2 |Un|w—5/2
note that |T| > 1 and D,, > 1. We must now convince ourselves that |v,| grows
unboundedly as n takes larger and larger values. This is not self-evident and can be
justified by Theorem 6: by this theorem, there is a constant C' depending at most
on a,b,c,d, so that D, < C holds. Then,

d d
|Can+ Qn| > |Cpng Qn| 0,
n

lon| =
if either
(c:() and d#O) or (c;éO and d:O).

By the fact that A # 0 it remains to consider the case when ¢ # 0 and d # 0.
Because £ as an irrational number is different from —d/c, the sequence of numbers
¢pn/qn + d converges to the nonzero number ¢€ 4+ d. This means |c€ + d| > 0, and
SO

|Cpn+dQn| qn | CPn dn |C€+d|
RIS M AR YL O R S
[on c clg T4 70 T >
for n tending to infinity. It follows that
T(2 b
Bre+leN)” _

"Unla/Q



INTEGERS: 23 (2023) 16

for all large n, since 3, T, w and 2 + |§| depend at most on a,b,c¢,d and £ (and not
on n). Therefore, we can further simplify Inequality (23) for n > ng into

Pn Bre+lg)” 1 1
af—o(—)‘é . — < — 24
‘ ( ) n |vn|5/2 |Un| £ |'Un‘ 5 ( )
Finally, set
rp = u, and S, := v, (if v, > 0),
and
Tp = —U, and S8, := —v, (if v, < 0).

This gives o(pn/qn) = Un /vy = r0/$n with s, > 0 and ged(r,, s,) = 1. So far we
have proven by Equation (24) that for every positive real number e there exists a
positive integer ng such that we have for all integers n > ng the inequality

1

w—e °
Sn

Tn

EGE

Sn

(25)

It is well known that w = w(§) > 2, and from Inequality (25) we have by definition
of the irrationality measure:

w(§) < w(o(€))- (26)

Casel. w = 2. In this case, Inequality (25) is trivial, and the sequence of ap-
proximation fractions 7, /s, constructed for Inequality (25) can be replaced by the
sequence of all convergents of the irrational number o(€); Inequality (25) then still
holds. The set of all convergents may be considered as a conformal set of leaping
convergents by Definition 1.

Case?2. w > 2. We choose ¢ in Inequality (25) to be small enough that w — e > 2.

For large n, we then have
1 1

We know from [5, Theorem 184] that r,/s, is a convergent of o(£). Hence, the
truncated fractions r, /s, form a set of leaping convergents of o(€). So, in any case,
in Inequality (25) there are underlying leaping convergents r,,/s,, and therefore we
have the same initial situation as in Inequality (15). Therefore, we now repeat the
previous construction for the number (), but we apply it with the linear fractional
transformation !
fraction of the shape

inverse to o, which, as is well known, is also represented by a

ax+ b

-1 _
o (z) = cdx+d
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with integer coefficients a’, V', ¢’ and d’ and with a nonzero determinant. Instead of
Inequality (25) we then obtain for every positive real number € a positive integer
ng such that we have for all integers n > ng the inequality

/

Tn

/

n

‘5_5;1 :‘U_l(a(m_s;l DA
Now we get analogously to Inequality (26):
w(o(§)) < w(f). (27)
Inequalities (26) and (27) prove Theorem 3. |

Proof of Theorem 4. Let
¢ =lao,a1,...,a,,T1,..., Ty |
be the continued fraction expansion of £, where p > 0 and w > 1, and
A = max{|ag|,a1,...,a,,Th,..., Tw}.

Moreover, we assume that p/q € C(£) and o(p/q) € o*(C(£)) with p = py, and
q = qm, say, for some p,,/qm € C(£). In particular, we have by Equation (1):

G,y = ged (apm + bGm; cpm + dqm) =1

For every 1lft o with |A| > A + 3, the inequality on the left-hand side of Equation
(7) in Corollary 1 is fulfilled, since

Gm(2+ ams1) = ami1 +2 < A+2 < |A] -1,

From Corollary 1 we conclude that

p Pm
O'(q) a(qm> Z C(o(9)) .
This proves the theorem. 0O

Proof of Theorem 5. As is known, there are uncountably many infinite number
sequences whose elements consist only of the numbers 1 and 2. As a sequence of
partial denominators, a real irrational number is thus uniquely assigned to each
number sequence via the continued fraction expansion. Since the set of the real-
algebraic numbers is countable, we have thus an uncountable set of transcendental
numbers £ with partial denominators 1 and 2 in their continued fraction expansion.
For any such &, the statement of Theorem5 follows from Equation (1) and from
Equation (4) in Theorem 1 by setting G,, = 1 and & = 1/10. Then we have:

9
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so that

o(2) ¢ clo(©) no*(e(e)

for all sufficiently large integers n. This completes the proof of Theorem 5. a
Note that almost all real numbers (in the sense of the Lebesgue measure) have
an unbounded continued fraction expansion.
Proof of Theorem 6. Let p be a prime and k a positive integer such that

ged (apn + bgn, cpp +dg,) = 0 (mod p). (28)
Let us consider the identity
a(cpn + dqn) — c(apn + bqn) = (ad — bc)g, = Aqy, . (29)
From Equation (28) and Equation (29) we have simultaneously,

apn +bg, =0 (mod p*), py+dg, =0 (mod p*), Ag, =0 (mod p¥).
(30)
Let k = k; + ko with non-negative integers k; and ks satisfying A = 0 (mod p*1)
and ¢, =0 (mod p*?).
Casel. ky =0, ie., A =0 (mod p¥). This gives

pF <Al

Case2. ky > 0. From A = 0 (mod p*') we have p** < |A|, and moreover,
¢n = 0 (mod p*2) with ks > 1. Since p,, and g, are coprime, the first and second
congruences in Equation (30) yield

a=0 (modp*) and ¢ =0 (modp*?);
note that ks < k. Thus, we obtain
Pk < min {al, |c|}.
If we summarize the results, we obtain the inequality
pk = p’““;zo’€2 < |A| ~min{\a|, |c] } (31)
If we assume the identity
d(apn + bgn) — b(cpn + dgn) = (ad — be)p, = Apy,
instead of Equation (29), we obtain in an analogous way the inequality

P < |A| - min {[b], |d] } . (32)



INTEGERS: 23 (2023) 19

If we combine the results from Inequalities (31) and (32), we get
p* < |A|-min {|al, [0, |e], |d| } (33)

for all primes p and all positive integers k satisfying Equation (28). With respect
to Equation (28), the special case for k = 1 means that there are at most finitely
many prime divisors of ged (apn + bqy,, cpn + dqn) for all integers n > 0. And if we
apply Inequality (33) for a second time with & > 1, we obtain the statement of the
theorem. a

We give an explicit bound C for the greatest common divisor in Theorem 6. It has
been shown that every prime power p* dividing the ged of ap, + bg,, and cp,, + dg,,
is bounded by D := |A|min{]al, |b|, |c|, |d|} (see Equation (31)). Now, let 7(z) be
the prime counting function over the interval [2, z]. Let

ged (apn + bgn, cpn +dgy) = pips? - plr
be the prime factorization of the greatest common divisor. Then we have
ged (apn + gy, cpn +dg,) < D" < D™P) = C.

This number C can be chosen for the constant C' in Theorem 6. Applying the prime
number theorem, we have

1790 « ¢ <« (1H+a)D

for every real number 0 < £ < 1 and implicit constants depending at most on . O

5. Supplementary Results

Lemma 1. Letn > 2 be an integer, and let cy, ..., cy be real numbers. We consider
the sum of two determinants of order n and n — 2, respectively,

C1 -1 Co -1
1 ¢ -1 0 1 ¢ -1 0
U(Cl, ..,Cn) = . + .
0 Cn—1 -1 0 Cn—2 -1
1 Cn 1 Cn—1

For n = 2 the value of the second determinant is set to 1. In this case, we have
U(Cla ey Cn) = U(CTM C1,C25 ..., Cn—l)'

Proof. Let

Alery ..oy en) =

1 Cn
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We shall prove the following two identities,

det (A(cn,cl, R cn,l)) — det (A(CQ, C3y. .., cn,l))
= ¢,det (A(cl,CQ,...,cn,l))
= det (A(cl, €2y cn)) — det (A(cl, €2y cn_g)).

This can in fact be changed to
det (A(cy, ¢z, ..., cn)) +det (A(cz, c3,. .., Cnm1))
= det (A(cp,c1s- -, nm1)) + det (Acr, co,. .., cn-2)),

which is equivalent to the assertion of the lemma.
To prove the first identity in Equation (34), we expand the determinant

cn —1
1 C1 -1 0
A(C’ruch s 7Cn—1) =
0 Cp—2 -1
1 Cn—1
according to its first line,
det (A(cn, Clyeen, cn,l))

1 -1
0 ¢ -1 0

0 1 C3 -1
= cpdet (A(cr, ..., cp1)) — (—1)

1 Cn—1

= ¢, det (A(cl, el cn,l)) + det (14(027037 . ,cn,l)) ,

20

(34)

where the last determinant resulted from an expansion according to the first col-
umn. In an analogous way, the second identity in Equation (34) is proved. Here,
A(cy,cay. .., cy) is expanded first according to the last column, and the remaining

second determinant then according to its last line:

det (A(cl, €2y cn))

C1 -1
1 Co -1 0
=cpdet (A(cr, ..., cp1)) — (—1)
Cn—3 -1
0 1 Cn—2 -1
0 0 1

= ¢, det (A(cl, cel, cn_l)) + det (A(cl, Ca,y ... ,cn_g)) .
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The two identities in Equation (34) are shown, and thus the lemma is proved. [
Proposition 1. Let
¢ = lao,a1,...,a,,T1,..., Ty | (35)

be the continued fraction expansion of a real quadratic irrational number £, where
p >0 and w > 2. The convergents of & are denoted by p,/qn. Let

T -1
1 =T -1 0
U = +
0 —dw-1 -1
1 -7,
T -1
1 —T5 -1 0
+ : (36)
0 —Lw-—-2 -1
1 —Lw-1
and )
— = 1\ 2 _\w-—1
b= (DU HUR Ay,
(37)
1 1
— 1\ 2 _\W
- 2(( 1)U — /U2 + 4(~1) )
o . Pitw — pih2 ’
! 1 — 1o
Cz(i) _ PiY1 — Ditw ’
1 — o
(p<i<ptw—1) (38)
Céz) — Qitw — G2 :
1 — 1o
oD V1 — Gitw _
* 1 — 1o
Then, U # 0, 1 # 2, and forn 20 and p < i < p+w — 1, we have
prwti = C{WT +C{y, (39)
Groti = C&WT +C{y, (40)
Pnw+i _ Ditw (?ﬁ? - %L) + (_1>w_1pi( ?71 - 1/);71) (41)

Gnuw+i Gigw (V7 = ¥5) + (1) @ (yYpt —yph)
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Remark 2. For w = 2 the value of the second determinant in Equation (36) is set
to 1.

Proof. We apply Corollary 1 from [2] in the particular cases where the Hurwitz-type
continued fraction a = £ is a real quadratic irrational number, and with » = w. Let
T(a) = /Tw{(a—p—l)/w}-ﬁ-lu

where {.} denotes the fractional part function, and
—T(a) -1
1 —T(a+1) -1 0
Dl(a) = -
0 ~T(a+1-2) -1
1 —T(a+1-1)
for integers a. Then, for w > 2 and 0 < p < ¢ < p+ w — 1, the identity
0 = (=1)"""'Dy1(M—w)- 2,
—+ (Dr,l(M)Dw(M —w)+ Dy—1(M —w)Dy_o(M + 1)) C Zp_1 (42)
- Dwfl(M) *Zn—2

holds for z,, = punti and 2z, = qunti wWith M := (n — 1)w+ i+ 2 and n > 2. Now,
we observe that

T(M +1t) = Tyg(n-1)w+itt+2—p—1)/w+1 = Lw{(i+t—p+1)/w}+1
and
T(M —w+1t) = Tofitt—p+1)/wp+1 = T(M +1)

hold for 0 < ¢ < w — 2. Therefore, the two integers Dy,—1(M) and Dy,—1(M — w)
in Equation (42) coincide, and because of the fact that D,,_1(M) # 0, they do not
both disappear. Thus, Equation (42) can be simplified as follows:

0= (~1)"""20 4+ (Dp(M —w) + Dyy—o(M +1)) 201 — 2p—2; (43)

see Theorem2 in [3]: Dy(M) =: (—1)'K;(M) # 0 with U(M + 1) = U(M +2) =
<+ =U(M+1-1) = 1. In Equation (43), the determinant D,,(M — w) is given by

~Tuwf(i+1-p) fwi+1 -1
1 —Tw{(i+2-p)/wi+1 —1
;o (44)
0 -1
“Lw{(i+w—p)/w}+1
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whereas the determinant D,,_o(M + 1) is

~Tw{(i+2-p)/w}+1 -1
1 ~Tw{(i+3-p)/wi+1 —1
- (45)
0 -1
—Lw{(itw—1—p)/w}+1
The sum D,,(M — w) + Dy—o(M + 1) of the determinants from Equation (44) and
Equation (45) does not depend on 4, which follows from Lemma 1. We specifically

choose © = w — 1 4 p such that p+ 1 < ¢ < p+ w holds because w > 2. Following
from Equation (36), we have

U= Dy(M—-—w)+Dy_o(M+1),
so that Equation (43) takes the form
0=zo4+(=D)""Vzn 1+ (-1)"202 (n>2). (46)

Assuming that U = 0, Equation (46) would then simplify to z, = £2,_2, OF ¢ny+i =
*q(n—2)w+i, Which is impossible. Therefore, we have U # 0. The characteristic
polynomial P(X) of Equation (46) is

P(X) = X2+ (-1)"'UX + (-1)" (47)

with the roots

o= (o Ty,
b2 = (Vo).

Next, let us assume that ¥ := ¢ = 13 # 0. In particular, ¢ is a rational number.
Now, it is well known from combinatorics that a sequence (zn)n>0 of numbers
satisfying the recurrence formula in Equation (46), whose characteristic polynomial
of degree two has a non-vanishing double zero v, is given by

(48)

We know that C; and Cy are two real constants depending only on zp = p; and
21 = pu+i (for 2n = ppu+i) as well as on 29 = ¢; and 21 = qui (for zn = gnui)-
They are given by zg = p; = Cé@) and



INTEGERS: 23 (2023) 24

such that

1 - T
Similarly, we calculate constants Céi) and C’f) = ¢; for the numbers z,, = ¢pyp+i. In
particular,

o) _ Pu+i —pi

i Qwi_qiw
ol = 7+w .

Therefore, we get

S T om e
Anw+i 03 n+C4 03

For the rational number Cfi)/ C?Ei), we know that neither the cases C{i) # 0 and
C{? = 0 nor the case C\”) = 0 = C{” occurs. In the latter case we would obtain
Pw+i _ w _ Gu+i or Pw+i '(/) _ &

b - b

Di qi Gu+i qi

a contradiction. But & was assumed to be irrational, again a contradiction. This
shows that 1 # s.

It is well known from combinatorics that a sequence (zn)n>0 of numbers satisfying
the recurrence formula in Equation (46) can be represented by an explicit formula
of the form

zn = C197 + Cotpy (n=>0), (49)

where 11 and 1o with 17 # 19 are the roots of the characteristic polynomial of the
recurrence formula in Equation (46), and C7,Cy are two real numbers depending
only on zg = p; and z1 = pyyi (for z, = Ppwti) as well as on zg = ¢; and 21 = @44
(for z,, = @nw+i). In order to compute Cy and Cy we write down Equation (49) for
n = 0 and n = 1. It suffices to show the argument for z,, = ppw+i, as the arguments
for z, = @nwyi are the same:

Di = Cfi) + Céi) ,

Pwti = Cfi)¢1+0¥)¢2~

We solve this quadratic, inhomogeneous and linear system of equations with un-
knowns C’l(l) and Cél) by Cramer’s rule. Since ¥; # 19 holds by the hypothesis of
Theorem 1, we have

' pi 1
c — Puti P2

_ DPitw — Pith2
P —1Py

_‘1 1
V1 Yo
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’ 1 Di

i V1 Pwti PitY1 — Pitw

cl = = : 51

? 11 U1 — o (51)
1 o

The statements in Equations (37) to (40) follow from Equations (48), (49), (50) and
(51). It remains to prove Equation (41), which follows from Equations (38) to (40)
as shown below:

Prw+i (pier - pﬁﬁz)w? + (Pﬂ/Jl B p1+w)w3

T+ (Gi+w — G2)VT + (@01 — Gitw) V5

Pitw (V7 — ¥F) — Yrvhap; (Y7~ — 95
it (V7 — P3) — Y19oq (V7" — 95~
Pitew (VT — ¥3) + (—1)w71pi( ) ,
Qoo (U = 08) + (=) g (47 =y )

the last equality is based on the identity 112 = (—1)". This completes the proof
of the proposition. O

We still need a supplementary theorem for real square numbers with a period

length of w = 1.

Proposition 2. Let

¢ = [ao,al,...7aP,T}
be the continued fraction expansion of a real quadratic irrational number &, where
p = 0. The convergents of £ are denoted by p,/qy. Let

P = %(T—F \/T27—|—4>,

, (52)
- 5(T— \/T2+4) ,
o = Vappt1 — Pp+2
Py — i +?
C, = V1Pp+1 — Pp+2
it — T 5
53
Cy = Yapr1 — Qpi2
Ly — T2
C, = V1Qp+1 — Qpt2

I 2
V1T — b
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Then we have formn > p+ 1:

pn = C1f + Catby, (54)
@ = Cs3¢1 +Cyy, (55)
pi _ Pp+2 (w?ipil - U];Lipil) Tt Dpt1 (w?*p*Q B wgip72) (56)
n Qo2 (U777 =TT g (07T )

Proof. For z, = p, and z, = ¢,, we have the recurrence formula
Zn = T2p_1+ 2pn_2 (n=2p+1).
Its characteristic polynomial is
P(X):=X*-TX -1

with two real roots given by 11 and 19 in Equation (52). Since ¥; # 19, we
know the explicit formulas in Equations (54) and (55) for z, = p, and z, = ¢,
respectively, where the constants C; (j = 1,2, 3,4) can again be determined from
initial conditions using Cramer’s rule:

_ p+1 p+1
Ppr1 = C1pf " +Copy™
+2 +2
Porz = C1p)" + Cop™ .
Then,
p+1
’ Pp+1 2y ’
P
Cr — 1 Por2 Yo _ VaPpt1 — Pp+2
| = =
p+1 p+1 p+1 p+2
1 2 1 %2 —
p+2 p+2
1 2
and "
P
’ w1+2 pp+1 ’
P
o LU Pet2 | UiPpis — Dpie
2 — — .
p+1 p+1 p+1 p+2
1 2 iy — 1y
p+2 p+2
1 2

The formulas for C5 and C4 in Equation (53) result accordingly. By directly re-
calculating with the formulas from Equations (53) to (55), and using the identity
119 = —1, one verifies the identity in Equation (56). O

Example 3. Let

N 85 + 21/1297
=1[0,1,2,3,4,5] = —— =Y -""_ — 0.69777201... .
¢:=10,1,2,3,45] 3(39 + v1297)
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By Proposition 1 we have:
p=2, w=3, a=0, ag=1, ax=2, T1 =3, Tp=

The convergents p,,/q, for n =0,...,9 are

2 7 30 157 501 2161 11306 36079

155622

37 107 437 2257 7187 30977 16203° 51706’

We compute

-3 -1 0
U=| 1 —4 —1|+(-4) =-72,
0 1 -5

Y = 36+ V1297,

Yy = 36 —V1297.

We now write down Equation (41) for 2 < i < 4:
ponva _ 1ST(F —5) +2(up " — vy )
G3nt2 225(y — ¥3) + 37—y )
Ponts _ SOL(UP —p) + T(vi ! — vy )
G3n+s TI8(yf — ¥8) + 10(7 ! — oy ")
Pnts _ 2161(UF —9F) +30(vp ! —u5 )
Q3n+4 3097 (¢ —p) +43(¢7 ' — ey t)

These three formulas can be applied for all integers n > 0.

Example 4. Let a > 1 be an integer, and

¢=[a] = y(a+ Va2 +4).

Again, by Proposition 2 we have:
p=0, ag=a, T=a.
The convergents p,, /¢, for n=0,1,2 are

a’?+1 a® + 2a
a, , .
a a? 41

223027

We compute the numbers from Equations (52) and (53) in Proposition 2:

| =

v = Sla+Var+d) =g,

(a—\/a2—|—4),

N | =

Py =

27
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0, = (a® + 12 — a® — 2a _ V3
V11hg — Y7 VaZz+1’
o — (a* +1)¢1 — a® — 2a _ 3
Y1hg — Y3 a2+1’
o apy —a® —1 1y
’ P1ehy — 3 a2+1’
o = apr—a® -1 4

Y11py — 2 Va2 +1

Then we obtain from Equations (54) and (55):

n+2 _ n+2
_ YT oy
P i
n+1l _ n+l
qn = ! z
a?+4
In the above Proposition 2 we can also use Equation (56):
pj _ (aS + 2(1)( IL—l _ ¢;L—1) + (a2 4 1)( ?—2 _ 11[}3—2) _ {L+2 _ w;H»Z
In (@ + 1)1~ —us™ ) +ai ™ —y3 ) R A

Example 5. Let r > 1 be an integer, and
€= [r2r] = Vr2+1.
Again, by Proposition 2 we have

p=0, ay=r, T=2r.

We compute the numbers from Equations (52) and (53) in Proposition 2:

1/)1 = r+ T2+17

1/)2 = 7"7\/7'24’17

(272 + 1)thy — 413 — 3r oy +1

o = = :
! Pripy — 3 2vr2 +1
o - (2r2 + )¢y —4r® —3r e+ 1
? Y1hs — b3 22 +1°
27”¢2 — 47’2 -1 ¢1
C3 = D) = )
Y1 — i 2?2 +1
04 _ 2T¢J1 — 47"2 — 1 _ ’lﬂg

P1ipy — Y3 N

28
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Then we obtain from Equations (54) and (55):

_ (rp1 + D)7 — (ripa + 1)y
p7l 2\/’,“27—"_1 b

n+l _ n+1
1 2
q = —_—
" 202 +1

If for all n > 0 we have indexing functions f(n) and g(n) such that

/
<a /g()) € Ro’7

then we say that g(n) is the leaping pattern of the natural leaping convergents from
the set C(o(§)). Consider a family of continued fractions, {(a), and an lft o, where
the above o-relation holds so that

) <pf()> _ 2 ¢ (o(e(a)),

4f(n) q;(n)

for sufficiently large a. In general, the family J(E(a)) = [bo, b1, ba,...] has the
leaping pattern g(n), except possibly for the special cases when a is not sufficiently
large, resulting in the occurrence of indices j such that b; < 0. Letting a = «
be such a special case, we have two possibilities. There will be no natural leaping
convergents whatsoever, or the leaping pattern will be transformed into one that is
adverse or conformal. The behavior is described as follows.

When zeroes occur among the partial denominators of a continued fraction, we
can treat strings of an odd number k, of consecutive zeroes using the simplification
rule

k-zeroes
——
[...,a,b,0,...,0,¢,d, ...]simplifiea = [...,a,b+¢c,d, ..].
We then obtain 0(5(13)) = [bo, b1,b2; - - simplifiea = [C0;C1,C2, ...]. Consequently,

if we have o (C () (£(2))) NCy(ny (0 (£(2))) = 0, then for all n € N, it must be the case
that cp(n) # bg(n), Where the indexing function h(n) is determined from g(n) after
taking into consideration a collapsing of zeroes among the partial denominators in

the continued fraction o(£(z)) = [bo, b1, b, -..]. Thus we have
/ /
Dy bg(n)Ph(ny—1 + Phin)—2
O'< (n)) _ ; /( ) /( ) ¢C(0’(§(I))),
df(n) 9(0)Ah(n)—1 T Dh(n)—2

or equivalently,

7 (Crn) (%)) = bg(n)Chin)-1 (0 (£(x))) @ Chiny—2(0(£(x))) & C(a(E(x))),

for all n € N. This is demonstrated in the following example.
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Example 6. Let {(a) = [a] and 0 = (29) € L so that for a =0 (mod 2) we have

o(€(a)) = l1,1,“] = [T1L,E-1] = o(€(2k)). (57)

The statement in Equation (57) is easily seen by showing only that J(f(a)) =
[1, 1,k—1 ], as the remaining identities follow from a = 2k. We have

2k +VEEH1) k- 14+VE2+1
@) = T P

which is the positive root of the polynomial identity kX2 — 2(k — 1)X — 2 = 0,
satisfying

1

X =1+
1

1+
1

14+ =
k +X

It follows that J(f(a)) = [1, 1,k — 1], as desired. Now for sufficiently large a = 0
(mod 2), we have

o_<p”> — pén+4 _ b3”+4pé’rb+3 +pén+2 c C(O’(f(a/)))
an Gnia  D3ntahis + oo ’

or equivalently,

J(Cn(f(a))) = Canya (U(f(a)))
= b3n14C3n43(0(£(a))) @ Capt2(0(é(a))) € C(a(&(a))) .

Structurally the natural leaping pattern is g(n) = 3n+4, however by Equation (57)
we see that when a = 2, an exception occurs, where we have

Pr\ _ bsnealhs TP o0
0<Qn> N b3”+4q%+1+q;l C( (5(2)))7
7(Cn(€(2))) = b3nsaCns1(c(€(2)) ®Ca(o(£(2)) & C(0(£(2)))-
From

0(5(2)) = [m] = [Lm]simplified = [175];

we see that g(n) is essentially reduced by a factor of 3 through the collapsing of
zeroes, and so in this case, after taking into consideration a preperiod of length 1,
we have h(n) = n + 2. Because by(,) = banta = 1 <2 = cpyo = Cpn) for all n € N,
we see that o (C(£(2))) are minor convergents of o (£(2)).
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Example 7. Consider ¢ and & from Example6 and let @ = 0 (mod 2) so that
a = 2k. Then for alln >0

(i) we have the expressions

Phnya _ AT — 05™) +2(f — 8)
Gnpa 2k +1)(7T = 03T + (07 — ¢3)
290”” 2512
T (o 1) -

eyt (2 + 1)

(ii) for k > 1, the convergents p, /¢, and p3, /45,4 are o-related
(iii) for k =

(0(£(2))
B 2(1 + \[)n+2 2(1 o \/§)n+2
T er VRVt

FE- VA1V
Here we have o1 =1 =k + Vk2 + 1, and 2

=ty =k— VAT 1.
Beginning with (i), we show that

Phnpa _ Ak(e7T — @bt + 20 —
Gors  (2k+ 1) (07 -

©)
5D + (of

— )

P2
Using Proposition 1, we let k£ > 2 be an integer and

o(€(2k)) = [1,1,k—1] = [1,1,k—1,1].
We then have the values

p=0, w=3, aq=1 T1h=T3=1

To=k—1.
The convergents of p/, /q}, for n =0,1,2,3,4 and 7 are

B Py 2k—1

‘0 U i

Dh _ 2k+1
qs ko

a4 k+1°

i 4k o 8k2 + 2
— = ) and - = .
q 2k+1 g7 4k*+2k+1
Computing from Equations (36), (37) and (

38) we have

1 = k+VE2+1

and

Vo = k— k2 +1

1, we have the minor convergents, o (C,(£(2))), of the continued
fraction o (£(2)) in closed form

31
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where
-1 -1 0

U=1|1 (k=1 —1+|-(k-1)| = —2k.
0 1 -1
Now from Equation (41) we have for all m > 0 and for 0 < ¢ < 2:
Prwsi  Pipo (7 = 5) + (=) (" — 93" )

Unwri Qg (U7 — VT + (1) gy (7 — ™1
so that for m=n+1
Phyr _ AR(7 — 98" + 2047 — 95"
G122k + )7 —98) + (7 =y
AR T 4207 — ) Phaya
@R DT -+ W - 08) s

From the last line above and from 2kep; + 1 = ?, we obtain

Pnia 207 (2kgr + 1) — 205 (2kpa + 1)
Grnia PP (ko1 +1) +01) — 03 ((2kp2 + 1) + ¢2)
B 20791 — 20893
ot 4 1) — 0B (03 + 02)
2(p)*? — i *?)
ST+ 1) — e (e + 1)

as claimed.
We are now ready to show that for all n > 0, the convergents p,/g, and
Dsnya/onis are o-related. Let S(n) be the statement that for all n >0

(m) P3nta
ol — | = =7/
dn 3n+4
S(0) is the statement that

po\ (2% 20@k)+0 4k p
Nw) " \1) T 1@ +1~ 2k+1 ¢

which is true. Similarly, S(1) is the statement that

2(4k% + 1)
AN A R Lo T
¢ 2k 1(4k* 4+ 1) 42 +2k+1 ¢’
— !

which is also true.
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Now suppose S(n — 1) holds, so that for all n > 1 we have
o (pnl) _ p%nJrl-
dn—1 3541

T 0 so that pp /¢, = Xo/X1, and similarly

For brevity, we will write X; = ¢
pnfl/anl = Xl/XO. Addmg

2Xo Xy — 2X?
(X2 + X1) (X1 + Xo)

to both sides, we obtain

<pn1> 2X0X2 — 2X12 pgn+1 2X0X2 — 2X12
ag = .
(X2 4+ X1)(X1+ Xo) @1 (X2 + X0) (X + Xo)

dn—1

We first show that the left-hand side is equal to o(p,/¢,) and following, that the
right-hand side is equal to 3, 4/q3,, 4. For o(pn/qn), we obtain

<pn> IS SR> R > 2 ¢! 58)
an Xo+X1 Xi+Xo Xo+ X1 X1+ Xo
X4 2X5 2X1
:U<Xo> * Xo+ X1 X1+ Xo
_ a(p”‘1> 2X0Xp —2XF (59)
Qn—1 (X2 + X1) (X1 + Xo)
Next, we have from (i) that
Pt 3 2(p7 2 — op*?)
T 44 a o1 (o1 +1) — 5 (2 + 1)
3 2(p7"% — 05 *?)
B R
2X5
- X, + X,
Bq.(58),(59)  Pini1 2Xo Xy — 2X7

By (X2 + X1)(X1 + Xo)'

This completes the inductive step, thus showing that for all n > 0, S(n — 1) implies
S(n). Therefore, S(n) holds for all n > 0.
We claim in Example 6 that

7 (Cn(8(2))) = bsntaCns1(0(£(2))) @ Ca(a(4(2))) ¢ C(a(£(2)))
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and indeed since £(2k) is o-related for k& > 1 we have

U(pn) _ pZ/SnJ,»4 . b3n+4pén+3 + p/3n+2

/ - / / :
dn 3n44 b3n+4q3n+3 + d3n42

However, when & = 1 the indices for the convergents according to the natural
leaping pattern g(n) are transformed to h(n) = n + 2. Thus from Exampleb we
have for o(£(2)) the closed form formulae:

Po (1 + D9F — (o + g

/ n+1 n+1 ?
qn 1 - ¢2

and similarly

Prr _ (1 + Dot — (¢ + Doy ™!

L

Ut
We multiply the numerator and denominator of p), ., /q;, 11 by by, where g(n) =
3n + 4 is the natural leaping pattern of the o-related convergents of U(E (x)), for
x > 2. Note that by(,) = 1. We then take the mediant to obtain

bantalpyr 0, (W1 + DYP — (Y2 + DYET + (Y1 + 1)o7 — (2 + 19y
b3n+adn 41+ 47, e R

(Y1 + 1)(P1 + D)Y7 — (P2 + 1) (Y2 + 1)3bg

n+2 n+2 n+1 n+1
1 - %2 +7/)1 - %2

2072 — 2yt

2 2 1 1
R e

(&)

= o(—].

an

Observing that by,) =1 < 2 = ¢p,(y,), the above shows that

7 (Cn(€(2))) = ban+aCrr1(0(£(2))) ® Cn(0(£(2))) ¢ C(0(£(2))) -
Finally, by Equation (60), we have

b3n+4Cni1(0(£(2))) @ Cn(0(£(2)))
27+ — 23 t?
(1 + D)yt — (o + 1)wp ™
21+ v2)" 2 — 2(1 — V)"
@+ V21 + V2 + (2 - V)1 - V)
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