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Abstract
Improving an estimate of Croot, Dobbs, Friedlander, Hetzel, and Pappalardi, we
show that for all k > 2, the number of integers 1 6 a 6 n, such that the equation
a/n = 1/m1 + · · ·+ 1/mk has a solution in positive integers m1, . . . ,mk is bounded
above by n1−1/2

k−2+o(1) as n goes to infinity.

1. The Result

For a positive integer k, let Ak(n) be the number of integers a, 1 6 a 6 n for which
a/n has a k-term Egyptian fraction representation

a

n
=

1

m1
+ · · ·+ 1

mk
, (1)

where the mi are positive integers with m1 6 · · · 6 mk. Decompositions of the form
(1), often with the mi’s required to be distinct, have been extensively studied in
number theory. See Bloom and Elsholtz [1] for a recent survey of the subject and
Guy [3, Section D11] for a comprehensive collection of open problems.

Croot, Dobbs, Friedlander, Hetzel, and Pappalardi [2] proved that for any k > 2,

Ak(n) 6 nαk+o(1) (2)

as n→∞, where αk = 1−2/(3k−2+1). In particular, (2) shows that A2(n) = no(1).
Improving upon their strategy, we get the following bounds.

Theorem 1. For every k > 2, we have Ak(n) 6 nβk+o(1), where βk = 1− 1/2k−2.
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Proof. We apply induction on k. The case k = 2 follows from (2), so assume k > 3.
Set γi = 2i−1/2k−2 and βk = 1 − 1/2k−2. For 1 6 j 6 k − 2, we say that a

k-tuple (m1, . . . ,mk) with m1 6 · · · 6 mk is of type j if mj > nγj and mi < nγi for
1 6 i < j. In addition, we say that such a k-tuple is of type k − 1 if mi < nγi for
all 1 6 i 6 k − 2, with no restrictions being placed on mk−1 or mk. It follows from
these definitions that any k-tuple (m1, . . . ,mk) is of type j for some 1 6 j 6 k − 1.

We now show that the number of solutions to (1) of any given type is at most
nβk+o(1), as this implies the theorem. Note that type 1 solutions satisfy

a

n
=

1

m1
+ · · ·+ 1

mk
6

k

m1
6 kn−γ1 .

Thus, a 6 kn1−γ1 = knβk . That is, there are no more than knβk solutions of type 1.
For the type j solutions, 2 6 j 6 k − 2, we have

0 6
a

n
− 1

m1
− · · · − 1

mj−1
=

1

mj
+ · · ·+ 1

mk
6
k − j + 1

mj
6 kn−γj .

Therefore,
0 6 a− n

m1
− · · · − n

mj−1
6 kn1−γj ;

thus there are at most kn1−γj possible values of a given any (m1, . . . ,mj−1). Con-
sequently, the number of solutions of (1) of type j is at most

kn1−γjm1 · · ·mj−1 6 kn1+γ1+···+γj−1−γj = knβk .

The solutions of type k − 1 are handled more efficiently via binary Egyptian
fractions. Note that

0 6
a

n
− 1

m1
− · · · − 1

mk−2
=

1

mk−1
+

1

mk
.

Hence, writing a′ = am1 · · ·mk−2 − nm1 · · ·mk−2(1/m1 + · · · + 1/mk−2), we see
that a′ is an integer satisfying 0 6 a′ 6 nm1 · · ·mk−2 and

a′

nm1 · · ·mk−2
=

1

mk−1
+

1

mk
.

Therefore, given (m1, . . . ,mk−2), there are at most A2(nm1 · · ·mk−2) possible values
of a that can satisfy (1). In total, the number of possible values of a is bounded by∑

mi6n
γi

16i6k−2

A2(nm1 · · ·mk−2) 6 nγ1+···+γk−2+o(1) = nβk+o(1),

where we used again that A2(n) = no(1) from (2), so

A2(nm1 · · ·mk−2) = (nm1 · · ·mk−2)
o(1) = no(1).
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We get an improved exponent of n in the upper bound of Ak(n) for all k > 4.
To illustrate the change, the first exponents in (2) are α2 = 0, α3 = 1/2, α4 = 4/5,
α5 = 13/14 and α6 = 79/81, whereas the new exponents are β2 = 0, β3 = 1/2,
β4 = 3/4, β5 = 7/8 and β6 = 15/16.

It is still expected, however, that Ak(n) = no(1) for all k > 2. Nonetheless, even
the weaker statement that

∑
n6xAk(n) = x1+o(1) remains unproven for k > 3.

Using our argument, if one shows that Ak(n) = no(1) holds for some fixed k, we
get that Ak+`(n) 6 n1−1/2

`+o(1) for all ` > 1. In fact, any improvement on the
exponent in Ak(n) 6 nβk+o(1) can be propagated to an improvement on Ak+`(n).
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