HARMONIC NUMBERS: COMBINATORIAL IDENTITIES AND

 SERIES REPRESENTATIONSHorst Alzer
Morsbacher Straße 10, 51545 Waldbröl, Germany
h.alzer@gmx.de
Péter Kórus
Institute of Applied Pedagogy, JGyFE, University of Szeged, Szeged, Hungary korus.peter@szte.hu

Received: 6/10/23, Accepted: 11/17/23, Published: 12/8/23

Abstract

We present several combinatorial identities and infinite series involving the harmonic numbers. Among others, we show that

$$
\frac{2}{\binom{2 n}{n}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{8}}\binom{2 n}{n+k}=\sum_{k=1}^{n} \frac{H_{n}^{(2)}-H_{k-1}^{(2)}}{k^{2}} \sum_{\nu=1}^{k} \frac{H_{\nu}^{(2)}}{\nu^{2}} \quad(n \geq 1)
$$

and

$$
\frac{H_{n}}{n}=\sum_{\nu=0}^{\infty} \sum_{j=0}^{\nu}(-1)^{j} \mu^{j+1}\binom{\nu}{j} \frac{H_{n+j+1}}{n+j+1} \quad(n \geq 1,0<\mu<2)
$$

Here, $H_{n}=\sum_{k=1}^{n} 1 / k$ and $H_{n}^{(2)}=\sum_{k=1}^{n} 1 / k^{2}$ denote the harmonic numbers of order 1 and 2.

1. Introduction and Statement of the Results

I. The classical harmonic numbers are defined by

$$
H_{0}=0, \quad H_{n}=\sum_{k=1}^{n} \frac{1}{k} \quad(n \in \mathbb{N})
$$

and the generalized harmonic numbers of order $r \in \mathbb{C} \backslash\{0\}$ are given by

$$
H_{0}^{(r)}=0, \quad H_{n}^{(r)}=\sum_{k=1}^{n} \frac{1}{k^{r}} \quad(n \in \mathbb{N})
$$

H_{n} can be expressed in terms of the digamma function, $\psi=\Gamma^{\prime} / \Gamma$,

$$
H_{n}=\psi(n+1)+\gamma,
$$

where γ denotes Euler's constant. Moreover, we have the elegant integral representation

$$
\begin{equation*}
H_{n}=-n \int_{0}^{1} t^{n-1} \log (1-t) d t \tag{1.1}
\end{equation*}
$$

see Furdui [7].
The harmonic numbers have interesting applications in various fields, like, for example, number theory, analysis and combinatorics. Lagarias [10] discovered a remarkable connection between H_{n} and the famous Riemann hypothesis. He proved that the Riemann hypothesis is equivalent to the elementary inequality

$$
\sigma(n) \leq H_{n}+e^{H_{n}} \log \left(H_{n}\right) \quad(n \in \mathbb{N})
$$

where $\sigma(n)$ denotes the sum of the divisors of n.
The properties of the harmonic numbers have been studied by numerous authors. Hassani [8] discovered the following limit relation for Apéry's constant $\zeta(3)$,

$$
\begin{equation*}
\zeta(3)=\lim _{n \rightarrow \infty}\left(H_{n}^{3}-3 \sum_{k=1}^{n} \frac{H_{k-1} H_{k}}{k}\right) \tag{1.2}
\end{equation*}
$$

The reciprocity formula
$H_{n-1}+\log (n)+\frac{1}{n} \sum_{k=0}^{n-1} \psi\left(\frac{m+k}{n}\right)=H_{m-1}+\log (m)+\frac{1}{m} \sum_{k=0}^{m-1} \psi\left(\frac{n+k}{m}\right) \quad(m, n \in \mathbb{N})$
was given by Ramanujan [5, p. 185]. In the literature, we can find many interesting identities for sums and infinite series involving harmonic numbers. Here are a few examples:

$$
\begin{gathered}
\sum_{k=1}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(1+2 k H_{n+k}+2 k H_{n-k}-4 k H_{k}\right)=0 \\
\sum_{k=0}^{n}\binom{n}{k}^{2} H_{k} H_{n-k}=\binom{2 n}{n}\left(\left(H_{2 n}-2 H_{n}\right)^{2}+H_{n}^{(2)}-H_{2 n}^{(2)}\right) \\
\quad \sum_{k=1}^{\infty}(-1)^{k+1} \frac{H_{k}}{\binom{k+5}{5}^{2}}=\frac{75}{4} \zeta(3)-\frac{1075}{8} \zeta(2)+\frac{57175}{288} \\
\quad \sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}\left(H_{k}^{3}-3 H_{k} H_{k}^{(2)}+2 H_{k}^{(3)}\right)=6
\end{gathered}
$$

These identities are due to Ahlgren and Ono [1], Batir et al. [4], Sofo [11], Choi [6].
II. In 2015, Kórus [9] applied an identity given by Retkes to present the following combinatorial identities.

Proposition 1. For all integers $n \geq 1$, we have

$$
\begin{gather*}
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}\binom{n}{k}=H_{n} \tag{1.3}\\
\frac{2}{\binom{2 n}{n}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{2}}\binom{2 n}{n+k}=H_{n}^{(2)} \tag{1.4}\\
3(n!)^{2} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{3}} \frac{\binom{n}{k}}{\prod_{j=1}^{n}\left(k^{2}+k j+j^{2}\right)}=H_{n}^{(3)} \tag{1.5}
\end{gather*}
$$

One aim of this paper is to generalize these results.
Theorem 1. For all integers $m \geq 2$ and $n \geq 1$, we have

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{m}}\binom{n}{k}=\sum_{k_{m-1}=1}^{n} \frac{1}{k_{m-1}} \sum_{k_{m-2}=1}^{k_{m-1}} \frac{1}{k_{m-2}} \cdots \frac{1}{k_{2}} \sum_{k_{1}=1}^{k_{2}} \frac{1}{k_{1}} \sum_{k_{0}=1}^{k_{1}} \frac{1}{k_{0}} \tag{1.6}
\end{equation*}
$$

Theorem 2. For all integers $m \geq 2$ and $n \geq 1$, we have

$$
\begin{align*}
& \frac{2}{\binom{2 n}{n}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{2 m}}\binom{2 n}{n+k} \\
& \quad=\sum_{k_{m-1}=1}^{n} \frac{1}{k_{m-1}^{2}} \sum_{k_{m-2}=1}^{k_{m-1}} \frac{1}{k_{m-2}^{2}} \cdots \frac{1}{k_{2}^{2}} \sum_{k_{1}=1}^{k_{2}} \frac{1}{k_{1}^{2}} \sum_{k_{0}=1}^{k_{1}} \frac{1}{k_{0}^{2}} \tag{1.7}
\end{align*}
$$

Theorem 3. For all integers $m \geq 2$ and $n \geq 1$, we have

$$
\begin{align*}
3(n!)^{2} \sum_{k=1}^{n} & \frac{(-1)^{k-1}}{k^{3 m}} \frac{\binom{n}{k}}{\prod_{j=1}^{n}\left(k^{2}+k j+j^{2}\right)} \\
& =\sum_{k_{m-1}=1}^{n} \frac{1}{k_{m-1}^{3}} \sum_{k_{m-2}=1}^{k_{m-1}} \frac{1}{k_{m-2}^{3}} \cdots \frac{1}{k_{2}^{3}} \sum_{k_{1}=1}^{k_{2}} \frac{1}{k_{1}^{3}} \sum_{k_{0}=1}^{k_{1}} \frac{1}{k_{0}^{3}} . \tag{1.8}
\end{align*}
$$

From Theorems $1-3$ with $m=2,3,4$, we obtain the following identities.
Corollary 1. For all integers $n \geq 1$, we have

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{2}}\binom{n}{k}=\sum_{k=1}^{n} \frac{H_{k}}{k}, \tag{1.9}
\end{equation*}
$$

$$
\begin{gather*}
\frac{2}{\binom{2 n}{n}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{4}}\binom{2 n}{n+k}=\sum_{k=1}^{n} \frac{H_{k}^{(2)}}{k^{2}}, \tag{1.10}\\
3(n!)^{2} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{6}} \frac{\binom{n}{k}}{\prod_{j=1}^{n}\left(k^{2}+k j+j^{2}\right)}=\sum_{k=1}^{n} \frac{H_{k}^{(3)}}{k^{3}}, \tag{1.11}\\
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{3}}\binom{n}{k}=\sum_{k=1}^{n} \frac{H_{k}\left(H_{n}-H_{k-1}\right)}{k}, \tag{1.12}\\
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{4}}\binom{n}{k}=\sum_{k=1}^{n} \frac{H_{n}-H_{k-1}}{k} \sum_{\nu=1}^{k} \frac{H_{\nu}}{\nu}, \tag{1.13}\\
\frac{2}{\binom{2 n}{n}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{6}}\binom{2 n}{n+k}=\sum_{k=1}^{n} \frac{H_{k}^{(2)}\left(H_{n}^{(2)}-H_{k-1}^{(2)}\right.}{k^{2}}, \tag{1.14}\\
\frac{2}{\binom{2 n}{n}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{8}}\binom{2 n}{n+k}=\sum_{k=1}^{n} \frac{H_{n}^{(2)}-H_{k-1}^{(2)}}{k^{2}} \sum_{\nu=1}^{k} \frac{H_{\nu}^{(2)}}{\nu^{2}} . \tag{1.15}\\
3(n!)^{2} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{9}} \frac{n}{\prod_{j=1}^{n}\left(k^{2}+k j+j^{2}\right)}=\sum_{k=1}^{n} \frac{H_{k}^{(3)}\left(H_{n}^{(3)}-H_{k-1}^{(3)}\right)}{k^{3}}, \tag{1.16}\\
3(n!)^{2} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{12}} \frac{\binom{n}{k}}{\prod_{j=1}^{n}\left(k^{2}+k j+j^{2}\right)}=\sum_{k=1}^{n} \frac{H_{n}^{(3)}-H_{k-1}^{(3)}}{k^{3}} \sum_{\nu=1}^{k} \frac{H_{\nu}^{(3)}}{\nu^{3}} . \tag{1.17}
\end{gather*}
$$

Remark 1. Using (1.3), (1.9) and (1.12) gives

$$
H_{n}^{3}-3 \sum_{k=1}^{n} \frac{H_{k-1} H_{k}}{k}=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}\binom{n}{k}\left(H_{n}^{2}-\frac{3 H_{n}}{k}+\frac{3}{k^{2}}\right)
$$

so that (1.2) leads to

$$
\zeta(3)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}\binom{n}{k}\left(H_{n}^{2}-\frac{3 H_{n}}{k}+\frac{3}{k^{2}}\right) .
$$

III. The second aim is to provide one-parameter series representations for H_{n} / n, the unweighted arithmetic mean of the first n unit fractions, and for the sum $H_{1}+$ $H_{2} / 2+\cdots+H_{n} / n$.

Theorem 4. For all integers $n \geq 1$ and real numbers $\lambda<1 / 2$ and $\mu \in(0,2)$, we have

$$
\begin{equation*}
\frac{H_{n}}{n}=\sum_{\nu=0}^{\infty} \frac{1}{(1-\lambda)^{\nu+1}} \sum_{j=0}^{\nu}(-\lambda)^{\nu-j}\binom{\nu}{j} S(n, j) \tag{1.18}
\end{equation*}
$$

with

$$
S(n, j)=\sum_{k=0}^{n} \frac{(-1)^{k}}{(k+j+1)^{2}}\binom{n}{k}
$$

and

$$
\begin{equation*}
\frac{H_{n}}{n}=\sum_{\nu=0}^{\infty} \sum_{j=0}^{\nu}(-1)^{j} \mu^{j+1}\binom{\nu}{j} \frac{H_{n+j+1}}{n+j+1} \tag{1.19}
\end{equation*}
$$

Theorem 5. For all integers $n \geq 1$ and real numbers $\lambda<1 / 2$ and $\mu \in(0,2)$, we have

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{H_{k}}{k}=\sum_{\nu=0}^{\infty} \frac{1}{(1-\lambda)^{\nu+1}} \sum_{j=0}^{\nu}(-\lambda)^{\nu-j}\binom{\nu}{j}\left(\frac{H_{j+1}}{j+1}-\frac{H_{n+j+1}}{n+j+1}\right) \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{H_{k}}{k}=\sum_{\nu=0}^{\infty} \sum_{j=0}^{\nu}(-\mu)^{j+1}\binom{\nu}{j} T(n, j) \tag{1.21}
\end{equation*}
$$

with

$$
T(n, j)=\sum_{k=1}^{n} \frac{(-1)^{k}}{(k+j+1)^{2}}\binom{n}{k}
$$

We highlight two special cases. Setting $\mu=1$ in (1.19) and $\lambda=-1$ in (1.20), we obtain the following identities.

Corollary 2. For all integers $n \geq 1$, we have

$$
\frac{H_{n}}{n}=\sum_{\nu=0}^{\infty} \sum_{j=0}^{\nu}(-1)^{j}\binom{\nu}{j} \frac{H_{n+j+1}}{n+j+1}
$$

and

$$
\sum_{k=1}^{n} \frac{H_{k}}{k}=\sum_{\nu=0}^{\infty} \frac{1}{2^{\nu+1}} \sum_{j=0}^{\nu}\binom{\nu}{j}\left(\frac{H_{j+1}}{j+1}-\frac{H_{n+j+1}}{n+j+1}\right)
$$

2. Proofs

We apply a clever variant of the classical proof by induction to establish Theorems $1-3$. This method was introduced by Turán [12] to prove an inequality for a sine polynomial with binomial coefficients.

Method. We want to show that $D_{m, n}=0$ for all integers $m \geq 2$ and $n \geq 1$.
Step 1. We prove that $D_{m, 1}=0$ for $m \geq 2$ and that $D_{1, n}=0$ for $n \geq 1$.
Step 2. Let $m \geq 2, n \geq 1$. We prove that if $D_{m, n}=0$ and $D_{m-1, n+1}=0$, then $D_{m, n+1}=0$.

From Step 1 and Step 2 we conclude that $D_{m, n}=0$ for $m \geq 2$ and $n \geq 1$.

Proof of Theorem 1. We call $L_{m, n}^{(1)}$ the left-hand side of (1.6) and $R_{m, n}^{(1)}$ the righthand side of (1.6).
Step 1. We have $L_{m, 1}^{(1)}=R_{m, 1}^{(1)}=1$ for $m \geq 2$, and from (1.3) we obtain $L_{1, n}^{(1)}=R_{1, n}^{(1)}$ for $n \geq 1$.
Step 2. Let $m \geq 2, n \geq 1$ and $L_{m, n}^{(1)}=R_{m, n}^{(1)}, L_{m-1, n+1}^{(1)}=R_{m-1, n+1}^{(1)}$. Then we obtain

$$
\begin{aligned}
L_{m, n+1}^{(1)} & =\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k^{m}}\binom{n+1}{k} \\
& =\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k^{m}}\left[\binom{n}{k}+\binom{n}{k-1}\right] \\
& =\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{m}}\binom{n}{k}+\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k^{m}}\binom{n}{k-1} \\
& =L_{m, n}^{(1)}+\frac{1}{n+1}\left[\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{m-1}}\binom{n+1}{k}+\frac{(-1)^{n}}{(n+1)^{m-1}}\right] \\
& =L_{m, n}^{(1)}+\frac{1}{n+1} \sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k^{m-1}}\binom{n+1}{k} \\
& =L_{m, n}^{(1)}+\frac{1}{n+1} L_{m-1, n+1}^{(1)} \\
& =R_{m, n}^{(1)}+\frac{1}{n+1} R_{m-1, n+1}^{(1)} \\
& =R_{m, n+1}^{(1)} \cdot
\end{aligned}
$$

Proof of Theorem 2. Let $L_{m, n}^{(2)}$ and $R_{m, n}^{(2)}$ be the expressions on the left-hand side and on the right-hand side of (1.7), respectively.
Step 1. We have $L_{m, 1}^{(2)}=R_{m, 1}^{(2)}=1$ for $m \geq 2$, and using (1.4) gives $L_{1, n}^{(2)}=R_{1, n}^{(2)}$ for $n \geq 1$.
Step 2. Let $m \geq 2, n \geq 1$. We assume that $L_{m, n}^{(2)}=R_{m, n}^{(2)}, L_{m-1, n+1}^{(2)}=R_{m-1, n+1}^{(2)}$. Applying the identity

$$
\frac{\binom{2 n+2}{n+1+k}}{\binom{n+2}{n+1}}=\frac{\binom{2 n}{n+k}}{\binom{2 n}{n}}+\left(\frac{k}{n+1}\right)^{2} \frac{\binom{2 n+2}{n+1+k}}{\binom{2 n+2}{n+1}} \quad(1 \leq k \leq n+1)
$$

yields

$$
\begin{aligned}
L_{m, n+1}^{(2)}= & \frac{2}{\binom{2 n+2}{n+1}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{2 m}}\binom{2 n+2}{n+1+k}+\frac{2(-1)^{n}}{(n+1)^{2 m}\binom{2 n+2}{n+1}} \\
= & \frac{2}{\binom{2 n}{n}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{2 m}}\binom{2 n}{n+k}+\frac{2}{(n+1)^{2}\binom{2 n+2}{n+1}} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{2 m-2}}\binom{2 n+2}{n+1+k} \\
& +\frac{2(-1)^{n}}{(n+1)^{2 m(2 n+2} \begin{array}{c}
2 n+1 \\
n
\end{array}} \\
= & L_{m, n}^{(2)}+\frac{1}{(n+1)^{2}} L_{m-1, n+1}^{(2)} \\
= & R_{m, n}^{(2)}+\frac{1}{(n+1)^{2}} R_{m-1, n+1}^{(2)} \\
= & R_{m, n+1}^{(2)} .
\end{aligned}
$$

Proof of Theorem 3. We denote by $L_{m, n}^{(3)}$ and $R_{m, n}^{(3)}$ the left-hand side and the righthand side of (1.8), respectively.
Step 1. We have $L_{m, 1}^{(3)}=R_{m, 1}^{(3)}=1$ for $m \geq 1$. Using (1.5) gives $L_{1, n}^{(3)}=R_{1, n}^{(3)}$ for $n \geq 1$.
Step 2. Let $m \geq 2, n \geq 1$ and $L_{m, n}^{(3)}=R_{m, n}^{(3)}, L_{m-1, n+1}^{(3)}=R_{m-1, n+1}^{(3)}$. We apply the identity

$$
\frac{(n+1)^{2}\binom{n+1}{k}}{\prod_{j=1}^{n+1}\left(k^{2}+k j+j^{2}\right)}=\frac{\binom{n}{k}}{\prod_{j=1}^{n}\left(k^{2}+k j+j^{2}\right)}+\frac{k^{3}\binom{n+1}{k}}{(n+1) \prod_{j=1}^{n+1}\left(k^{2}+k j+j^{2}\right)}
$$

for $1 \leq k \leq n+1$, and obtain

$$
\begin{aligned}
L_{m, n+1}^{(3)}= & 3((n+1)!)^{2} \sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k^{3 m}} \frac{\binom{n+1}{k}}{\prod_{j=1}^{n+1}\left(k^{2}+k j+j^{2}\right)} \\
= & 3(n!)^{2} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{3 m}} \frac{\binom{n}{k}}{\prod_{j=1}^{n}\left(k^{2}+k j+j^{2}\right)} \\
& +\frac{3(n!)^{2}}{n+1} \sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k^{3 m-3}} \frac{\binom{n+1}{k}}{\prod_{j=1}^{n+1}\left(k^{2}+k j+j^{2}\right)} \\
= & L_{m, n}^{(3)}+\frac{1}{(n+1)^{3}} L_{m-1, n+1}^{(3)} \\
= & R_{m, n}^{(3)}+\frac{1}{(n+1)^{3}} R_{m-1, n+1}^{(3)} \\
= & R_{m, n+1}^{(3)} .
\end{aligned}
$$

Proof of Corollary 1. The validity of (1.9)-(1.11) is obvious. We only prove (1.12) and (1.13). The proofs of (1.14)-(1.17) are similar. Applying (1.6) with $m=3$ and the summation formula

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{\nu=1}^{k} A(k, \nu)=\sum_{k=1}^{n} \sum_{\nu=k}^{n} A(\nu, k) \tag{2.1}
\end{equation*}
$$

gives

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{3}}\binom{n}{k} & =\sum_{k=1}^{n} \frac{1}{k} \sum_{\nu=1}^{k} \frac{H_{\nu}}{\nu}=\sum_{k=1}^{n} \sum_{\nu=k}^{n} \frac{H_{k}}{\nu k}=\sum_{k=1}^{n} \frac{H_{k}}{k} \sum_{\nu=k}^{n} \frac{1}{\nu} \\
& =\sum_{k=1}^{n} \frac{H_{k}\left(H_{n}-H_{k-1}\right)}{k}
\end{aligned}
$$

Next, we use (1.6) with $m=4$ and (2.1). This leads to

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{4}}\binom{n}{k} & =\sum_{k_{3}=1}^{n} \frac{1}{k_{3}} \sum_{k_{2}=1}^{k_{3}} \frac{1}{k_{2}} \sum_{k_{1}=1}^{k_{2}} \frac{H_{k_{1}}}{k_{1}} \\
& =\sum_{k=1}^{n} \sum_{\nu=1}^{k} \sum_{j=1}^{\nu} \frac{H_{j}}{k \nu j} \\
& =\sum_{k=1}^{n} \sum_{\nu=k}^{n} \sum_{j=1}^{k} \frac{H_{j}}{k \nu j} \\
& =\sum_{k=1}^{n} \frac{1}{k} \sum_{\nu=k}^{n} \frac{1}{\nu} \sum_{j=1}^{k} \frac{H_{j}}{j} \\
& =\sum_{k=1}^{n} \frac{H_{n}-H_{k-1}}{k} \sum_{j=1}^{k} \frac{H_{j}}{j}
\end{aligned}
$$

To prove Theorems 4 and 5 we apply a method which has been used in other papers to deduce series representations for certain special functions and for mathematical constants, like, for example, γ, π and Catalan's constant G; see Alzer and Koumandos [2], Alzer and Richards [3].

Proof of Theorem 4. (i) Let $0<x<1$ and $\lambda<1 / 2$. Then $-1<(x-\lambda) /(1-\lambda)<1$. It follows that

$$
\begin{equation*}
\frac{1}{1-x}=\frac{1}{1-\lambda} \cdot \frac{1}{1-(x-\lambda) /(1-\lambda)}=\frac{1}{1-\lambda} \sum_{\nu=0}^{\infty}\left(\frac{x-\lambda}{1-\lambda}\right)^{\nu} \tag{2.2}
\end{equation*}
$$

From (1.1) and (2.2) we obtain

$$
\begin{align*}
\frac{H_{n}}{n} & =-\int_{0}^{1} \frac{(1-x)^{n} \log (x)}{1-x} d x \\
& =-\int_{0}^{1} \frac{1}{1-\lambda} \sum_{\nu=0}^{\infty}\left(\frac{x-\lambda}{1-\lambda}\right)^{\nu}(1-x)^{n} \log (x) d x \\
& =\sum_{\nu=0}^{\infty} \frac{1}{(1-\lambda)^{\nu+1}} U(\nu, n) \tag{2.3}
\end{align*}
$$

with

$$
\begin{align*}
U(\nu, n) & =-\int_{0}^{1}(x-\lambda)^{\nu}(1-x)^{n} \log (x) d x \\
& =-\int_{0}^{1} \sum_{j=0}^{\nu}\binom{\nu}{j}(-\lambda)^{\nu-j} x^{j}(1-x)^{n} \log (x) d x \\
& =\sum_{j=0}^{\nu}\binom{\nu}{j}(-\lambda)^{\nu-j} S(n, j) \tag{2.4}
\end{align*}
$$

where

$$
\begin{align*}
S(n, j) & =-\int_{0}^{1} x^{j}(1-x)^{n} \log (x) d x \\
& =-\int_{0}^{1} x^{j} \sum_{k=0}^{n}\binom{n}{k}(-x)^{k} \log (x) d x \\
& =-\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \int_{0}^{1} x^{j+k} \log (x) d x \tag{2.5}
\end{align*}
$$

Since

$$
\begin{equation*}
\int_{0}^{1} x^{m} \log (x) d x=-\frac{1}{(m+1)^{2}} \quad(0 \leq m \in \mathbb{Z}) \tag{2.6}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S(n, j)=\sum_{k=0}^{n} \frac{(-1)^{k}}{(k+j+1)^{2}}\binom{n}{k} \tag{2.7}
\end{equation*}
$$

From (2.3), (2.4) and (2.7) we conclude that (1.18) holds.
(ii) Let $0<t<1$ and $0<\mu<2$. Since $-1<1-\mu t<1$, we obtain

$$
\begin{equation*}
\frac{1}{t}=\frac{\mu}{1-(1-\mu t)}=\mu \sum_{\nu=0}^{\infty}(1-\mu t)^{\nu} \tag{2.8}
\end{equation*}
$$

It follows from (1.1) and (2.6) that

$$
\begin{aligned}
\frac{H_{n}}{n} & =-\int_{0}^{1} \frac{t^{n} \log (1-t)}{t} d t \\
& =-\int_{0}^{1} t^{n} \log (1-t) \mu \sum_{\nu=0}^{\infty}(1-\mu t)^{\nu} \\
& =-\mu \sum_{\nu=0}^{\infty} \int_{0}^{1} t^{n} \log (1-t) \sum_{j=0}^{\nu}\binom{\nu}{j}(-\mu t)^{j} d t \\
& =-\mu \sum_{\nu=0}^{\infty} \sum_{j=0}^{\nu}(-\mu)^{j}\binom{\nu}{j} \int_{0}^{1} t^{n+j} \log (1-t) d t \\
& =\sum_{\nu=0}^{\infty} \sum_{j=0}^{\nu}(-1)^{j} \mu^{j+1}\binom{\nu}{j} \frac{H_{n+j+1}}{n+j+1} .
\end{aligned}
$$

Proof of Theorem 5. (i) Using (1.1) and (2.2) gives

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{H_{k}}{k} & =-\int_{0}^{1} \log (1-t) \sum_{k=1}^{n} t^{k-1} d t \\
& =-\int_{0}^{1} \frac{\log (1-t)\left(1-t^{n}\right)}{1-t} d t \\
& =-\int_{0}^{1} \log (1-t) \frac{1-t^{n}}{1-\lambda} \sum_{\nu=0}^{\infty}\left(\frac{t-\lambda}{1-\lambda}\right)^{\nu} d t \\
& =-\sum_{\nu=0}^{\infty} \frac{1}{(1-\lambda)^{\nu+1}} \int_{0}^{1} \log (1-t)\left(1-t^{n}\right)(t-\lambda)^{\nu} d t \\
& =\sum_{\nu=0}^{\infty} \frac{1}{(1-\lambda)^{\nu+1}} \sum_{j=0}^{\nu}\binom{\nu}{j}(-\lambda)^{\nu-j}\left(\int_{0}^{1} t^{n+j} \log (1-t) d t-\int_{0}^{1} t^{j} \log (1-t) d t\right) \\
& =\sum_{\nu=0}^{\infty} \frac{1}{(1-\lambda)^{\nu+1}} \sum_{j=0}^{\nu}\binom{\nu}{j}(-\lambda)^{\nu-j}\left(\frac{H_{j+1}}{j+1}-\frac{H_{n+j+1}}{n+j+1}\right) .
\end{aligned}
$$

(ii) We apply (1.1) and (2.8). Then

$$
\begin{align*}
\sum_{k=1}^{n} \frac{H_{k}}{k} & =-\int_{0}^{1} \frac{\left(1-t^{n}\right) \log (1-t)}{1-t} d t \\
& =-\int_{0}^{1} \frac{\left(1-(1-x)^{n}\right) \log (x)}{x} d x \\
& =-\int_{0}^{1} \log (x)\left(1-(1-x)^{n}\right) \mu \sum_{\nu=0}^{\infty}(1-\mu x)^{\nu} d x \\
& =-\mu \sum_{\nu=0}^{\infty} \int_{0}^{1} \log (x)\left(1-(1-x)^{n}\right)(1-\mu x)^{\nu} d x \\
& =-\mu \sum_{\nu=0}^{\infty} \sum_{j=0}^{\nu}\binom{\nu}{j}(-\mu)^{j} T(n, j) \tag{2.9}
\end{align*}
$$

with

$$
T(n, j)=\int_{0}^{1} \log (x)\left(1-(1-x)^{n}\right) x^{j} d x
$$

Using (2.5), (2.6) and (2.7) gives

$$
\begin{equation*}
T(n, j)=S(n, j)-\frac{1}{(j+1)^{2}}=\sum_{k=1}^{n} \frac{(-1)^{k}}{(k+j+1)^{2}}\binom{n}{k} \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10) we conclude that (1.21) holds.

References

[1] S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), 187-212.
[2] H. Alzer and S. Koumandos, Series representations for γ and other mathematical constants, Anal. Math. 34 (2008), 1-8.
[3] H. Alzer and K. C. Richards, Series representations for special functions and mathematical constants, Ramanujan J. 40 (2016), 291-310.
[4] N. Batir, S. Sorgun and S. Atpinar, On some binomial coefficient identities with applications, J. Integer Seq. 26 (2023), Article 23.4.4.
[5] B. Berndt, Ramanujan's Notebooks: Part I, Springer, New York, 1985.
[6] J. Choi, Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers, Abstr. Appl. Anal. 2014 (2014), Article ID 501906.
[7] O. Furdui, Series involving products of two harmonic numbers, Math. Mag. 84 (2011), 371-377.
[8] M. Hassani, 3-dimensional L-summing method, RGMIA Research Report Collection 8(1) (2005), Article 10.
[9] P. Kórus, Some applications of Retkes' identity, Arch. Math. 104 (2015), 217-222.
[10] J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534-543.
[11] A. Sofo, Identities for alternating inverse squared binomial and harmonic number sums, Mediterr. J. Math. 13 (2016), 1407-1418.
[12] P. Turán, Über die arithmetischen Mittel der Fourierreihe, J. London Math. Soc. 10 (1935), 277-280.

