
#A85 INTEGERS 23 (2023)

PRIME DENSITY OF LEHMER SEQUENCES

Christian Ballot
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Abstract

The prime density of companion Lucas sequences is known to be computable using
a method due to Hasse and Lagarias. This paper demonstrates that companion
Lehmer sequences have a prime density amenable to the same method. We com-
pute these densities for two particular sequences. A connection between Lehmer
sequences and some recurrences studied by Laxton is revealed.

– Dedicated to Hugh Williams on the occasion of his 80th birthday

1. Introduction

If X = (Xn)n≥0 is a sequence of integers, we say that a prime p divides X, and

write p | X, if some term Xk of X is divisible by p. The prime density of X, if it

exists, is defined as

lim
x→∞

#{p ≤ x; p | X}
π(x)

,

where π(x) is the usual counting function for primes not exceeding x. If S is a set

of primes, we say some property holds for essentially all primes in S if it holds for

all primes in S with possibly a finite number of exceptions.

Lucas sequences U = (Un(P,Q)), V = (Vn(P,Q)) are defined by the initial

conditions U0 = 0, U1 = 1, V0 = 2 and V1 = P and the common second-order

recursion

Xn+2 = PXn+1 −QXn, for all n ≥ 0,

where X = U or V , and P and Q are nonzero integers. The sequence U is called

the fundamental sequence, whereas the V sequence is called the companion or the
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associated Lucas sequence. In particular if the zeros, α and β, of x2 − Px+Q are

distinct, then

Un =
αn − βn

α− β
and Vn = αn + βn.

The discriminant P 2 − 4Q of the characteristic polynomial x2 − Px+Q of the two

linear recurrences U and V can only be congruent to 0 or 1 modulo 4.

D. H. Lehmer replaced the parameter P by
√
R for some nonzero integer R

so that the discriminant D = R − 4Q could take any value modulo 4. In order

for U(
√
R,Q) and V (

√
R,Q) to have integer terms, Lehmer [8] defined a pair of

sequences, now called Lehmer sequences, Ū = (Ūn(R,Q)) and V̄ = (V̄n(R,Q)) as

follows:

Ūn(R,Q) = Un(
√
R,Q), (n odd),

Ūn(R,Q) = Un(
√
R,Q)/

√
R, (n even);

and

V̄n(R,Q) = Vn(
√
R,Q)/

√
R, (n odd),

V̄n(R,Q) = Vn(
√
R,Q), (n even).

The Lehmer sequences Ū and V̄ are fourth order linear recurrences that satisfy

Xn+4 = (R− 2Q)Xn+2 −Q2Xn, (1)

for all n ≥ 0 and X either Ū or V̄ . Their initial values are

Ū0 = 0, Ū1 = Ū2 = 1, Ū3 = R−Q, (2)

and

V̄0 = 2, V̄1 = 1, V̄2 = R− 2Q, V̄3 = R− 3Q. (3)

If R and Q are coprime, then the fundamental Lehmer sequence Ū is a strong

divisibility sequence, i.e., |Ūgcd(m,n)| = gcd(Ūm, Ūn), for all m, n nonnegative inte-

gers.

Because the initial value of a fundamental Lucas or Lehmer sequence (U or Ū)

is 0, all primes divide such a sequence. Thus, their prime density is trivially equal

to 1. More precisely, if ρ is the rank of appearance of a prime p, (p - Q), i.e., the

least positive integer t such that p | Ut (resp. Ūt), then

p | Un (resp. Ūn) if and only if ρ | n. (4)

Prime divisors of a companion Lucas or Lehmer sequence (i.e., a V or a V̄ sequence)

are essentially all primes of even rank. Companion Lucas sequences have a prime

density and there exists a well-known method, the Hasse-Lagarias method, to com-

pute this density. Hasse [5] first discovered an unconditional method that shows
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companion Lucas sequences of the type (an+1)n≥0, a a square-free integer, possess

a computable prime density. The method extends easily to all companion Lucas

sequences with reducible characteristic polynomial, i.e., sequences (an + bn)n≥0,

where a and b are nonzero integers. (One may consult, for instance, [1, Thm. 3.1.3]

for a complete description of the prime densities of the sequences (an+bn)n≥0.) The

method of Hasse computes the prime density of divisors within the set of primes p

such that p−1 is exactly divisible by 2j , where j ≥ 1 is a fixed integer. Such primes

are described by how they split in some Galois number field, say Kj . The Cebotarev

density theorem is then used to evaluate their density; this is done for all j ≥ 1.

Lagarias [6] chose a couple of second-order linear recurrences, with irreducible char-

acteristic polynomials, one of which was the sequence of Lucas numbers L = (Ln),

where Ln = αn + βn, α and β are the real zeros of x2 − x − 1, and showed the

method of Hasse could be successfully extended to computing the prime densities of

these two sequences, as well as the prime density of other second-order linear recur-

rences of a certain type. In the irreducible case, one computes separately the prime

density among primes for which D is a square modulo p, and the prime density of

divisors for which D is a quadratic nonresidue. In the former subset, sub-densities

are computed, as Hasse did, within primes with a fixed power of 2 in p−1, whereas

in the latter subset, the same method applies for subsets of primes with a fixed

power of 2 in p+ 1. Lagarias [6, pp. 450-451] gave a set of sufficient conditions on

linear irreducible second-order recurrences for the Hasse-Lagarias method to apply.

Suppose α and ᾱ = β are the irrational zeros of x2−Px+Q. Assume X is a linear

recurrence with characteristic polynomial x2−Px+Q. Write Xn = cαn + c̄ᾱn, for

all nonnegative integers n and some constants c and c̄. If there is an element ϕ and

a root of unity ζ in the root field Q(α) such that

α/ᾱ = εϕk, (ε = ±1, k = 1 or 2), and c̄/c = ζϕj , (j ∈ Z), (5)

then we can wrestle out the prime density of X by the Hasse-Lagarias method.

Actually, all companion Lucas sequences V (P,Q) satisfy the Lagarias conditions

(5); take ϕ = α/ᾱ, j = 0, ζ = 1, ε = k = 1. Thus, with enough care, given V (P,Q)

we can compute its prime density. Finding out general theorems on the densities of

companion Lucas sequences is not an easy task. However, we cite, as an example,

the work of Moree and Stevenhagen [11] who gave the prime densities of companion

Lucas sequences (εn+ε̄n), when ε is any fundamental unit of a real quadratic number

field. The other sequence, W , for which Lagarias worked out the prime density is not

a companion Lucas sequence, but it shares a common feature with companion Lucas

sequences: It is a torsion sequence in the Laxton group. Laxton [7] constructed a

group G(f) based on classes of integral second-order linear recurrences that satisfy

the same characteristic polynomial f(x) = x2−Px+Q. Two recurrences live in the

same class if they differ by rational scalars and a possible shift in their indices. The

group G(f) is infinite. The subgroup of finite-order elements, T (f), is always finite,
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and often contains only two elements, the class of U(P,Q) which is the identity

element of G(f), and the class of the companion Lucas sequence V (P,Q) of order

2 in G(f). The group operation has the interesting feature of preserving prime

division: if two recurrences are divisible by the same prime, then the group product

of the two recurrences is also divisible by that prime. The sequence W has order 3.

Its prime divisors are essentially the primes with a rank of appearance divisible by

3. It was shown in [1, p. 20] that all sequences satisfying the Lagarias conditions

(5) must belong to T (f), where f has zeros α and ᾱ. In fact, their order in G(f)

must divide 12, and the set L(f) of all (classes of) recurrences satisfying (5) forms

a subgroup of T (f). The question of whether the Hasse-Lagarias method works out

on X if and only if X is a torsion sequence remains open. There are polynomials f

such that T (f) is strictly larger than L(f); see [1, Prop. 2.4.5]. Also, the narrower

question of whether belonging to T (f) garanties a potential successful application

of the Hasse-Lagarias method is open.

In 1994, the author was invited to Cambridge, England, to give a couple of

lectures on the material developed in the memoir [1]. Alan Baker was in the audience

and asked the pertinent question of whether the prime density of Lehmer sequences

could also be worked out. This short paper is a belated answer to Baker’s question.

This question, among others related to Lehmer sequences, appears in the recent

book [4, Chap. 10, Item 9].

We wish to find out whether companion Lehmer sequences V̄ (R,Q) have a com-

putable prime density. The set of primes dividing terms of V̄ is essentially the set

of primes which have even rank in Ū . Thus, its complementary set within the set

of all primes is made of the primes which divide terms of the second-order linear

recurrence (Ū2n+1). We begin with two sets of parameter values that stand out,

namely (R,Q) = (5, 1) and (R,Q) = (2,−1). The case (R,Q) = (5, 1) relates to

Fibonacci and Lucas numbers, while the case (R,Q) = (2,−1) was used by D. H.

Lehmer to produce the famous Lucas-Lehmer test for primality of Mersenne num-

bers [8, Thm. 5.4, p. 443]. We note in passing that Lehmer [9] later found a simple

proof of the Lucas-Lehmer test for primality of Mersenne numbers that used only

the Lucas sequences associated with the polynomial x2 − 2x − 2 whose zeros are

1±
√

3.

There is a law of appearance and an Euler criterion for Lehmer sequences similar

to those for Lucas sequences. Here, the symbol (∗ | ∗) stands for the Legendre

symbol and D = R− 4Q. They appear respectively as Theorems 1.7 and 4.9 in D.

H. Lehmer’s thesis [8].

Proposition 1. (Law of appearance) If p is an odd prime and p - QR, then

p | Ūp−εη,

where ε = (D | p) and η = (R | p).
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Proposition 2. (Euler’s criterion) If p - 2QRD, then

p | Ū(p−εη)/2 if and only if η = (Q | p),

where ε = (D | p) and η = (R | p).

In Section 2 density calculations use the Kummer-Dedekind and the Cebotarev

density theorems. The Kronecker-Fröbenius density theorem is a particular case of

the Cebotarev theorem for primes that split completely in a Galois number field

extension. The Kummer-Dedekind theorem relates the factorization of the minimal

polynomial of an algebraic integer αmodulo a prime ideal, to the factorization of this

prime ideal in the field extension defined by α — see for instance [10, p. 79] or [12, p.

15]. The prime density of V̄ (2,−1) is computed for each class of primes modulo 12;

for some classes we provide two distinct density proofs. Section 3 proves that the

Lehmer V̄ sequences are always amenable to the Hasse-Lagarias method. Section 4

identifies sub-sequences of Ū(R,Q) and V̄ (R,Q) to recurrences that form a copy of

the Klein group within the Laxton group G(f), where f(x) = x2− (R− 2Q)x+Q2.

We denote e2iπ/n by ζn, where n is an integer. If p is a prime and n an integer,

we write pe ||n if pe | n, but pe+1 - n.

2. Density Computations

Theorem 1. The companion Lehmer sequence V̄ (5, 1) admits a prime density equal

to 2/3.

Proof. Here, we find that V̄2n = L2n and V̄2n+1 = F2n+1. Prime divisors of (F2n+1)

are the primes of odd rank in the Fibonacci sequence; their density was calculated

in the Lagarias paper [6] and is equal to 1/3. The prime divisors of (L2n) are the

primes with Fibonacci rank divisible by 4. Their density is also known to be 1/3;

see [3]. Thus, we find out that δ(V̄ (5, 1)) = 2/3.

Theorem 2. The companion Lehmer sequence V̄ (2,−1) admits a prime density

equal to 2/3. This two-third density decomposes into four sub-densities according to

whether primes are congruent to 1, −1, 5 or −5 modulo 12, respectively, as follows:

11

48
+

1

8
+

1

8
+

3

16
.

We will prove Theorem 2 by actually proving the existence of a prime density

for the complementary set, i.e., for the prime divisors of (Ū2n+1(2,−1)). By (1), we

find that (Ū2n+1) is a second-order linear recurrence with characteristic polynomial

x2 − 4x+ 1. Since the zeros of x2 − 4x+ 1 are 2±
√

3, Ū1 = 1 and Ū3 = 3, we get
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the closed-form expression1

Ū2n+1 =
3 +
√

3

6
(2 +

√
3)n +

3−
√

3

6
(2−

√
3)n. (6)

Put α = 2 +
√

3 and ᾱ = 2 −
√

3. Given a prime number p, we denote by

(p) the prime ideal generated by p in Z[
√

3] and by h the order of α in the group

(Z[
√

3]/(p))∗. We remark that if π is a prime ideal above p in Z[
√

3], then h is also

the order of α in the cyclic group (Z[
√

3]/π)∗. Indeed, the following equivalence

holds for all n:

αn ≡ 1 (mod (p)) if and only if αn ≡ 1 (mod π). (7)

If p is inert in Z[
√

3], then π = (p) and (7) clearly holds. If p splits into two

prime ideals ππ̄ in Z[
√

3], then the forward implication in (7) is true since (p) ⊂ π.

To see the converse direction, note that αᾱ = 1 so that αn ≡ 1 (mod π) implies

1 = (αᾱ)n ≡ ᾱn (mod π), which, by algebraic conjugation, gives αn ≡ 1 (mod π̄).

The conclusion holds since π ∩ π̄ = (p).

Divisors of (Ū2n+1) obey a simple characterization given in the next lemma.

Lemma 1. The equivalence

p | (Ū2n+1) if and only if 2 ||h,

holds for all primes p ≥ 5.

Proof. By Equation (6), p | Ū2n+1 for some n if and only if(
2 +
√

3

2−
√

3

)n
≡ −3−

√
3

3 +
√

3
(mod (p)).

This yields α2n ≡ − 3−
√
3

3+
√
3

(mod (p)). Noticing that

3 +
√

3

3−
√

3
=

√
3 + 1√
3− 1

= 2 +
√

3 = α, (8)

we conclude that

p | Ū2n+1 if and only if α2n+1 ≡ −1 (mod (p)), (9)

which, using (7), shows that 2 ||h if, and only if, p | (Ū2n+1).

1The referee made the observation that

Ū2n+1 =
[
(3 +

√
3)2n+1 + (3−

√
3)2n+1

]
/6n+1 =

n∑
k=0

2k
(n + k

2k

)
.
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Since, by (4), p | (Ū2n+1) if and only if ρ is odd, a necessary condition for an odd

prime p - RD to divide (Ū2n+1) is that ρ | (p − εη)/2. Thus, by Proposition 2, a

necessary condition for an odd prime p ≥ 5, p - QRD, to divide (Ū2n+1) is that

(2 | p) = (−1 | p). (10)

Proof of Theorem 2. We prove that (Ū2n+1) has the prime density

d1 + d−1 + d5 + d−5,

where di is the natural density of primes that divide (Ū2n+1) and are congruent

to i (mod 12). Thus, we compute four sub-densities and consider the four cases

separately. Primes that are congruent to ±1 (mod 12) satisfy (3 | p) = 1, i.e., they

split in Q(
√

3). We start with primes congruent to 1 (mod 12). As before, π

represents a fixed prime ideal above p in Z[
√

3].

Case 1. Density of divisors among primes congruent to 1 (mod 12).

Let j ≥ 2. Define the set of primes P+
j as {p; 2j || p − 1 and 3 | p − 1}, and Fj

as the number field Q(
√

3, ζ2j ). Furthermore, we denote Fj( 2j−1√
α) by Kj .

Suppose j = 2. Then p ≡ 5 (mod 8). Thus, 2 is a nonresidue of p. But

α = 2 +
√

3 =
(1 +

√
3)2

2
. (11)

Therefore, α is a nonresidue of π. Thus, 4 | h and no prime in P+
2 divides (Ū2n+1).

Alternatively, primes p ≡ 5 (mod 8) do not meet the necessary condition (10),

because (2 | p) = −1 and (−1 | p) = 1. Thus, none divides (Ū2n+1).

Assume j ≥ 3 is fixed and p is a prime in P+
j . Since p ≡ 1 (mod 2j) and p ≡ 1

(mod 12), p splits completely in Fj . Since Fj contains Q(ζ8), which contains
√

2,

we see by (11) that Fj contains the algebraic integer
√
α. Hence, the minimal

polynomial of 2j−1√
α over Fj is f(x), where f(x) := x2

j−2 −
√
α.

Given any prime ideal π in Z[
√

3] above p, we know p | (Ū2n+1) if and only if

α(p−1)/2j−1

≡ 1 (mod π), but α(p−1)/2j ≡ −1 (mod π).

If P is a prime ideal above p in Fj , then the above congruences hold modulo P .

Thus,
√
α is a 2j−2th power residue modulo P . As Fj contains primitive 2jth

roots of unity, it follows that f(x) factorizes into linear factors modulo P . By

the Kummer-Dedekind theorem, p must split completely in Kj . However, since

α(p−1)/2j ≡ −1 (mod P ), p does not split completely in Kj( 2j
√
α), nor in Kj(ζ2j+1)

since 2j+1 - p − 1. By inclusion-exclusion and the Kronecker-Frobenius density

theorem, primes in P+
j that divide (Ū2n+1) have the density

d+j =
1

[Kj : Q]

(
1− (

1

2
+

1

2
) +

1

4

)
=

1

4
· 1

[Kj : Q]
.
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As
√
α ∈ Fj , we see that [Kj : Q] = 2 · 2j−1 · 2j−2 = 4j−1. By a standard argument

[6, p. 451], we find that d1 exists and is equal to the sum∑
j≥3

d+j =
∑
j≥3

1

4j
=

1

43
· 1

1− 1
4

=
1

48
.

Case 2. Density of divisors among primes congruent to −1 (mod 12).

By the Dirichlet density theorem, primes p ≡ −1 (mod 12) have density 1/4.

Since 2 || p− 1, either h is odd or 2 ||h. Now h is odd if and only if α is a quadratic

residue of π, i.e., if and only if x2−α factors modulo π. By the Kummer-Dedekind

theorem, we see that primes −1 (mod 12) such that h is odd split from Q to

Q(
√

3,
√
α) = Q(

√
α). Since 4 - p− 1, they do not split further in Q(

√
α, i). Thus,

by the Kronecker-Frobenius density theorem, their density exists and is equal to

1

[Q(
√
α) : Q]

− 1

[Q(
√
α, i) : Q]

=
1

4

(
1− 1

2

)
=

1

8
.

The complementary set within primes −1 (mod 12) consists of the primes that

satisfy 2 ||h. Hence, d−1 = 1
4 −

1
8 = 1

8 . Alternatively, as for primes p ≡ −1

(mod 12), 2 || p− 1, the necessary condition (10) for ρ to be odd is also a sufficient

condition. Primes congruent to −1 (mod 12) are congruent to −1 (mod 3) and

−1 (mod 4). The latter condition means congruent to 3 or 7 (mod 8). Hence, as

(−1 | p) = −1, p | (Ū2n+1) if and only if (2 | p) = −1, i.e., if and only if p ≡ 3

(mod 8). We conclude by the Dirichlet density theorem since primes congruent to

−1 (mod 3) and to 3 (mod 8) have prime density 1/8.

In the remaining cases, the rank ρ of p in Ū divides p+ 1. Indeed, we know, by

Proposition 1, that p | Ūp−εη, where ε = (D | p) = (6 | p) and η = (R | p) = (2 | p).
Therefore, εη = (3 | p) = −1 and p | Ūp+1. Thus, a necessary condition for p to

divide (Ū2n+1) is that ρ divides (p+ 1)/2. Moreover, by (9), we must have

αρ ≡ −1 (mod (p)), h = 2ρ and h | p+ 1.

Case 3. Density of divisors among primes congruent to 5 (mod 12).

Suppose p is a prime congruent to 5 (mod 12), i.e., congruent to −1 (mod 3)

and to 1 (mod 4).

Since 2 || p + 1, ρ is odd if and only if ρ | (p + 1)/2. By the Euler criterion for

Ū , p | Ū(p+1)/2 if and only if (2 | p) = (−1 | p) = 1. Hence, p divides (Ū2n+1) if and

only if p ≡ 1 (mod 8). But, by the Dirichlet density theorem, primes congruent to

−1 (mod 3) and to 1 (mod 8) have density 1
2 ·

1
4 = 1

8 . Thus, d5 = 1/8.

Case 4. Density of divisors among primes congruent to −5 (mod 12).

For j ≥ 2, define P−j as the set of primes {p; 2j || p+ 1 and 3 | p− 1}. The union

of all P−j , j ≥ 2, is the set of primes −5 (mod 12). Suppose j ≥ 3 and p ∈ P−j .

Then 8 | p+ 1. Therefore, (2 | p) = 1 and (−1 | p) = −1. Thus, these primes do not
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satisfy the necessary condition (10) for p to divide (Ū2n+1). Hence, none divides

(Ū2n+1).

Let j = 2 and p ∈ P−2 . Thus, p ≡ 3 (mod 8). Since p is inert in Q(
√

3) and

(p+ 1)/4 is odd, we see that p | (Ū2n+1) if and only if

α(p+1)/4 ≡ −1 (mod (p)),

where (p) is the ideal generated by p in Z[
√

3].

Consider the normal number field L = Q(ζ8, 4
√
α) = Q(ζ8,

√
3, 4
√
α). Since

√
2 ∈

Q(ζ8) and, by (11),
√
α ∈ Q(

√
2,
√

3), the degree of L over Q is 4 · 2 · 2 = 16.

Suppose p ∈ P−2 divides (Ū2n+1). If P is a prime ideal in the ring of integers

of L lying above p, then the Frobenius automorphism ψ = ψ(P | p) satisfies the

conditions

ψ(α4) = −α−14 and ψ(ζ8) = −ζ−18 , (12)

where α4 = 4
√
α =

4
√

2 +
√

3 > 0. Indeed, ψ(α4) ≡ αp4 = α−14 · α(p+1)/4 (mod P).

But, α(p+1)/4 ≡ −1 (mod (p)), so that, in particular, we have ψ(α4) ≡ −α−14

(mod P), which implies ψ(α4) = −α−14 . Also, ψ(ζ8) ≡ ζp8 = ζ−18 (ζ48 )(p+1)/4 = −ζ−18

(mod P) implying the second condition in (12). If the Galois group G of L over Q
contains an element satisfying the conditions in (12), then this element is unique

since α4 and ζ8 generate L. Moreover, ψ does not depend on P, meaning it is

a central element of G. The conjugacy class of ψ contains only ψ. Thus, by the

Cebotarev density theorem, primes in P−2 dividing (Ū2n+1) have density 1/|G|, i.e.,

1/16. Hence, d−5 = 1/16. We now check that G contains an element that satisfies

the conditions in (12). The minimal polynomial of α4 over Z is g(x) := x8−4x4 +1.

It factorizes over Z[
√

2] into g1(x)g2(x) := (x4 −
√

2x2 − 1)(x4 +
√

2x2 − 1). Here,

α4 is a zero of g1(x). Any Φ ∈ G sends ζ8 to ζk8 for some k in {±1,±3}. If k = ±1,

then Φ fixes
√

2. Thus, α4 can only be mapped onto one of the four zeros of g1(x).

These eight possibilities account for at most eight elements of G. If k = ±3, then√
2 is moved to −

√
2 and α4 has to be mapped onto one of the four zeros of g2(x).

Since |G| = 16, we have just described all sixteen elements of G. The element ψ

defined by (12) does belong to G; it corresponds to k = 3 and α4 7→ −α−14 . We

readily check that g2(−α−14 ) = (2−
√

3) +
√

2 ·
√
3−1√
2
− 1 = 0.

We conclude that prime divisors of (Ū2n+1) possess a density equal to

d1 + d−1 + d5 + d−5 =
1

48
+

1

8
+

1

8
+

1

16
=

1

3
.

Thus, the complementary sets within the four congruence classes modulo 12 have

the prime densities(
1

4
− 1

48

)
+

(
1

4
− 1

8

)
+

(
1

4
− 1

8

)
+

(
1

4
− 1

16

)
,
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yielding, respectively, the four announced sub-densities. Also, the companion Lehmer

sequence V̄ (2,−1) has prime density 1− 1/3 = 2/3.

Remark 1. We found that out of the first 200 primes exactly 68 divide (Ū2n+1).

There are 1,229 primes less than 10,000 and 410 of them divide (Ū2n+1). These

proportions match very closely the 1/3 asymptotic density. Checking the four sub-

densities d1, d−1, d5 and d−5, the least 1920 primes were tested for division of

(Ū2n+1). We chose 1920 for the practical reason that it is a multiple of 48, (it is

40× 48), which gives an integral number of expected divisors for each sub-density.

(By ‘expected,’ we mean the number of prime divisors if the asymptotic proportion

were to be respected.) We got the table:

p (mod 12) 1 -1 5 -5
found 44 241 249 119

‘expected’ 40 240 240 120

Table 1: Number of prime divisors among the first 1920 primes

3. Did We Get Lucky in the Previous Two Cases?

The Hasse-Lagarias method provides the correct prime density provided it is applied

with sufficient care, in particular in evaluating the degrees of the number field

extensions involved. Assessing prime densities to whole families of recurrences is

prone to errors. It was not necessarily obvious that α = 2 +
√

3 is a nonresidue of

primes 13 (mod 24), i.e., primes 1 (mod 3) and 5 (mod 8). Yet, the remark was

helpful in getting the right value for the sub-density d1. Thus, we will be satisfied

here with knowing whether one can, in principle, apply the Hasse-Lagarias method

in all cases of V̄ (R,Q). Did we merely get lucky in the examples treated in Section

2?

Laxton [7, Thm. 4.4] investigated the set of elements of order 2 in the group

G(f). Suppose f(x) = x2 − Px + Q. The class of V (P,Q) is always an order-two

element in G(f). If Q is not a square in Z, then the class of V (P,Q) is the only

order-two element. If Q = S2, S an integer, there are exactly three elements of

order 2, namely the class of the companion Lucas sequence V and the classes of

A = (An)n≥0 and B = (Bn)n≥0, where A0 = B0 = 1, A1 = P +S and B1 = P −S.

That is, using U = U(P,Q),

An = Un+1 + SUn,

Bn = Un+1 − SUn.
(13)
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By (13) and U2n+1 = U2
n+1 −QU2

n, we see that

U2n+1 = AnBn, for all integers n ≥ 0.

Hence, the prime divisors of A and B are the primes of odd rank in U(P,Q). The

sets of prime divisors of A and B are essentially disjoint [7, Thm. 4.6]; a prime

dividing both A and B would divide V since the classes of the four sequences form

a copy of the Klein group and prime division is preserved by the group operation.

Because the prime divisors of V are the primes of even rank, we see that the set

of all primes is partitioned into three (disjoint) subsets according to whether they

divide V , A or B.

Proposition 3. Suppose Q = S2, S an integer. The sequences A and B, defined

above, are amenable to the Hasse-Lagarias method. In fact, both sequences A and B

satisfy the Lagarias conditions (5) with ϕ = α/S = (P +
√
D)/(2S), ε = 1, k = 2,

ζ = ±1 and j = −1, where ζ = −1 for A and ζ = 1 for B.

Proof. We only treat the case of the A sequence. Noting that the discriminant D

of x2 − Px+ S2 is P 2 − 4S2, we see that

α

β
=
P +

√
D

P −
√
D

=
(P +

√
D)2

P 2 −D
=

(
P +

√
D

2S

)2

=

(
α

S

)2

= ϕ2.

The nth term of the sequence A has the closed form

An =
(P + S − β)αn − (P + S − α)βn

α− β
.

Thus, with the notation of (5), we get c̄/c = −(P + S − α)/(P + S − β). It

remains to verify the identity c̄/c = −ϕ−1 = −S/α which holds if and only if

(P + S)α − α2 = PS + S2 − βS, i.e., as PS + S2 − βS = S2 + αS, if and only if,

Pα− α2 = S2. But both sides of this latter equation are equal to αβ.

The complementary set within the set of primes of the prime divisors of V̄ (R,Q)

consists of the prime divisors of (Ū2n+1(R,Q)). Remarkably, the sequence (Ū2n+1(R,Q))

turns out to be the A torsion sequence associated with the recursion x2−(R−2Q)x+

Q2.

Theorem 3. Suppose f(x) = x2−(R−2Q)x+Q2. Then we find that for all n ≥ 0,

Ū2n+1(R,Q) = An, for all n ≥ 0,

where A is the order-two linear recurrence in G(f) defined in (13).

Proof. By Equation (1), (Ū2n+1(R,Q)) admits f(x) as its characteristic polynomial.

The recurrence A has initial values 1 and (R − 2Q) + Q = R − Q, which, by (2),

correspond to the initial values of the second-order linear recurrence (Ū2n+1(R,Q)).
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Consequently, by Proposition 3, the prime density of (Ū2n+1(R,Q)) is amenable

to the Hasse-Lagarias method, and hence we can always find out the prime density

of a companion Lehmer sequence V̄ (R,Q).

4. An Unsuspected Conclusion with Remarks

As recalled in the previous section, if f(x) = x2−Px+S2, where P and S are nonzero

integers, then the torsion subgroup T (f) of the Laxton group G(f) contains a copy

K(f) of the Klein group Z2 × Z2 given by the classes of the recurrences U = Uf ,

V = Vf , A = Af and B = Bf . The prime density of each sequence V , A and B is

amenable to the Hasse-Lagarias method and, thus, can be computed.

Theorem 4. Given two nonzero integers R and Q, the four second-order linear

recurrences (Ū2n(R,Q)), (V̄2n(R,Q)), (Ū2n+1(R,Q)) and (V̄2n+1(R,Q)) are, re-

spectively, the four sequences Uf , Vf , Af and Bf whose classes form the Laxton

subgroup K(f), where f(x) = x2 − (R− 2Q)x+Q2.

Proof. By Equation (1), (Ū2n(R,Q)), (V̄2n(R,Q)), (Ū2n+1(R,Q)) and (V̄2n+1(R,Q))

are second-order linear recurrences with characteristic polynomial f(x). We already

saw in Theorem 3 that (Ū2n+1(R,Q)) is Af . Since Ū0(R,Q) = 0 and Ū2(R,Q) = 1,

we find that (Ū2n(R,Q)) is Uf . The initial values of (V̄2n(R,Q)) are 2 and R−2Q so

that V̄2n(R,Q) = Vf (n). The values of V̄2n+1(R,Q) for n = 0 and n = 1 are, respec-

tively, 1 and R− 3Q = (R− 2Q)−Q. Thus, we see that V̄2n+1(R,Q) = Bf (n).

The content of Theorem 4 is summarized in Table 2.

X̄(R,Q) f(x) = x2 − (R− 2Q)x+Q2

Ū2n Uf (n)

V̄2n Vf (n)

Ū2n+1 Af (n)

V̄2n+1 Bf (n)

Table 2: Correspondence between Lehmer sub-sequences and elements of K(f)
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There is an obvious converse to Theorem 4: Given a Laxton Klein group K(f),

i.e., a quadratic polynomial f(x) = x2−Px+S2, the two Lehmer pairs (Ū , V̄ ) with

(R,Q) = (P ± 2S,±S) make the correspondence in Table 2 hold. Changing S into

−S permutes the roles of A and B, but does not alter the Lucas sequences U and

V , and both choices give the same Klein group. Define a pair of Lehmer sequences

with parameters R and Q to be equivalent to the pair with parameters R′, Q′ if,

and only if, R′ = R− 4Q and Q′ = −Q. This relation is symmetric. Then, we may

say the correspondence between equivalent pairs of Lehmer sequences and Laxton

Klein groups is one-to-one. Because of Theorem 4, the study of the arithmetic of

Lehmer sequences is intricately linked to the arithmetic of the four Lucas-Laxton

sequences U , V , A and B.

A particular case of Theorem 4 had already been discovered in [3, Sects. 5 and

6] with no reference to the Lehmer sequences. Indeed, if
√
R = R = 1 and Q = −1,

then the corresponding Lehmer sequences Ū(1,−1) and V̄ (1,−1) are simply the

famous pair of Lucas sequences (F,L) of Fibonacci and Lucas numbers. By Table

2, we see that f(x) = x2 − 3x + (−1)2, Af (n) = F2n+1, Bf (n) = L2n+1 and

Vf (n) = L2n. The prime partition, or trichotomy, of the set of all primes into

divisors of Af , Bf and Vf mentioned at the end of Section 3, is then well-balanced

in the sense that each block has prime density 1/3 as was shown in [3]. The three

blocks of the trichotomy were described in many interesting ways in [3, Thm. 5.1].

One way is readily seen to be in terms of Fibonacci rank:

• Odd ranked primes,

• Primes of even rank not divisible by 4,

• Primes of rank divisible by 4.

It was observed in [3, Section 6] that the trichotomy remained well-balanced for

f(x) = x2 − (4a2 + 2) + (−1)2, where a = 1
2 (ε+ ε̄), a > 0, if the fundamental unit

ε = a + b
√
d of Q(

√
d), d ≥ 5 square-free, has norm −1. Here, (R,Q) = (4a2,−1)

and the associated Lehmer sequences Ū and V̄ are essentially, i.e., up to a factor

of 2a for even-indexed terms of Ū and odd-indexed terms of V̄ , the pair of Lucas

sequences (U, V ) with parameters (P, S2) = (4a2 + 2, (−1)2). Note in passing that

the pair of Lehmer sequences with parameters (1,−1) that corresponds to a = 1/2

and ε = (1 +
√

5)/2 is equivalent to the pair with parameters (5, 1) which was the

object of Theorem 1.

Theorem 4 tells us the description of the prime trichotomy in terms of Fibonacci

or Lucas ranks generalizes in terms of their ranks in the Lehmer sequence Ū(R,Q),

when R is not a square integer. Indeed, prime divisors of V̄2n are the primes of

Lehmer rank divisible by 4, prime divisors of V̄2n+1 have rank exactly divisible by

2 (not by 4), and prime divisors of Ū2n+1 have odd rank.

We calculated the prime density of V̄ (2,−1) in Section 2 to be 2/3. We could

have computed its prime density by calculating separately the prime density of
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(V̄2n) and that of (V̄2n+1). The sequence (V̄2n) is the companion Lucas sequence

Vn(4, 1) = (2 +
√

3)n + (2−
√

3)n.

Since 2 +
√

3(= a+ b
√

3) is the fundamental unit of Q(
√

3), with norm 1 and a− 1

is a square, we know from the main theorem of [11], that its prime density is 1/3.

Since we found that the prime density of (Ū2n+1) is 1/3, we see that (V̄2n+1) must

have prime density 1/3. The prime trichotomy associated with (R,Q) = (2,−1) is

well-balanced.

We end the paper with an open question: Is it true that for almost all choices of

R and Q, in the sense of [2], the associated prime trichotomy is well-balanced?
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