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Abstract

In this paper, we will investigate a variation of Ducci’s Four-Number Game using
modular multiplication. That is, we will study the cycles formed by repeating the
following endomorphism in Z4

n, [a b c d] ↦ [ab bc cd da]. Our main goal
is to analyze and classify the cycles that arise in this new variation. Specifically, we
will determine for which moduli nontrivial cycles exists, and will produce methods
to generate them.

1. Introduction

Ducci’s 4-number game [4] is a game in which the mapping

[a b c d]↦ [∣a − b∣ ∣b − a∣ ∣c − d∣ ∣d − a∣]

is repeated forever with a, b, c, d ∈ N. We may say that the game ends when the

4-tuple reaches [0 0 0 0], as from this point onwards, the behavior of the 4-

tuples is quite trivial. It simply remains at [0 0 0 0]. The game is often used

as a way to help children learn subtraction [1], but the game also exhibits complex

behavior. It has been shown by Freedman [5] that this game will always converge

to [0 0 0 0] in finitely many steps, but Yueh and Cheng [8] have found that by

working with a, b, c, d ∈ R instead of N, it may take infinite amount of steps to con-

verge to 0 such as starting with [1 ϕ ϕ2 ϕ3] with ϕ = 1+ 3
√

19−3√33+ 3
√

19+3√33
3

.
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However, it may not always take an infinite amount of steps; [1
√

2 e π] con-

verges to [0 0 0 0] in 5 iterations. Thus Ullman [7] has mapped out regions

of R4 based off of where it converges as well as how many steps it takes until the

game converges. There are also many papers considering a variation on the game

(such as Length of the 7-number game [6] and A characterization for the length of

cycles of the n-number Ducci game [3]) where the game is played with either more

or less than four numbers.

In this paper, we will instead consider a different variation on the 4-number game:

[a b c d]↦ [ab bc cd da] ,

in which the resulting products are taken modulo n for some integer n ≥ 2. (In our

new variation, we will only be considering the case in which a, b, c, d ∈ Zn.) Since the

space of tuples we are investigating is finite, it is clear that every 4-tuple must enter

a cycle after enough iterations. However, unlike the original game described by

Ciamberlini and Marengoni [4], the cycles that arise here are not always so simple.

For example, starting from [1 4 1 2] modulo 7, we get this game,

[1 4 1 2]↦ [4 4 2 2]↦ [2 1 4 1] .

Thus, after repeating the mapping twice, we obtain the same 4-tuple as we started

with but with all of the variables shifted one spot over. So if we then repeated

the mapping six more times, we get back to exactly where we started and so

[1 4 1 2] is in a cycle modulo 7. We will see later that the six additional

iterations are not needed to determine if it is in a cycle. Yet for some moduli such

as 4 and 5, there are no cycles other than the cycles consisting of [0 0 0 0] and

[1 1 1 1]. Because these two cycles are present in every moduli, we consider

them trivial. Our goal in this paper is to explore the cycles excluding these two and

to determine for which moduli nontrivial cycles exist. Specifically, the main goal of

this paper is to prove the following theorem.

Theorem 1. A nontrivial cycle exists modulo n if and only if n is neither a Fermat

prime nor a power of 2.

The only known values of n of this form are 3, 5, 17, 257, 65537 (see Boklan

and Conway [2]), and powers of 2. Additionally, if there exists nontrivial cycles

modulo n, then we will produce methods to generate at least one of them.

This paper will be organized thusly. In the following section, we will provide

definitions and observe that we can split our study of these cycles into two different

cases. Next, we shall build tools helpful for creating new cycles out of existing

ones. We will then determine when nontrivial cycles exist for each of the two cases,

which will cover the next two sections. By that point, we will be able to prove

Theorem 1. We will then spend the final two sections proving additional facts

about the structure of the cycles in this game, such as finding how quickly 4-tuples
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converge to a cycle as well as finding a basis for the cycles. So to begin, we shall

first need some definitions.
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Figure 1: This is a more geometric view of the mapping. We place the four numbers
on the corners of a square. On the midpoint of the each of the squares edges, we
write the product of the adjacent edges modulo n (in this example, n = 7). We may
then draw a new square connecting these midpoints and repeat this process in the
new square. Note that the inner most square is a flipped version of the outermost
square and so it is in a cycle.

2. Definitions

Due to the symmetries of the mapping, we consider two 4-tuples to be equiva-

lent if one can be mapped to the other by shifting and reversing the 4-tuples.

That is, [a b c d], [a d c b], [b a d c], [b c d a], [c b a d],

[c d a b], [d a b c], and [d c b a] shall be considered equivalent. The

reason that they may be considered the same is due to a more geometric formulation

of the problem given in Figure 1. It is clear that rotating and reflecting the square

in the figure preserves the structure of this games’ mapping which then provides the

equivalence classes. And so, these 4-tuples may be treated as having the symmetries

of a square. These equivalence classes are not strictly necessary but they allow us

to greatly shorten the notation. When referring to a 4-tuple, we will treat them as

their equivalence class, unless otherwise specified.

A 4-tuple, T , is said to be in a cycle when there is some L ∈ N such that after

iterating the game L + 1 many times starting at T , the game returns to a tuple

equivalent to T up to symmetry. We say that the cycle itself is the set of 4-tuples

arrived at when iterating T in the order that they appear when iterating. We also

define the length of the cycle to be the smallest positive L for which this property

holds. It is also important to note that not every 4-tuple will be in a cycle (this

can be demonstrated in Figure 2). However, those 4-tuples are not of our primary

concern until Section 6.

The cycles of length 1 consisting of either [0 0 0 0] or [1 1 1 1] will be
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called trivial cycles. They are considered trivial as every modulus will have these

simple cycles. A cycle other than these two is a nontrivial cycle.

Finally, The set of integers modulo n that are relatively prime to n will be

denoted Z×n. Additionally, the smallest positive k such that βk ≡ 1 (mod m) will

be denoted om(β). We shall denote the smallest positive integer k such that

ak ≡ 1 (mod n) for all a coprime to n as λ(n). That is, λ(n) = lcm{on(β) ∣ β ∈ Z×n}.

It turns out that cycles can be partitioned into four categories based on whether

their elements are relatively prime to n and whether all elements of a 4-tuple are

the same. To that end, we shall need two more definitions, which inspired the two

following lemmas.

Lemma 2. If [a b c d] is in a cycle modulo n, then either a, b, c, d ∈ Z×n
or a, b, c, d ∈ Zn ∖Z×n.

Proof. Suppose that at least one of a, b, c, and d is in Zn ∖ Z×n. Then the game

proceeds as follows:

[a b c d]↦ [ab bc cd ad]↦ [ab2c bc2d acd2 a2bd]↦

[ab3c3d abc3d3 a3bcd2 a3b3cd] .

By the fourth step, all elements of the 4-tuple are multiples of something in Zn∖Z×n,

so they must all be in Zn ∖ Z×n. Similarly, all elements of future 4-tuples will also

be in Zn ∖ Z×n. However, these are in a cycle, so [a b c d] is also a future

step and a, b, c, d ∈ Zn ∖Z×n. We have therefore shown that either all elements of the

4-tuple in a cycle are in Zn ∖Z×n or none of them are.

We can then split cycles into two categories: coprime cycles, whose elements are

all in Z×n, and cocomposite cycles, whose elements are all in Zn ∖Z×n.

Additionally, suppose that we have a 4-tuple in a cycle in which all elements of

the 4-tuple are equivalent modulo n. After iterating the game, it is clear that for

each 4-tuple in the cycle, the elements of the 4-tuple must be equivalent to each

other mod n. We then have a proof of the following lemma.

Lemma 3. Let a, b, c, d, e ∈ Zn. If [a b c d] and [e e e e] are in the same

cycle modulo n, then a ≡ b ≡ c ≡ d (mod n).

This property is quite useful so we shall add another definition for these types of

cycles. We say that a cycle is constant if all of its tuples have equal components. For

example, [2 2 2 2]↦ [4 4 4 4]↦ [2 2 2 2] is a constant cycle mod 7.

3. Combining Cycles

Given any 4-tuple in a cycle, we shall see in Theorem 6 that we can generate new

cycles from a given cycle. First however, we will need to work with creating a cycle
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from two given cycles instead of one.

We can define a multiplication of 4-tuples as follows. Let [a b c d] and

[e f g h] be 4-tuples in Z4
n. Then we can write

[a b c d] × [e f g h] = [ae bf cg dh] ,

which must be in a cycle if [a b c d] and [e f g h] are in cycles due to the

following lemma. One may check that this product provides a commutative monoid

structure on the set of 4-tuples in Z4
n that are in cycles as a submonoid of Z4

n via

a consequence of Lemma 4. Note that for this multiplication, we are discussing

the 4-tuples themselves and not the equivalence class that the 4-tuples belong to.

We will see later that this multiplication does not respect the symmetries of the

4-tuples so we must be very careful when using this product and specify the order

of the elements in the 4-tuples.

Lemma 4. Let A and B be two 4-tuples that are in cycles modulo n of lengths

LA and LB. Then A × B is also in a cycle modulo n whose length is a divisor

of lcm(LA, LB).

Proof. Let A and B be two 4-tuples in Z4
n. Let Ai, Bi, and Xi be the 4-tuples

obtained by iterating the game i steps starting with A, B, and A ×B, respectively

where i ∈ N. We will show that Xi = Ai ×Bi for all i ∈ N via induction.

For the base case of i = 0, we know by definition that X0 = A×B = A0 ×B0. Now

suppose thatXi = Ai×Bi. We may arbitrarily denoteAi andBi as [a1 a2 a3 a4]

and [b1 b2 b3 b4]. Then by the inductive hypothesis,

Xi = [a1b1 a2b2 a3b3 a4b4] .

Now we may iterate Xi’s game to obtain

Xi ↦Xi+1 = [a1b1a2b2 a2b2a3b3 a3b3a4b4 a4b4a1b1]

= [a1a2b1b2 a2a3b2b3 a3a4b3b4 a4a1b4b1] = Ai+1 ×Bi+1.

We have then proven by induction that Xi = Ai ×Bi for all i ∈ N. In particular, if

A and B are in cycles of lengths LA and LB , respectively then

Xlcm(LA,LB) = Alcm(LA,LB) ×Blcm(LA,LB) = A ×B =X0.

And so A × B must be in a cycle whose length divides lcm(LA, LB) and we have

our desired result.

This method of creating cycles is efficient (as we will see in Theorem 13) albeit

inconsistent, due to the different equivalencies of the 4-tuples. For example, the 4-

tuple [1 1 2 2] is in a cycle of length 2 when we let the modulus be 7. However,

if we multiply it by two 4-tuples that are in cycles and are equivalent to each
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other, we may observe that the resulting products may be in different cycles from

each other.

[1 1 2 2] × [1 1 2 2] = [1 1 4 4]

[1 1 2 2] × [2 2 1 1] = [2 2 2 2]

For this reason, we must be careful to specify the order of the elements of the 4-tuple

when multiplying them together.

Luckily our next method of generating cycles does not have this issue and we

may return to referring to the equivalence classes of 4-tuples rather than their

representatives. It is similarly helpful to introduce notation for the following proof

as well. Let a, b, c, d ∈ Z×n. Then we write

[a b c d]
−1

= [a−1 b−1 c−1 d−1] ,

where the x−1 is the multiplicative inverse of x mod n for any x ∈ Z×n.

Lemma 5. Let A be a 4-tuple in a coprime cycle modulo n. Then A−1 is in a

(possibly different) coprime cycle modulo n of the same length.

Proof. This lemma will follow a very similar structure to that of Lemma 4. Suppose

that A is a 4-tuple in (Z×n)
4
. Let Ai and Xi be the 4-tuples obtained by iterating

the game i steps starting with A and A−1, where i ∈ N. We will show that Xi = A
−1
i

via induction.

For the base case of i = 0, we know by definition that X0 = A
−1
i . Now suppose

that Xi = Ai ×Bi. We may denote Ai as [a1 a2 a3 a4]. Then by the inductive

hypothesis,

Xi = [a−11 a−12 a−13 a−14 ] .

Now we may iterate Xi’s game to obtain

Xi ↦Xi+1 = [a−11 a−12 a−12 a−13 a−13 a−14 a−14 a−11 ] = A−1i+1.

We have then proven by induction that Xi = A
−1
i for all i ∈ N. In particular, if A is

in a coprime cycle of length L, then

XL = A−1L = A−1 =X0.

And so A−1 must be in a cycle with the same length as A’s cycle and we have

therefore proven the lemma.

From Lemmas 4 and 5, we can then obtain the following general properties of

4-tuples in cycles.

Theorem 6. Let n ≥ 2 and let a, b, c, d ∈ Zn. Suppose that [a b c d] is in some

cycle modulo n. Then the following hold:
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1. [abcd abcd abcd abcd] is also in a (possibly different) cycle;

2. ac ≡ bd (mod n);

3. [ac ac ac ac] is in the same cycle as [abcd abcd abcd abcd];

4. [1 ac−1 1 a−1c] is also some entry in a cycle, if a, b, c, d ∈ Z×n.

Proof. Let [a b c d] be in a cycle. If we multiply it by a 4-tuple that is equiva-

lent to it, [c d a b], we see that this forms a new cycle that includes the 4-tuple

[ac bd ac bd]. The next step in [ac bd ac bd]’s cycle is then

[abcd abcd abcd abcd] ,

as desired. Since this is a constant cycle that contains [ac bd ac bd], we know

from Lemma 3 that

ac ≡ bd (mod n).

Similarly, Lemma 5 shows us that we can multiply [a b c d] by [c b a d]
−1

to get a cycle that includes [1 ac−1 1 a−1c] .

4. Cocomposite Cycles

In this section we will determine when nontrivial cocomposite cycles exist. First,

we will find the cases of when at least one such cycle exists.

Theorem 7. If n is not a power of a prime, then there is a nontrivial cocomposite

cycle modulo n.

Proof. Let d be a nontrivial proper divisor of n, such that gcd(d, n
d
) = 1. Consider

the sequence δi = d
2i (mod n) where i ∈ N. We want to show that this sequence is

eventually periodic and avoids 0 and 1 modulo n. We will first show that there are

no 0’s or 1’s in the sequence.

Suppose that d2
i

≡ 1 (mod n), that is d2
i

=mn + 1, for some m ∈ Z. Taking this

modulo d, we then have that 0 ≡ 1 (mod d) and since d ≠ 1, we have a contradiction.

Now suppose that d2
i

≡ 0 (mod n), that is n∣d2
i

. Since n
d
∣n, we then have that n

d
∣d2

i

,

which contradicts gcd (d, n
d
) = 1.

Thus neither 0 or 1 are in {δi ∣ i ∈ N}. Since everything in {δi ∣ i ∈ N} is a multiple

of d and not 0, there are n
d
− 1 possibilities for δi’s values. Thus, by the Pigeonhole

Principle, there must be some s < n
d

such that δn
d
= δs. Thus, we can generate the

following game.

[d2
s

d2
s

d2
s

d2
s

]↦ [d2
s+1

d2
s+1

d2
s+1

d2
s+1

]↦ ⋯↦ [d2
s

d2
s

d2
s

d2
s

] .

We therefore have a cycle whose length is at most n
d
− 1.
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We will now prove the converse of Theorem 7. Let T be a 4-tuple in a cocomposite

cycle modulo pk. It is then clear that each element of T must be multiples of p.

Let S be the 4-tuple that is ⌈log2 k⌉ steps later in T ’s cycle. It is then clear that all

elements of S must be a multiple of pk, and thus S ≡ [0 0 0 0] (mod n). Since

we know that the length of any cycle containing [0 0 0 0] is 1, it must be the

case that T is also [0 0 0 0] and so the cycle we started with was trivial. We

have then proven the following corollary.

Corollary 1. There is a nontrivial cocomposite cycle modulo n if and only if n is

not a power of a prime.

Interestingly, the fact that these are cycles of specifically 4-tuples is not needed

in this proof. A very similar argument can show that there exists a nontrivial

cocomposite cycle of t-tuples modulo n if and only if n is a power of a prime,

where t is some positive integer.

5. Coprime Cycles

As was the case for cocomposite cycles, coprime cycles exist for almost all n. Indeed

we can give a method to explicitly generate cycles using the following theorem.

Theorem 8. If λ(n) is not a power of 2, then there is some nontrivial coprime

cycle modulo n.

Proof. Let d be an odd nontrivial divisor of λ(n) and let k = λ(n)
d

. Also define σ to be

the smallest positive integer such that 2σ ≡ ±1 (mod d). Note that it follows that σ

either equals od(2) or 1
2
od(2). Since d ≠ 1, we know that λ(n) ∤ k. By the definition

of λ(n), there must then be some α coprime to n such that αk /≡ 1 (mod n). This

ensures that our starting configuration is not equivalent to [1 1 1 1]. If we

begin with an initial 4-tuple of the form [1 αk 1 α−k], the game proceeds as

the following sequence of 4-tuples.

[1 αk 1 α−k]↦ [αk αk α−k α−k]↦ [α2k 1 α−2k 1] ,

which is equal to the initial 4-tuple but with each entry squared, up to equivalency.

So after 2σ steps, we get

[1 α2σk 1 α−2
σk] .

Then by the definition of k, we can rewrite this as

[1 α
2σ

d λ(n) 1 α−
2σ

d λ(n)] .

By definition of σ, 2σ = jd ± 1 for some integer j, so we rewrite it again as

[1 α
jd±1
d λ(n) 1 α

−jd∓1
d λ(n)] = [1 αjλ(n)±

λ(n)
d 1 α−jλ(n)∓

λ(n)
d ] .
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By definition of λ(n), we then know that, modulo n, this is equivalent to

[1 α±
λ(n)
d 1 α∓

λ(n)
d ] .

Plugging k back in, we then have a 4-tuple equivalent to the initial 4-tuple (up to

symmetry),

[1 α±k 1 α∓k] .

Since we iterated 2σ steps, we have a cycle of length 2σ. So we have therefore shown

that there exists a nontrivial coprime cycle modulo n whose length is either od(2)

or 2od(2).

In our next theorem, we will show that this is the strictest condition on n to

guarantee a nontrivial coprime cycle possible.

Theorem 9. If λ(n) is a power of 2, then there are no nontrivial coprime cycles

modulo n.

Proof. Let λ(n) = 2L for some L ∈ N. Suppose [a b c d] is in a coprime cycle

modulo n. Then, we know from Theorem 6.3 that there is a (possibly different)

constant cycle containing [δ δ δ δ], where δ ≡ ac ≡ bd (mod n). The game for

[δ δ δ δ] proceeds as the following sequence.

[δ δ δ δ]↦ [δ2 δ2 δ2 δ2]↦ [δ4 δ4 δ4 δ4]↦ ⋯

Thus, if the length of the new cycle is γ, we know that δ2
γ

≡ δ (mod n). Since δ is

coprime to n, we can multiply both sides by δ−1 to obtain

δ2
γ−1 ≡ 1 (mod n).

Briefly suppose for the sake of contradiction that δ /≡ 1 (mod n). Then by Lemma 10

(below), gcd(2γ − 1, λ(n)) > 1. Since λ(n) is a power of 2, it has no odd factors

whereas 2γ − 1 must have only odd factors. We therefore have a contradiction. It

must therefore be the case that

δ ≡ ac ≡ bd ≡ 1 (mod n).

That is, c ≡ a−1 and d ≡ b−1. The game for [a b c d] then continues in the

following sequence.

[a b a−1 b−1]↦ [ab a−1b a−1b−1 ab−1]↦ [b2 a−2 b−2 a2] .

This is equivalent to the initial 4-tuple, but everything is squared. Continuing the

game for 2L many more steps, we arrive at a 4-tuple equivalent (after shifting and

reversing the 4-tuple) to

[a2
L

b2
L

a−2
L

b−2
L
] = [aλ(n) bλ(n) a−λ(n) b−λ(n)] = [1 1 1 1] .
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Thus, from Lemma 3 and the fact that [1 1 1 1] is in a cycle of length 1,

a ≡ b ≡ c ≡ d ≡ 1 (mod n),

and so the only coprime cycle modulo n is [1 1 1 1].

Lemma 10. If α ∈ Z×n ∖ {1} and αk ≡ 1 (mod n), then gcd(k, λ(n)) > 1.

Proof. Since α /≡ 1, it is clear that on(α) > 1. We write k = mon(α) + b, where m

and b are integers and 0 ≤ b < on(α). Then

1 ≡ αk = αmon(α)+b = αmon(α)αb ≡ αb (mod n).

If b ≠ 0, this would contradict on(α) being the minimal positive integer with its

defining property. It must therefore be the case that on(α)∣k. Since αλ(n) is also

congruent to 1, we can use a similar process to arrive at on(α)∣λ(n). We have

therefore shown that gcd(k, λ(n)) ≥ on(α) > 1.

Taking Theorem 8 and Theorem 9 together, we may prove the following theorem.

Theorem 11. There is a nontrivial coprime cycle modulo n if and only if λ(n) is

not a power of 2.

In fact, this theorem can easily be generalized for a game acting on a given

abelian group, as very few parts of the structure of Z×n were used in the relevant

proofs. So we can state (without proof as it would be a retreading of the majority

of this paper) the following corollary.

Corollary 2. Suppose that G = (S, ⋅) is an abelian group with a finite exponent.

Then the iterations of the endomorphism in G4 that maps

[a b c d]↦ [a ⋅ b b ⋅ c c ⋅ d d ⋅ a]

may enter a cycle other than the length 1 cycle consisting of the 4-tuple of G’s

identity if and only if the exponent of G is not a power of 2.

Note that Corollary 2 does not only apply to finite abelian groups; it only requires

that the exponent of the group must be finite. For example, Corollary 2 tells us

that when G = (Z4[[x]],+), the game in G4 does not have any nontrivial cycles.

Whereas if G were equal to (Z24[x, y]/⟨x
6 − 9xy⟩,+) then G4 does have nontrivial

cycles when the game is played.

We can then see that Theorem 1 drops out as a corollary of Theorem 11 and

Corollary 1 since if λ(n) is a power of 2, then n is some power of 2 times a product

of distinct Fermat primes. But if n itself is a power of a prime, that only leaves n as

either a power of 2 or a Fermat prime. And we therefore have a proof of Theorem 1.

So now we shall turn to additional facts about the structure of these cycles.
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6. Speed of Convergence

Now that we know those n for which all 4-tuples converge to a trivial cycle, the

question arises: how fast do they converge?

Theorem 12. If there are only trivial cycles modulo n, any starting position will

take at most 1 + 3 log2 λ(n) steps until it reaches a trivial cycle.

Proof. Suppose our initial 4-tuple is [a1 b1 c1 d1], not necessarily in a cycle.

We will use subscripts to indicate in which step of the game a 4-tuples occurs. We

will proceed by cases.

Case 1. Suppose at least one of a1, b1, c1, and d1 are in Zn ∖ Z×n. Then we know

from the method developed from Lemma 2 that 4 steps later, all elements of the

4-tuple will share a factor with n. Since there are no nontrivial cocomposite cycles,

we know from Corollary 1 that n = pk, for some prime p and positive integer k.

Then, a4, b4, c4, and d4 are all multiples of p. Similarly a5, b5, c5, and d5 will all

be multiples of p2, and ⌈log2 k⌉ many steps later, all entries will be a multiple of

pk. That is, in 4 + ⌈log2 logp n⌉ ≤ 4 + ⌈log2 log2 n⌉ steps, the 4-tuple will converge to

[0 0 0 0].

Case 2. This proof will follow a similar structure to Theorem 9. Suppose a1, b1,

c1, and d1 are all coprime to n. The next step of the game will be:

[a1 b1 c1 d1]↦ [a2 b2 c2 d2] ≡ [a1b1 b1c1 c1d1 a1d1] .

Consider the product δi = aici ≡ bidi (mod n), for i ≥ 2. We will now show that

δi will converge to 1. We will proceed by induction. For the base case, i = 2, we

already know that

δi ≡ δ
2i−2
2 (mod n).

Suppose that δi ≡ δ2
i−2

2 (mod n) for an arbitrary i ≥ 2. We want to show that

δi+1 ≡ δ2
i−1

2 . We then have that

δi+1 = ai+1ci+1 = aibicidi = δ2i = δ
2i−1
2 .

In particular, if s = 2+log2 λ(n), which we know must be an integer from Theorem 9,

then

ascs ≡ bsds ≡ δs ≡ δ
λ(n)
2 ≡ 1 (mod n).

The game then continues as follows:

[as bs a−1s b−1s ]↦ [asbs a−1s bs a−1s b
−1
s asb

−1
s ]↦ [b2s a−2s b−2s a2s] .

This is equivalent to the sth step, with each element squared. Thus for each r ∈ N,

we can see that

[as+2r bs+2r cs+2r ds+2r] ≡ [a2
r

s b2
r

s a−2
r

s b−2
r

s ] (mod n).
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In particular, 2 log2 λ(n) iterations after s, we will arrive at the 4-tuple,

[aλ(n) bλ(n) a−λ(n) b−λ(n)] .

By the definition of λ(n), this 4-tuple is equivalent to [1 1 1 1]. Thus, it will

take at most 1 + 3 log2 λ(n) steps to converge to [1 1 1 1].

Thus, no matter what is selected for the initial 4-tuple, the game will take

at most max (4+⌈log2 log2 n⌉,1 + 3 log2 λ(n)) steps to reach a trivial cycle. Since

there are only trivial cycles modulo n, we know from Theorem 1 that n is ei-

ther a Fermat prime or a power of 2. For each of these cases, it is clear that

1 + 3 log2 λ(n) ≥ 4 + ⌈log2 log2 n⌉ except for when n = 3. However, the n = 3 case

is small enough to check by hand and one may verify that it takes at most 4 =

1 + 3 log2 λ(3) steps for any 4-tuple to converge to a trivial cycle. The reason for

this discrepancy is that the substituting of logp for log2 in Case 1 enlarges the bound

more than needed but this is the only term where it matters. Without this substi-

tution, we indeed get that it will take 4 steps for any 4-tuple to reach a trivial cycle

modulo 3. As such, we may obtain a bound of simply 1+ 3 log2 λ(n) for any n.

Table 1 shows how many steps it takes for an arbitrary 4-tuple to reach a trivial

cycle for the moduli that only have trivial cycles. As we did in Corollary 2, we

can generalize these results from Case 2 quite well to abelian groups with finite

exponents. If the game is played on a group G4, then any 4-tuple will take at most

1+ 3 log2 λ(G) many steps to converge to the 4-tuple of G’s identity if there are no

other cycles, where λ(G) here represents the exponent of G.

Modulus Steps
1 0
2 4
3 4
4 5
5 7
17 13
257 25

65537 49

2k 3k − 5

Table 1: The maximum number of steps needed to reach a trivial cycle in each
modulus given by Theorem 12. The number k may be any integer greater than or
equal to 3.

In Figure 2, we show a tree of all 4-tuples modulo 5 in which each vertex repre-

sents a 4-tuple (up to symmetry) and vertices are connected by an edge if playing

the game on one of them may reach the other. Notice that it takes each tuple at

most 7 steps to reach a trivial 4-tuple, which are indicated by hollow vertices. The
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tree on the left corresponds to Case 1 and the tree on the right corresponds to

Case 2.

Figure 2: The trees of all 4-tuples (up to symmetry) and their iterations when the
game is played modulo 5. The edges each represent playing the game on the upper
node, which results in the lower node. Note how all tuples converge to a trivial cycle
(indicated by hollow vertices) in up to 7 steps. The purple vertices indicate that the
4-tuple is constant and the yellow vertices represent 4-tuples that are of the form
[x y x−1 y−1] for some x, y ∈ Z×5 . The tuples that fall under both categories are
a mix of both colors.

7. Factoring Cycles

Finally we shall turn to factoring the cycles. Specifically, we are going to show that

every cycle can be expressed as a product of a constant cycle and a generalization of

the type of cycle used in Theorem 8. We shall define a generator 4-tuple as a 4-tuple

of the form [1 x 1 x−1] that is in a cycle, where x ∈ Z×n. A cycle containing

generator 4-tuples will be referred to as a generator cycle. Note that every second

step in a generator cycle will be a generator 4-tuple.

Theorem 13. Every coprime cycle is a product of a constant cycle and two gen-

erator cycles.

Proof. Let I = [a b c d] be in a coprime cycle. We know that it must be

the case from Theorem 6 that [abcd abcd abcd abcd], [1 a−1c 1 ac−1], and

[bd−1 1 b−1d 1] are all in cycles. Let A, B, and C each be the 4-tuples that are

two steps earlier in each of these cycles, respectively. Specifically, A, B, and C are

the 4-tuples themselves and not their equivalence class from shifting and reversing

the tuples since we will need to multiply these. We then define

G = A ×B ×C,
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which we know from Lemma 4 must be in a cycle. Using the methods in that

lemma’s proof, we see that by iterating the game for G twice, we obtain

[abcd abcd abcd abcd]× [1 a−1c 1 ac−1] × [bd−1 1 b−1d 1]

= [ab2c bc2d acd2 a2bd] .

However, this is exactly the same as the second step of iterating I’s game. Since I

and G are both in cycles, it must be the case that they are in the same cycle. Since

they each result in the same 4-tuple in two steps of the game, it must be the case

that I = G, that is

[a b c d] = A ×B ×C.

We know from Lemma 3 that A must be a constant 4-tuple. It is clear from

iterating a generator 4-tuple twice that every even step will also be a generator

4-tuple. Thus, B and C are both generator 4-tuples. We have therefore shown that

any 4-tuple in a cycle is a product of a constant 4-tuple and generator 4-tuples,

each in a cycle.

The basis given in the previous theorem is particularly nice as constant cycles’

and generator cycles’ iterations within this game are quite regular, with constant

cycles squaring with every iteration and generator cycles squaring with every second

iteration. Decomposing 4-tuples in a cycle in this manner allows us to find the i-th

step quite easily, even if we do not know what other 4-tuples in its cycle are. In

addition, as is routine with our theorems regarding the coprime cycles, Theorem 13

can also be easily generalized into games on abelian groups with finite exponents.

We leave this as an exercise for the interested reader. Experimentally, Theorem 13

also seems to hold for cocomposite cycles as well.

Conjecture 1. Every cocomposite cycle is a product of a constant cycle and two

generating cycles.

This conjecture has been verified for all moduli up to 161. One possible direction

of proving this conjecture is to show that all cocomposite cycles are a product of a

cocomposite constant cycle and a coprime cycle, but we have been unsuccessful on

this front.

8. Conclusion

Taking Corollary 1 and Theorem 11 together, we therefore establish our main the-

orem from the start of the paper, that is, that every modulus excluding powers of 2

and the Fermat primes 3, 5, 17, 257, and 65537 (see Boklan and Conway [2]) has

some nontrivial cycle. Additionally, if they exist, we give an explicit form of at least

one nontrivial coprime cycle (Theorem 8) and a nonexplicit method of creating a
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nontrivial cocomposite cycle (Theorem 7). Furthermore, we obtain an upper bound

on how many steps it takes for a given 4-tuple to fall into a trivial cycle in the case

that no nontrivial cycles exist. We have also shown that all coprime cycles can be

factored into much simpler cycles. Finally, we have been able to generalize almost

all of these results to abelian groups with finite exponents.
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