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Abstract

For each integer q = 2p + 1, where p is a positive integer, we consider the

sequence {sn} defined by sn =
p∑

k=1

(
2 cos(2kπ/q)

)n
. It is known that this

sequence is integer-valued and satisfies a simple recursion relation arising
from Chebyshev polynomials. We find explicit values for the first 2q terms
of each sequence {sn} and show that each term of the sequence corresponds

to a sum of binomial coefficients of the form
n∑

k=0

(
qn+t
qk+r

)
, where t and r are

nonnegative integers less than q.

1. Introduction

Let q = 2p + 1, where p is a positive integer. For each nonnegative integer

n, let

sn =

p∑
k=1

(
2 cos(2kπ/q)

)n
.

In this paper, we explore the properties of the sequence {sn}. To get a

glimpse of the relevance of this sequence to the title of the paper, let α = φ

and β = −1/φ, where φ is the golden ratio. Letting q = 5 and recalling the
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well-known facts that 2 cos(π/5) = α and 2 cos(2π/5) = −β, we find that

sn =

2∑
k=1

(
2 cos(2kπ/5)

)n
= (−β)n + (−α)n = (−1)n`n,

where `n represents the nth Lucas number. In addition, the identity

5

n∑
k=0

(
5n

5k

)
= 25n + 2s5n = 25n + 2(−1)n`5n

is valid for all nonnegative integers n. For other values of q, we obtain

sequences that share some properties with the Lucas sequence. For instance,

each sequence {sn} is integer-valued and satisfies a simple recursion relation.

These facts are verified by Wang in [6], but we include the details since our

approach is a bit different. Furthermore, in Section 4, we show that each

term of the sequence corresponds to a particular sum of binomial coefficients.

2. Initial Terms of the Sequence {sn}

To get a sense for the various sequences {sn}, we begin by determining the

first few terms of each of the sequences. Given the definition of the sequence,

it is somewhat surprising that these values are all integers. To find the terms

of {sn}, it is helpful to have other ways to represent the sequence. For one

such representation, we observe that

p∑
k=1

(
(−1)k2 cos(kπ/q)

)n
=
∑

1≤k≤p
k odd

(
−2 cos(kπ/q)

)n
+
∑

1≤k≤p
k even

(
2 cos(kπ/q)

)n
=
∑

1≤k≤p
k odd

(
2 cos((q − k)π/q)

)n
+
∑

1≤k≤p
k even

(
2 cos(kπ/q)

)n
=
∑

p<k<q
k even

(
2 cos(kπ/q)

)n
+
∑

1≤k≤p
k even

(
2 cos(kπ/q)

)n
=

p∑
k=1

(
2 cos(2kπ/q)

)n
.
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We also have (letting j = p+ 1− k in the second step)

p∑
k=1

(
2 cos(2kπ/q)

)n
=

p∑
k=1

(
−2 cos

(
(q − 2k)π/q

))n
= (−1)n

p∑
j=1

(
2 cos

(
(2j − 1)π/q

))n
.

We have thus shown that

sn =

p∑
k=1

(
2 cos(2kπ/q)

)n
form (1)

=

p∑
k=1

(
(−1)k2 cos(kπ/q)

)n
form (2)

= (−1)n
p∑

k=1

(
2 cos

(
(2k − 1)π/q

))n
form (3)

for all n ≥ 0. As we shall see, sometimes one of these representations is

better suited to verify a given property of the sequence. We note that our

sequence {sn} corresponds to the sequence {bn} in [6] and that the sequence

{(−1)nsn} corresponds to the sequence {an} defined in both [2] and [6]

(using form (3)).

The following theorem allows us to find specific values of the sequence

{sn} for small values of n.

Theorem 1. Let q = 2p+ 1, where p is a positive integer. For each positive

integer n, we have

p∑
k=1

(−1)k2 cos
(
(2n− 1)kπ/q

)
=

{
2p, if 2n− 1 is an odd multiple of q;
−1, otherwise;

p∑
k=1

2 cos(2nkπ/q) =

{
2p, if n is a multiple of q;
−1, otherwise.

Proof. We consider the two special cases first. Let 2n − 1 = mq, where

m > 0 is an odd integer. We then have

p∑
k=1

(−1)k2 cos
(
(2n− 1)kπ/q

)
=

p∑
k=1

(−1)k2(−1)mk =

p∑
k=1

2 = 2p.
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Now let n = mq for some positive integer m and compute

p∑
k=1

2 cos(2nkπ/q) =

p∑
k=1

2 = 2p.

Suppose 2n− 1 is not an odd multiple of q and let r = − exp
(
(2n− 1)πi/q

)
,

where i =
√
−1. Noting that r 6= 1 and rq = (−1)q(−1) = 1, we have

p∑
k=1

(−1)k2 cos
(
(2n− 1)kπ/q

)
=

p∑
k=1

(
rk + r−k

)
=
r − rp+1

1− r
+
r−1 − r−p−1

1− r−1

=
r − rp+1 − 1 + r−p

1− r

= −1− r2p+1 − 1

rp(1− r)
= −1.

Finally, suppose that n is not a multiple of q and let r = exp(2nπi/q).

Noting that r 6= 1 and rq = 1, we find that (omitting some steps similar to

those above)

p∑
k=1

2 cos(2nkπ/q) =

p∑
k=1

(
rk + r−k

)
= −1.

This completes the proof.

We can use Theorem 1 to find the values of sn for 0 ≤ n < 2q. These

values of the sequence are recorded in the following theorem.

Theorem 2. Let q = 2p + 1, where p is a positive integer. The first 2q

values of the sequence {sn}∞n=0 are given by

s2n =
q

2

(
2n

n

)
− 22n−1 for 0 ≤ n ≤ 2p;

s2n+1 = −22n for 0 ≤ n < p;

s2n+1 = q

(
2n+ 1

n− p

)
− 22n for p ≤ n ≤ 2p.
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Proof. It is obvious from the definition that s0 = p, which is consistent with

the fact that

q

2

(
0

0

)
− 2−1 =

2p+ 1− 1

2
= p,

and we see that s1 = −1 = −20 by Theorem 1. For larger values of n, we

use the basic trigonometric identities

22n cos2n x =

n−1∑
j=0

(
2n

j

)
2 cos

(
(2n− 2j)x

)
+

(
2n

n

)
;

22n+1 cos2n+1 x =

n∑
j=0

(
2n+ 1

j

)
2 cos

(
(2n+ 1− 2j)x

)
.

Suppose that 1 ≤ n ≤ 2p. Noting that n − j is not a multiple of q for

0 ≤ j ≤ n− 1, we can use Theorem 1 to compute (using form (2) for sn)

s2n =

p∑
k=1

(
(−1)k2 cos(kπ/q)

)2n
=

p∑
k=1

22n cos2n(kπ/q)

=

p∑
k=1

( n−1∑
j=0

(
2n

j

)
2 cos

(
(2n− 2j)kπ/q

)
+

(
2n

n

))

=

n−1∑
j=0

(
2n

j

) p∑
k=1

2 cos
(
2(n− j)kπ/q

)
+ p

(
2n

n

)

= −
n−1∑
j=0

(
2n

j

)
+
q − 1

2

(
2n

n

)

= −1

2

(n−1∑
j=0

(
2n

j

)
+

2n∑
j=n+1

(
2n

j

))
+
q

2

(
2n

n

)
− 1

2

(
2n

n

)

=
q

2

(
2n

n

)
− 1

2

2n∑
j=0

(
2n

j

)

=
q

2

(
2n

n

)
− 22n−1.

Now suppose that 1 ≤ n < p and note that 2n+1−2j is not an odd multiple
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of q for 0 ≤ j ≤ n. By Theorem 1, we have (using form (2) again)

s2n+1 =

p∑
k=1

(
(−1)k2 cos(kπ/q)

)2n+1

=

p∑
k=1

(−1)k22n+1 cos2n+1(kπ/q)

=

p∑
k=1

n∑
j=0

(
2n+ 1

j

)
(−1)k2 cos

(
(2n+ 1− 2j)kπ/q

)
=

n∑
j=0

(
2n+ 1

j

) p∑
k=1

(−1)k2 cos
(
(2n+ 1− 2j)kπ/q

)
= −

n∑
j=0

(
2n+ 1

j

)
= −22n.

Finally, suppose that p ≤ n ≤ 2p and note that 2n + 1 − 2j is an odd

multiple of q only when j = n − p (for 0 ≤ j ≤ n). Using Theorem 1, we

obtain (omitting some of the similar steps from the previous equation)

s2n+1 =

n∑
j=0

(
2n+ 1

j

) p∑
k=1

(−1)k2 cos
(
(2n+ 1− 2j)kπ/q

)
=

(
−

n∑
j=0

(
2n+ 1

j

)
+

(
2n+ 1

n− p

))
+ 2p

(
2n+ 1

n− p

)

= q

(
2n+ 1

n− p

)
− 22n.

This completes the proof.

Assuming that p ≥ 5, the first eleven terms of the sequence {sn}∞n=0 are

thus

p, −1, q−2, −4, 3q−8, −16, 10q−32, −64, 35q−128, −256, 126q−512.

It is interesting to note that the first few odd terms of the sequence {sn} are

independent of the value of q.
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Using form (1) for sn, it is obvious that sn > 0 for all even values of n.

We claim that sn < 0 for all odd values of n. If n is odd and q = 4p + 1,

then (using form (2) for sn)

sn =

2p∑
k=1

(
(−1)k2 cos(kπ/q)

)n
=

p∑
k=1

((
2 cos((2k)π/q)

)n − (2 cos((2k − 1)π/q)
)n)

.

Since the cosine function is decreasing and positive on the interval (0, 12π)

and 2p/q < 1
2 , we know that

cos((2k − 1)π/q) > cos((2k)π/q) > 0

for all values of k that satisfy 1 ≤ k ≤ p. This shows that each term of the

above sum is negative. If n is odd and q = 4p+ 3, then

sn =

2p+1∑
k=1

(
(−1)k2 cos(kπ/q)

)n
=

2p∑
k=1

(
(−1)k2 cos(kπ/q)

)n − (2 cos((2p+ 1)π/q)
)n
.

The sum is negative as above and the single extra term that is subtracted is

positive since the argument of cosine is less than π/2.

3. A Recurrence Relation for the Sequence {sn}

We next determine a recurrence relation satisfied by the sequence {sn}. The

following results are given in Theorem 2.2 of [6], but we include a few details

since our approach is a little different. As usual, let q = 2p+ 1, where p is a

positive integer.

To simplify the notation, let ck = 2 cos(2kπ/q) for 1 ≤ k ≤ p. Consider

the polynomial

Rp(x) = (x− c1)(x− c2) · · · (x− cp)

≡ xp + a1x
p−1 + a2x

p−2 + a3x
p−3 + · · ·+ ap−1x+ ap.
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The terms sn = cn1 + cn2 + cn3 + · · ·+ cnp represent the corresponding sequence

{sn} and this sequence satisfies the recurrence relation

sn = −
p∑

k=1

aksn−k

for all n ≥ p, along with the previously calculated values of sk for 0 ≤ k < p.

To verify the recurrence relation, we note that

−
p∑

k=1

aksn−k = −
p∑

k=1

ak

p∑
j=1

cn−kj = −
p∑

j=1

cn−pj

p∑
k=1

akc
p−k
j

= −
p∑

j=1

cn−pj (−cpj ) =

p∑
j=1

cnj = sn.

To show that each term of the sequence {sn} is an integer, it is sufficient to

prove that each of the coefficients ak for 1 ≤ k ≤ p is an integer. This is our

next goal.

The Chebyshev polynomials Un of the second kind are defined through

the identity Un(cos θ) sin θ = sin((n+ 1)θ). It is easy to see that U0(x) = 1

and U1(x) = 2x. These polynomials satisfy the recurrence relation

Un+1(x/2) = xUn(x/2)− Un−1(x/2)

(replacing x with x/2) for all n ≥ 1. From this recursion, we easily see that

each Un(x/2) is a monic polynomial of degree n with integer coefficients. We

claim that Rp(x) = Up(x/2) + Up−1(x/2) for all integers p ≥ 1. To verify

this fact, it is sufficient to show that the two monic polynomials Rp(x) and

Up(x/2) +Up−1(x/2) have the same roots. We know that the roots of Rp(x)

are the numbers ck for 1 ≤ k ≤ p. For each of these k values, the number

2kπ/q lies in the interval (0, π) so the sine of this value is nonzero. We thus

have (recall that q = 2p+ 1)

sin(2kπ/q)
(
Up

(
cos(2kπ/q)

)
+ Up−1

(
cos(2kπ/q)

))
= sin

(
2(p+ 1)kπ/q)

)
+ sin

(
2pkπ/q)

)
= sin

(
kπ + kπ/q)

)
+ sin

(
kπ − kπ/q)

)
= 0,
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which indicates that ck is a root of Up(x/2)+Up−1(x/2) for all k that satisfy

1 ≤ k ≤ p. This establishes the claim. With this result, we obtain the

recurrence relation

Rp+1(x) = Up+1(x/2) + Up(x/2)

=
(
xUp(x/2)− Up−1(x/2)

)
+
(
xUp−1(x/2)− Up−2(x/2)

)
= x

(
Up(x/2) + Up−1(x/2)

)
−
(
Up−1(x/2) + Up−2(x/2)

)
= xRp(x)−Rp−1(x)

for all p ≥ 1. It follows that the polynomial Rp has integer coefficients for

all p ≥ 1. The first few of these polynomials are listed below:

R1(x) = x+ 1;

R2(x) = x2 + x− 1;

R3(x) = x3 + x2 − 2x− 1;

R4(x) = x4 + x3 − 3x2 − 2x+ 1;

R5(x) = x5 + x4 − 4x3 − 3x2 + 3x+ 1;

R6(x) = x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1;

R7(x) = x7 + x6 − 6x5 − 5x4 + 10x3 + 6x2 − 4x− 1.

Note that a1 = 1, a2 = −(p − 1), and a3 = −(p − 2) for p ≥ 2. The next

theorem gives a specific expression for the polynomial Rp.

Theorem 3. For each positive integer p, the polynomial Rp can be expressed

as

Rp(x) =

bp/2c∑
k=0

(−1)k
[(
p− k
k

)
xp−2k +

(
p− k − 1

k

)
xp−2k−1

]
.

Proof. It is known that (see page 454 of [7])

Un(x/2) =

bn/2c∑
k=0

(−1)k
(
n− k
k

)
xn−2k

for each positive integer n. The explicit expression for Rp(x) then follows

from the fact that Rp(x) = Up(x/2) + Up−1(x/2) for all p ≥ 1. (Recall that(
n
k

)
= 0 when k > n.)
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To illustrate our results with a specific example, we consider the case

q = 11. For this value of q, the relevant polynomial and recurrence relation

are given by

R5(x) = x5 + x4 − 4x3 − 3x2 + 3x+ 1;

sn+1 = −sn + 4sn−1 + 3sn−2 − 3sn−3 − sn−4.

From the values given in Theorem 2, we know that

s0 = 5, s1 = −1, s2 = 9, s3 = −4, s4 = 25.

We then have (for example)

s5 = −s4 + 4s3 + 3s2 − 3s1 − s0 = −25− 16 + 27 + 3− 5 = −16;

s6 = −s5 + 4s4 + 3s3 − 3s2 − s1 = 16 + 100− 12− 27 + 1 = 78;

s7 = −s6 + 4s5 + 3s4 − 3s3 − s2 = −78− 64 + 75 + 12− 9 = −64.

Using Theorem 2, we find that s6 = 10q− 32 = 78, showing that our results

are consistent.

4. The Sequence {sn} and Sums of Binomial Coefficients

In this section, we demonstrate how the terms of the sequence {sn} are re-

lated to sums of binomial coefficients. Using properties of complex numbers,

it can be shown that

q

n∑
k=0

(
qn+ t

qk + r

)
= 2qn+t +

q−1∑
k=1

(−1)nk cos
(
(t− 2r)kπ/q

)(
2 cos(kπ/q)

)qn+t
,

where t and r are nonnegative integers less than q. A version of this identity

is stated without proof in [3] and also as equation 6.21 in Volume 6 of [4].

The Wikipedia pages for binomial coefficients and series multisection also list

this result. The appearance of the term 2qn+t should come as no surprise

based upon the expansion of (1 + 1)qn+t using the binomial theorem.

These binomial identities vary a bit depending on whether q is even or

odd. In this paper, we focus on the case in which q is odd. However, a few
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comments concerning the even case are given in Section 6. Suppose that

q = 2p+ 1, where p is a positive integer. We then have

q

n∑
k=0

(
qn+ t

qk + r

)

= 2qn+t +

q−1∑
k=1

(−1)nk cos
(
(t− 2r)kπ/q

)(
2 cos(kπ/q)

)qn+t

= 2qn+t +

p∑
k=1

(−1)nk cos
(
(t− 2r)kπ/q

)(
2 cos(kπ/q)

)qn+t

+

2p∑
k=p+1

(−1)nk cos
(
(t− 2r)kπ/q

)(
2 cos(kπ/q)

)qn+t

and (making the substitution j = q − k)

2p∑
k=p+1

(−1)nk cos
(
(t− 2r)kπ/q

)(
2 cos(kπ/q)

)qn+t

=

1∑
j=p

(−1)n(q−j) cos
(
(t− 2r)(q − j)π/q

)(
2 cos((q − j)π/q)

)qn+t

=

p∑
j=1

(−1)n(q−j)(−1)t−2r cos
(
(t− 2r)jπ/q

)
(−1)qn+t

(
2 cos(jπ/q)

)qn+t

=

p∑
j=1

(−1)nj cos
(
(t− 2r)jπ/q

)(
2 cos(jπ/q)

)qn+t
.

It follows that (we refer to this equation as the basic binomial identity)

q

n∑
k=0

(
qn+ t

qk + r

)
= 2qn+t +

p∑
k=1

(−1)nk2 cos
(
(t− 2r)kπ/q

)(
2 cos(kπ/q)

)qn+t
.

We make note of the following three particularly simple forms:

q

n∑
k=0

(
qn+ 2r

qk + r

)
= 2qn+2r + 2

p∑
k=1

(−1)nk
(
2 cos(kπ/q)

)qn+2r
;

q

n∑
k=0

(
qn+ 2r + 1

qk + r

)
= 2qn+2r+1 +

p∑
k=1

(−1)nk
(
2 cos(kπ/q)

)qn+2r+2
;

q
n∑

k=0

(
qn+ 2r − 1

qk + r

)
= 2qn+2r−1 +

p∑
k=1

(−1)nk
(
2 cos(kπ/q)

)qn+2r
;
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these forms occur when the value of |t−2r| is either 0 or 1. From these equa-

tions, it becomes clear how the sequence {sn} comes into play. We identify

a binomial sum for each term of the sequence in the following theorem.

Theorem 4. Let q = 2p + 1, where p is a positive integer. For 0 ≤ t ≤ p,

we have
p∑

k=1

(
2 cos(2kπ/q)

)qn+2t
= sqn+2t = q

n∑
k=0

(
qn+ 2t− 1

qk + t

)
− 2qn+2t−1

=
q

2

n∑
k=0

(
qn+ 2t

qk + t

)
− 2qn+2t−1

for all n ≥ 0, and for 0 ≤ t ≤ p− 1, we have
p∑

k=1

(
2 cos(2kπ/q)

)qn+2t+1
= sqn+2t+1 = q

n∑
k=0

(
qn+ 2t

qk + t+ p+ 1

)
− 2qn+2t

=
q

2

n∑
k=0

(
qn+ 2t+ 1

qk + t+ p+ 1

)
− 2qn+2t

for all n ≥ 0.

Proof. We use form (2) for the terms sn throughout the proof. For 0 ≤ t ≤ p
and n ≥ 0, the basic binomial identity yields

q

n∑
k=0

(
qn+ 2t

qk + t

)
= 2qn+2t + 2

p∑
k=1

(−1)nk
(
2 cos(kπ/q)

)qn+2t

= 2qn+2t + 2

p∑
k=1

(
(−1)k2 cos(kπ/q)

)qn+2t

= 2qn+2t + 2sqn+2t

and

q

n∑
k=0

(
qn+ 2t− 1

qk + t

)

= 2qn+2t−1 +

p∑
k=1

(−1)nk2 cos(kπ/q)
(
2 cos(kπ/q)

)qn+2t−1

= 2qn+2t−1 +

p∑
k=1

(
(−1)k2 cos(kπ/q)

)qn+2t

= 2qn+2t−1 + sqn+2t.
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Since the t = 0 value in the second sum violates the condition that t is

nonnegative in the expression qn + t, we show that the sum is still correct

in this case (we assume n ≥ 1 since n = 0 is trivial):

q

n∑
k=0

(
qn− 1

qk

)
= q

n−1∑
k=0

(
q(n− 1) + 2p

qk

)

= 2qn−1 +

p∑
k=1

(−1)(n−1)k2 cos
(
(q − 1)kπ/q

)(
2 cos(kπ/q)

)qn−1
= 2qn−1 +

p∑
k=1

(−1)(n−1)k(−1)k
(
2 cos(kπ/q)

)qn
= 2qn−1 +

p∑
k=1

(
(−1)k2 cos(kπ/q)

)qn
= 2qn−1 + sqn.

Using computations similar to those above, for 0 ≤ t ≤ p− 1 and n ≥ 0, we

find that

q

n∑
k=0

(
qn+ 2t+ 1

qk + t+ p+ 1

)

= 2qn+2t+1 +

p∑
k=1

(−1)nk2 cos(qkπ/q)
(
2 cos(kπ/q)

)qn+2t+1

= 2qn+2t+1 + 2

p∑
k=1

(−1)qnk(−1)k
(
2 cos(kπ/q)

)qn+2t+1

= 2qn+2t+1 + 2

p∑
k=1

(
(−1)k2 cos(kπ/q)

)qn+2t+1

= 2qn+2t+1 + 2sqn+2t+1;
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and

q

n∑
k=0

(
qn+ 2t

qk + t+ p+ 1

)

= 2qn+2t +

p∑
k=1

(−1)nk2 cos
(
q + 1)kπ/q

)(
2 cos(kπ/q)

)qn+2t

= 2qn+2t +

p∑
k=1

(−1)qnk(−1)k2 cos(kπ/q)
(
2 cos(kπ/q)

)qn+2t

= 2qn+2t +

p∑
k=1

(
(−1)k2 cos(kπ/q)

)qn+2t+1

= 2qn+2t + sqn+2t+1.

This completes the proof.

Theorem 4 gives us two ways to represent each term of the sequence {sm}
for m ≥ 1. Given a positive integer m, we write m = qn+r, where n ≥ 0 and

0 ≤ r < q, and use the appropriate binomial sum for the given remainder r

to find the value of sm.

For the simplest set of results, we use these binomial sums to represent

the values of sn for 0 ≤ n < 2q and compare the results with those obtained

in Theorem 2. For 0 ≤ m ≤ p, we have

s2m = sq·0+2m =
q

2

0∑
k=0

(
2m

qk +m

)
− 22m−1 =

q

2

(
2m

m

)
− 22m−1.

For p + 1 ≤ m ≤ 2p, we have (using t = m − p − 1 and noting that the

inequality q +m > 2m− 1 is valid since m < q)

s2m = sq+2m−q = q

1∑
k=0

(
q + 2m− q − 1

qk +m

)
− 2q+2m−q−1

= q

1∑
k=0

(
2m− 1

qk +m

)
− 22m−1

= q

(
2m− 1

m

)
− 22m−1

=
q

2

(
2m

m

)
− 22m−1.
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We have thus shown that

s2m =
q

2

(
2m

m

)
− 22m−1

for all values of m that satisfy 0 ≤ m ≤ 2p, the same values listed in Theorem

2. This gives the even terms s0, s2, s4, . . . , s2q−2.

Moving now to the odd terms, for 0 ≤ m ≤ p− 1, we have

s2m+1 = q

0∑
k=0

(
2m

qk +m+ p+ 1

)
− 22m = −22m

while for p < m ≤ q − 1, we have

s2m+1 = sq+2(m−p) = q

1∑
k=0

(
q + 2(m− p)− 1

qk +m− p

)
− 2q+2(m−p)−1

= q

1∑
k=0

(
2m

qk +m− p

)
− 22m

= q

(
2m

m− p

)
+ q

(
2m

q +m− p

)
− 22m

= q

(
2m

m− p

)
+ q

(
2m

m− p− 1

)
− 22m

= q

(
2m+ 1

m− p

)
− 22m.

For our final value when m = p, we see that Theorem 4 gives

s2p+1 = sq =
q

2

1∑
k=0

(
q

qk

)
− 2q−1 = q − 2q−1.

Note that letting m = p in the previous equation generates this same value.

These last computations give the odd terms s1, s3, s5, . . . , s2q−1. Once again,

these values are consistent with those listed in Theorem 2.
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5. A Specific Example

Suppose that q = 2p + 1, where p is a positive integer, and consider the

binomial sums

q

n∑
k=0

(
qn+ t

qk + r

)
,

where t and r are nonnegative integers that are less than q. There are

q2 sums in this collection and each one of them is related to terms of the

corresponding sequence {sn}. To determine all of these sums, it is sufficient

to know just p of them. We illustrate this fact with the case q = 11. The

basic binomial identity for this value of q is

11

n∑
k=0

(
11n+ t

11k + r

)
= 211n+t+

5∑
k=1

(−1)nk2 cos
( (t− 2r)kπ

11

)(
2 cos

(kπ
11

))11n+t

and the terms of the sequence {sn} are given by sn = un +vn +xn +yn +zn,

where (using form (2) for sn)

u = −2 cos(π/11);

v = 2 cos(2π/11);

x = −2 cos(3π/11);

y = 2 cos(4π/11);

z = −2 cos(5π/11).

For the simplest binomial sum, we find that (use form (2) for sn)

11

n∑
k=0

(
11n

11k

)
= 211n +

5∑
k=1

(−1)nk2
(
2 cos(kπ/11)

)11n
= 211n + 2

5∑
k=1

(
(−1)k2 cos(kπ/11)

)11n
= 211n + 2s11n.

This result also follows directly from Theorem 4. For the next sum, we first

note that

v = 2 cos(2π/11) = 2
(
2 cos2(π/11)− 1

)
= u2 − 2;

y = 2 cos(4π/11) = 2
(
2 cos2(2π/11)− 1

)
= v2 − 2;

z = 2 cos(6π/11) = 2
(
2 cos2(3π/11)− 1

)
= x2 − 2;

x = 2 cos(8π/11) = 2
(
2 cos2(4π/11)− 1

)
= y2 − 2;

u = 2 cos(10π/11) = 2
(
2 cos2(5π/11)− 1

)
= z2 − 2.
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It then follows that

11

n∑
k=0

(
11n

11k + 10

)
= 11

n∑
k=0

(
11n

11k + 1

)

= 211n +

5∑
k=1

2 cos(2kπ/11)
(
(−1)k2 cos(kπ/11)

)11n
= 211n + vu11n + yv11n + zx11n + xy11n + uz11n

= 211n + (u2 − 2)u11n + (v2 − 2)v11n + (x2 − 2)x11n

+ (y2 − 2)y11n + (z2 − 2)z11n

= 211n + s11n+2 − 2s11n.

For the next sum, we use the trigonometric identity

2 cos(4θ) = 4 cos2(2θ)− 2 = (4 cos2 θ − 2)2 − 2 = (2 cos θ)4 − 4(2 cos θ)2 + 2

to find that
y = 2 cos(4π/11) = u4 − 4u2 + 2;

x = 2 cos(8π/11) = v4 − 4v2 + 2;

u = 2 cos(12π/11) = x4 − 4x2 + 2;

z = 2 cos(16π/11) = y4 − 4y2 + 2;

v = 2 cos(20π/11) = z4 − 4z2 + 2.

It then follows that

11

n∑
k=0

(
11n

11k + 9

)
= 11

n∑
k=0

(
11n

11k + 2

)

= 211n +

5∑
k=1

2 cos(4kπ/11)
(
(−1)k2 cos(kπ/11)

)11n
= 211n + yu11n + xv11n + ux11n + zy11n + vz11n

= 211n + (u4 − 4u2 + 2)u11n + (v4 − 4v2 + 2)v11n

+ (x4 − 4x2 + 2)x11n + (y4 − 4y2 + 2)y11n

+ (z4 − 4z2 + 2)z11n

= 211n + s11n+4 − 4s11n+2 + 2s11n.

Skipping the r = 3 sum for the moment, we use the trigonometric identity

2 cos(3θ) = 8 cos3(2θ)− 6 cos θ = (2 cos θ)3 − 3(2 cos θ)
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to obtain
x = −2 cos(3π/11) = u3 − 3u;

z = 2 cos(6π/11) = v3 − 3v;

v = −2 cos(9π/11) = x3 − 3x;

u = 2 cos(12π/11) = y3 − 3y;

y = −2 cos(15π/11) = z3 − 3z;

and thus

11

n∑
k=0

(
11n

11k + 7

)
= 11

n∑
k=0

(
11n

11k + 4

)

= 211n +

5∑
k=1

2 cos(8kπ/11)
(
(−1)k2 cos(kπ/11)

)11n
= 211n + xu11n + zv11n + vx11n + uy11n + yz11n

= 211n + (u3 − 3u)u11n + (v3 − 3v)v11n + (x3 − 3x)x11n

+ (y3 − 3y)y11n + (z3 − 3z)z11n

= 211n + s11n+3 − 3s11n+1.

The next identity is much easier:

11

n∑
k=0

(
11n

11k + 6

)
= 11

n∑
k=0

(
11n

11k + 5

)

= 211n +

5∑
k=1

2 cos(10kπ/11)
(
(−1)k2 cos(kπ/11)

)11n
= 211n + uu11n + vv11n + xx11n + yy11n + zz11n

= 211n + s11n+1.

We can use another trigonometric identity (involving cos(5θ)) to find that

11

n∑
k=0

(
11n

11k + 8

)
= 11

n∑
k=0

(
11n

11k + 3

)
= 211n + s11n+5 − 5s11n+3 + 5s11n+1.

However, we illustrate another approach using the fact that the sum of all

eleven of these binomial sums is 11 · 211n. Calling the above sum S (the
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r = 3 case) and using all of the other sums, we find that

11 · 211n =
(
211n + 2s11n

)
+ 2
(
211n + s11n+2 − 2s11n

)
+ 2
(
211n + s11n+4 − 4s11n+2 + 2s11n

)
+ 2S

+ 2
(
211n + s11n+3 − 3s11n+1

)
+ 2
(
211n + s11n+1

)
;

2 · 211n = 2s11n+4 + 2s11n+3 − 6s11n+2 − 4s11n+1 + 2s11n + 2S;

S = 211n − s11n+4 − s11n+3 + 3s11n+2 + 2s11n+1 − s11n.

We have thus obtained two different expressions for the sum S. It must be

the case that

s11n+5 − 5s11n+3 + 5s11n+1 = −s11n+4 − s11n+3 + 3s11n+2 + 2s11n+1 − s11n

or

s11n+5 = −s11n+4 + 4s11n+3 + 3s11n+2 − 3s11n+1 − s11n.

This equation is exactly the recurrence relation identified earlier in the paper

for the q = 11 case. Hence, the two expressions are equal.

We have thus determined the following eleven binomial sums:

n∑
k=0

(
11n

11k

)
=

1

11

(
211n + 2s11n

)
;

n∑
k=0

(
11n

11k + 10

)
=

n∑
k=0

(
11n

11k + 1

)
=

1

11

(
211n + s11n+2 − 2s11n

)
;

n∑
k=0

(
11n

11k + 9

)
=

n∑
k=0

(
11n

11k + 2

)
=

1

11

(
211n + s11n+4 − 4s11n+2 + 2s11n

)
;

n∑
k=0

(
11n

11k + 8

)
=

n∑
k=0

(
11n

11k + 3

)
=

1

11

(
211n + s11n+5 − 5s11n+3 + 5s11n+1

)
;

n∑
k=0

(
11n

11k + 7

)
=

n∑
k=0

(
11n

11k + 4

)
=

1

11

(
211n + s11n+3 − 3s11n+1

)
;

n∑
k=0

(
11n

11k + 6

)
=

n∑
k=0

(
11n

11k + 5

)
=

1

11

(
211n + s11n+1

)
.

Note that we needed to find just five of the sums in order to determine all

eleven of them. For the remaining 110 sums, we have two options. We can
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either use the general formula and trigonometric identities or we can use

properties of binomial coefficients. We have illustrated how to use the first

approach. For two simple examples of the second approach, we note that

11

n∑
k=0

(
11n+ 1

11k + 10

)
= 11

n∑
k=0

(
11n+ 1

11k + 2

)

= 11

n∑
k=0

(
11n

11k + 2

)
+ 11

n∑
k=0

(
11n

11k + 1

)
=
(
211n + s11n+4 − 4s11n+2 + 2s11n

)
+
(
211n + s11n+2 − 2s11n

)
= 211n+1 + s11n+4 − 3s11n+2;

11

n∑
k=0

(
11n+ 1

11k + 6

)
= 11

n∑
k=0

(
11n

11k + 6

)
+ 11

n∑
k=0

(
11n

11k + 5

)
= 211n+1 + 2s11n+1.

Hence, we are able to obtain all 121 of these binomial identities for q = 11

in various ways. Each of these binomial sums corresponds to a combination

of terms from the sequence {sn}.

6. Some Final Thoughts

We have specifically illustrated the sequence {sn} and its relationship to

sums of binomial coefficients when q = 11. In the introduction, we made

note of one such sum that appears when q = 5 and directly involves Lucas

numbers. The reader may wish to fill in the details for this case and deter-

mine all 25 of these sums. As q increases, the recurrence relation becomes

more involved and the values of some of the binomial sums require more

terms of the corresponding sequence {sn}. Although tedious at times, it

is interesting to write out some of the recurrence relations and their rela-

tionships to sums of binomial coefficients for various small values of q. The

paper [1] works with the sequence corresponding to q = 7, focusing on its

connections with permutation properties.

As mentioned earlier, the papers [2] and [6] consider the sequences {sn}
and/or {(−1)nsn}. They then apply these sequences to a certain class of per-

mutation polynomials in a finite field. The paper [6] uses Dickson polynomi-

als to obtain recurrence relations for sequences that generalize our sequences
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{sn}. Finally, some of the sequences {sn} appear in the On-Line Encyclo-

pedia of Integer Sequences (see [5]). For instance, the sequence A094649

corresponds to q = 9, the sequence A094650 corresponds to q = 11, and the

sequence A216605 corresponds to q = 13. For larger values of q, most of the

sequences {sn} are not listed in this encyclopedia.

In this paper, we have focused on sums of binomial coefficients for the

case in which q is odd. The situation is more complicated when q is even.

We make a few observations about this case, leaving further exploration of

this topic to the interested reader. Suppose that q = 2p + 2, where p is a

positive integer. Modifying the derivation of our basic binomial identity, it

can be shown that

q

n∑
k=0

(
qn+ t

qk + r

)
= 2qn+t +

p∑
k=1

(−1)nk2 cos
(
(t− 2r)kπ/q

)(
2 cos(kπ/q)

)qn+t
.

Two special cases are

q

n∑
k=0

(
qn+ 2r

qk + r

)
= 2qn+2r + 2

p∑
k=1

(−1)nk
(
2 cos(kπ/q)

)qn+2r
;

q

n∑
k=0

(
qn+ 2r + 1

qk + r

)
= 2qn+2r+1 +

p∑
k=1

(−1)nk
(
2 cos(kπ/q)

)qn+2r+2
.

Notice that the (−1) term cannot be combined with the cosine terms since

the exponents qn+ 2r and qn+ 2r+ 2 are even. For this reason, and others

as well, it is not as straightforward to define a corresponding sequence {sn}
when q is even.

We make one final observation, using our q = 11 case for the sake of

illustration. Let {sn} be the sequence that corresponds to this value of q.

Starting with the sum (see the end of Section 5)

11

n∑
k=0

(
11n+ 1

11k + 6

)
= 211n+1 + 2s11n+1,
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we find that

222n+1 + 2s22n+1 = 11

2n∑
k=0

(
22n+ 1

11k + 6

)

= 11

n∑
k=0

(
22n+ 1

22k + 6

)
+ 11

n∑
k=0

(
22n+ 1

22k + 17

)

= 22

n∑
k=0

(
22n+ 1

22k + 6

)
.

Relationships like this occur whenever the value of q is twice an odd number.

For example, using several of the q = 5 results, it can be shown that

10

n∑
k=0

(
10n+ 1

10k + 8

)
= 10

n∑
k=0

(
10n+ 1

10k + 3

)
= 210n+1 − 2`10n+1;

10

n∑
k=0

(
10n+ 3

10k + 9

)
= 10

n∑
k=0

(
10n+ 3

10k + 4

)
= 210n+3 − 2`10n+3;

10

n∑
k=0

(
10n+ 5

10k + 5

)
= 10

n∑
k=0

(
10n+ 5

10k

)
= 210n+5 − 2`10n+5;

10

n∑
k=0

(
10n+ 7

10k + 6

)
= 10

n∑
k=0

(
10n+ 7

10k + 1

)
= 210n+7 − 2`10n+7;

10

n∑
k=0

(
10n+ 9

10k + 7

)
= 10

n∑
k=0

(
10n+ 9

10k + 2

)
= 210n+9 − 2`10n+9.

We list these results for q = 10 because they are directly related to Lucas

numbers and seem particularly interesting. However, as mentioned above,

we will not pursue the case in which q is even any further.
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