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Abstract

We present several combinatorial identities and infinite series involving the harmonic
numbers. Among others, we show that

2(
2n
n

) n∑
k=1

(−1)k−1

k8

(
2n

n+ k

)
=

n∑
k=1

H
(2)
n −H(2)

k−1
k2

k∑
ν=1

H
(2)
ν

ν2
(n ≥ 1)

and
Hn

n
=

∞∑
ν=0

ν∑
j=0

(−1)jµj+1

(
ν

j

)
Hn+j+1

n+ j + 1
(n ≥ 1, 0 < µ < 2).

Here, Hn =
∑n
k=1 1/k and H

(2)
n =

∑n
k=1 1/k2 denote the harmonic numbers of

order 1 and 2.

1. Introduction and Statement of the Results

I. The classical harmonic numbers are defined by

H0 = 0, Hn =

n∑
k=1

1

k
(n ∈ N),

and the generalized harmonic numbers of order r ∈ C \ {0} are given by

H
(r)
0 = 0, H(r)

n =

n∑
k=1

1

kr
(n ∈ N).
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Hn can be expressed in terms of the digamma function, ψ = Γ′/Γ,

Hn = ψ(n+ 1) + γ,

where γ denotes Euler’s constant. Moreover, we have the elegant integral represen-

tation

Hn = −n
∫ 1

0

tn−1 log(1− t)dt, (1.1)

see Furdui [7].

The harmonic numbers have interesting applications in various fields, like, for

example, number theory, analysis and combinatorics. Lagarias [10] discovered a

remarkable connection between Hn and the famous Riemann hypothesis. He proved

that the Riemann hypothesis is equivalent to the elementary inequality

σ(n) ≤ Hn + eHn log(Hn) (n ∈ N),

where σ(n) denotes the sum of the divisors of n.

The properties of the harmonic numbers have been studied by numerous authors.

Hassani [8] discovered the following limit relation for Apéry’s constant ζ(3),

ζ(3) = lim
n→∞

(
H3
n − 3

n∑
k=1

Hk−1Hk

k

)
. (1.2)

The reciprocity formula

Hn−1+log(n)+
1

n

n−1∑
k=0

ψ
(m+ k

n

)
= Hm−1+log(m)+

1

m

m−1∑
k=0

ψ
(n+ k

m

)
(m,n ∈ N)

was given by Ramanujan [5, p. 185]. In the literature, we can find many interesting

identities for sums and infinite series involving harmonic numbers. Here are a few

examples:

n∑
k=1

(
n

k

)2(
n+ k

k

)2(
1 + 2kHn+k + 2kHn−k − 4kHk

)
= 0,

n∑
k=0

(
n

k

)2

HkHn−k =

(
2n

n

)(
(H2n − 2Hn)2 +H(2)

n −H
(2)
2n

)
,

∞∑
k=1

(−1)k+1 Hk(
k+5
5

)2 =
75

4
ζ(3)− 1075

8
ζ(2) +

57175

288
,

∞∑
k=1

1

(k + 1)(k + 2)

(
H3
k − 3HkH

(2)
k + 2H

(3)
k

)
= 6.
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These identities are due to Ahlgren and Ono [1], Batir et al. [4], Sofo [11], Choi [6].

II. In 2015, Kórus [9] applied an identity given by Retkes to present the following

combinatorial identities.

Proposition 1. For all integers n ≥ 1, we have

n∑
k=1

(−1)k−1

k

(
n

k

)
= Hn, (1.3)

2(
2n
n

) n∑
k=1

(−1)k−1

k2

(
2n

n+ k

)
= H(2)

n , (1.4)

3(n!)2
n∑
k=1

(−1)k−1

k3

(
n
k

)∏n
j=1(k2 + kj + j2)

= H(3)
n . (1.5)

One aim of this paper is to generalize these results.

Theorem 1. For all integers m ≥ 2 and n ≥ 1, we have

n∑
k=1

(−1)k−1

km

(
n

k

)
=

n∑
km−1=1

1

km−1

km−1∑
km−2=1

1

km−2
· · · 1

k2

k2∑
k1=1

1

k1

k1∑
k0=1

1

k0
. (1.6)

Theorem 2. For all integers m ≥ 2 and n ≥ 1, we have

2(
2n
n

) n∑
k=1

(−1)k−1

k2m

(
2n

n+ k

)

=

n∑
km−1=1

1

k2m−1

km−1∑
km−2=1

1

k2m−2
· · · 1

k22

k2∑
k1=1

1

k21

k1∑
k0=1

1

k20
. (1.7)

Theorem 3. For all integers m ≥ 2 and n ≥ 1, we have

3(n!)2
n∑
k=1

(−1)k−1

k3m

(
n
k

)∏n
j=1(k2 + kj + j2)

=

n∑
km−1=1

1

k3m−1

km−1∑
km−2=1

1

k3m−2
· · · 1

k32

k2∑
k1=1

1

k31

k1∑
k0=1

1

k30
. (1.8)

From Theorems 1–3 with m = 2, 3, 4, we obtain the following identities.

Corollary 1. For all integers n ≥ 1, we have

n∑
k=1

(−1)k−1

k2

(
n

k

)
=

n∑
k=1

Hk

k
, (1.9)
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2(
2n
n

) n∑
k=1

(−1)k−1

k4

(
2n

n+ k

)
=

n∑
k=1

H
(2)
k

k2
, (1.10)

3(n!)2
n∑
k=1

(−1)k−1

k6

(
n
k

)∏n
j=1(k2 + kj + j2)

=

n∑
k=1

H
(3)
k

k3
, (1.11)

n∑
k=1

(−1)k−1

k3

(
n

k

)
=

n∑
k=1

Hk(Hn −Hk−1)

k
, (1.12)

n∑
k=1

(−1)k−1

k4

(
n

k

)
=

n∑
k=1

Hn −Hk−1

k

k∑
ν=1

Hν

ν
, (1.13)

2(
2n
n

) n∑
k=1

(−1)k−1

k6

(
2n

n+ k

)
=

n∑
k=1

H
(2)
k

(
H

(2)
n −H(2)

k−1
)

k2
, (1.14)

2(
2n
n

) n∑
k=1

(−1)k−1

k8

(
2n

n+ k

)
=

n∑
k=1

H
(2)
n −H(2)

k−1
k2

k∑
ν=1

H
(2)
ν

ν2
. (1.15)

3(n!)2
n∑
k=1

(−1)k−1

k9

(
n
k

)∏n
j=1(k2 + kj + j2)

=

n∑
k=1

H
(3)
k

(
H

(3)
n −H(3)

k−1
)

k3
, (1.16)

3(n!)2
n∑
k=1

(−1)k−1

k12

(
n
k

)∏n
j=1(k2 + kj + j2)

=

n∑
k=1

H
(3)
n −H(3)

k−1
k3

k∑
ν=1

H
(3)
ν

ν3
. (1.17)

Remark 1. Using (1.3), (1.9) and (1.12) gives

H3
n − 3

n∑
k=1

Hk−1Hk

k
=

n∑
k=1

(−1)k−1

k

(
n

k

)(
H2
n −

3Hn

k
+

3

k2

)
,

so that (1.2) leads to

ζ(3) = lim
n→∞

n∑
k=1

(−1)k−1

k

(
n

k

)(
H2
n −

3Hn

k
+

3

k2

)
.

III. The second aim is to provide one-parameter series representations for Hn/n,

the unweighted arithmetic mean of the first n unit fractions, and for the sum H1 +

H2/2 + · · ·+Hn/n.

Theorem 4. For all integers n ≥ 1 and real numbers λ < 1/2 and µ ∈ (0, 2), we

have
Hn

n
=

∞∑
ν=0

1

(1− λ)ν+1

ν∑
j=0

(−λ)ν−j
(
ν

j

)
S(n, j) (1.18)
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with

S(n, j) =

n∑
k=0

(−1)k

(k + j + 1)2

(
n

k

)
and

Hn

n
=

∞∑
ν=0

ν∑
j=0

(−1)jµj+1

(
ν

j

)
Hn+j+1

n+ j + 1
. (1.19)

Theorem 5. For all integers n ≥ 1 and real numbers λ < 1/2 and µ ∈ (0, 2), we

have
n∑
k=1

Hk

k
=

∞∑
ν=0

1

(1− λ)ν+1

ν∑
j=0

(−λ)ν−j
(
ν

j

)(Hj+1

j + 1
− Hn+j+1

n+ j + 1

)
(1.20)

and
n∑
k=1

Hk

k
=

∞∑
ν=0

ν∑
j=0

(−µ)j+1

(
ν

j

)
T (n, j) (1.21)

with

T (n, j) =

n∑
k=1

(−1)k

(k + j + 1)2

(
n

k

)
.

We highlight two special cases. Setting µ = 1 in (1.19) and λ = −1 in (1.20), we

obtain the following identities.

Corollary 2. For all integers n ≥ 1, we have

Hn

n
=

∞∑
ν=0

ν∑
j=0

(−1)j
(
ν

j

)
Hn+j+1

n+ j + 1

and
n∑
k=1

Hk

k
=

∞∑
ν=0

1

2ν+1

ν∑
j=0

(
ν

j

)(Hj+1

j + 1
− Hn+j+1

n+ j + 1

)
.

2. Proofs

We apply a clever variant of the classical proof by induction to establish Theorems

1–3. This method was introduced by Turán [12] to prove an inequality for a sine

polynomial with binomial coefficients.

Method. We want to show that Dm,n = 0 for all integers m ≥ 2 and n ≥ 1.

Step 1. We prove that Dm,1 = 0 for m ≥ 2 and that D1,n = 0 for n ≥ 1.

Step 2. Let m ≥ 2, n ≥ 1. We prove that if Dm,n = 0 and Dm−1,n+1 = 0, then

Dm,n+1 = 0.

From Step 1 and Step 2 we conclude that Dm,n = 0 for m ≥ 2 and n ≥ 1.
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Proof of Theorem 1. We call L
(1)
m,n the left-hand side of (1.6) and R

(1)
m,n the right-

hand side of (1.6).

Step 1. We have L
(1)
m,1 = R

(1)
m,1 = 1 for m ≥ 2, and from (1.3) we obtain L

(1)
1,n = R

(1)
1,n

for n ≥ 1.

Step 2. Let m ≥ 2, n ≥ 1 and L
(1)
m,n = R

(1)
m,n, L

(1)
m−1,n+1 = R

(1)
m−1,n+1. Then we

obtain

L
(1)
m,n+1 =

n+1∑
k=1

(−1)k−1

km

(
n+ 1

k

)

=

n+1∑
k=1

(−1)k−1

km

[(n
k

)
+

(
n

k − 1

)]
=

n∑
k=1

(−1)k−1

km

(
n

k

)
+

n+1∑
k=1

(−1)k−1

km

(
n

k − 1

)

= L(1)
m,n +

1

n+ 1

[ n∑
k=1

(−1)k−1

km−1

(
n+ 1

k

)
+

(−1)n

(n+ 1)m−1

]
= L(1)

m,n +
1

n+ 1

n+1∑
k=1

(−1)k−1

km−1

(
n+ 1

k

)
= L(1)

m,n +
1

n+ 1
L
(1)
m−1,n+1

= R(1)
m,n +

1

n+ 1
R

(1)
m−1,n+1

= R
(1)
m,n+1.

Proof of Theorem 2. Let L
(2)
m,n and R

(2)
m,n be the expressions on the left-hand side

and on the right-hand side of (1.7), respectively.

Step 1. We have L
(2)
m,1 = R

(2)
m,1 = 1 for m ≥ 2, and using (1.4) gives L

(2)
1,n = R

(2)
1,n

for n ≥ 1.

Step 2. Let m ≥ 2, n ≥ 1. We assume that L
(2)
m,n = R

(2)
m,n, L

(2)
m−1,n+1 = R

(2)
m−1,n+1.

Applying the identity(
2n+2
n+1+k

)(
2n+2
n+1

) =

(
2n
n+k

)(
2n
n

) +
( k

n+ 1

)2 ( 2n+2
n+1+k

)(
2n+2
n+1

) (1 ≤ k ≤ n+ 1)
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yields

L
(2)
m,n+1 =

2(
2n+2
n+1

) n∑
k=1

(−1)k−1

k2m

(
2n+ 2

n+ 1 + k

)
+

2(−1)n

(n+ 1)2m
(
2n+2
n+1

)
=

2(
2n
n

) n∑
k=1

(−1)k−1

k2m

(
2n

n+ k

)
+

2

(n+ 1)2
(
2n+2
n+1

) n∑
k=1

(−1)k−1

k2m−2

(
2n+ 2

n+ 1 + k

)
+

2(−1)n

(n+ 1)2m
(
2n+2
n+1

)
=L(2)

m,n +
1

(n+ 1)2
L
(2)
m−1,n+1

=R(2)
m,n +

1

(n+ 1)2
R

(2)
m−1,n+1

=R
(2)
m,n+1.

Proof of Theorem 3. We denote by L
(3)
m,n and R

(3)
m,n the left-hand side and the right-

hand side of (1.8), respectively.

Step 1. We have L
(3)
m,1 = R

(3)
m,1 = 1 for m ≥ 1. Using (1.5) gives L

(3)
1,n = R

(3)
1,n for

n ≥ 1.

Step 2. Let m ≥ 2, n ≥ 1 and L
(3)
m,n = R

(3)
m,n, L

(3)
m−1,n+1 = R

(3)
m−1,n+1. We apply

the identity

(n+ 1)2
(
n+1
k

)∏n+1
j=1 (k2 + kj + j2)

=

(
n
k

)∏n
j=1(k2 + kj + j2)

+
k3
(
n+1
k

)
(n+ 1)

∏n+1
j=1 (k2 + kj + j2)

for 1 ≤ k ≤ n+ 1, and obtain

L
(3)
m,n+1 = 3((n+ 1)!)2

n+1∑
k=1

(−1)k−1

k3m

(
n+1
k

)∏n+1
j=1 (k2 + kj + j2)

= 3(n!)2
n∑
k=1

(−1)k−1

k3m

(
n
k

)∏n
j=1(k2 + kj + j2)

+
3(n!)2

n+ 1

n+1∑
k=1

(−1)k−1

k3m−3

(
n+1
k

)∏n+1
j=1 (k2 + kj + j2)

=L(3)
m,n +

1

(n+ 1)3
L
(3)
m−1,n+1

=R(3)
m,n +

1

(n+ 1)3
R

(3)
m−1,n+1

=R
(3)
m,n+1.
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Proof of Corollary 1. The validity of (1.9)–(1.11) is obvious. We only prove (1.12)

and (1.13). The proofs of (1.14)–(1.17) are similar. Applying (1.6) with m = 3 and

the summation formula

n∑
k=1

k∑
ν=1

A(k, ν) =

n∑
k=1

n∑
ν=k

A(ν, k) (2.1)

gives

n∑
k=1

(−1)k−1

k3

(
n

k

)
=

n∑
k=1

1

k

k∑
ν=1

Hν

ν
=

n∑
k=1

n∑
ν=k

Hk

νk
=

n∑
k=1

Hk

k

n∑
ν=k

1

ν

=
n∑
k=1

Hk(Hn −Hk−1)

k
.

Next, we use (1.6) with m = 4 and (2.1). This leads to

n∑
k=1

(−1)k−1

k4

(
n

k

)
=

n∑
k3=1

1

k3

k3∑
k2=1

1

k2

k2∑
k1=1

Hk1

k1

=

n∑
k=1

k∑
ν=1

ν∑
j=1

Hj

kνj

=

n∑
k=1

n∑
ν=k

k∑
j=1

Hj

kνj

=

n∑
k=1

1

k

n∑
ν=k

1

ν

k∑
j=1

Hj

j

=

n∑
k=1

Hn −Hk−1

k

k∑
j=1

Hj

j
.

To prove Theorems 4 and 5 we apply a method which has been used in other

papers to deduce series representations for certain special functions and for mathe-

matical constants, like, for example, γ, π and Catalan’s constant G; see Alzer and

Koumandos [2], Alzer and Richards [3].

Proof of Theorem 4. (i) Let 0 < x < 1 and λ < 1/2. Then −1 < (x−λ)/(1−λ) < 1.

It follows that

1

1− x
=

1

1− λ
· 1

1− (x− λ)/(1− λ)
=

1

1− λ

∞∑
ν=0

(x− λ
1− λ

)ν
. (2.2)
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From (1.1) and (2.2) we obtain

Hn

n
= −

∫ 1

0

(1− x)n log(x)

1− x
dx

= −
∫ 1

0

1

1− λ

∞∑
ν=0

(x− λ
1− λ

)ν
(1− x)n log(x)dx

=

∞∑
ν=0

1

(1− λ)ν+1
U(ν, n) (2.3)

with

U(ν, n) = −
∫ 1

0

(x− λ)ν(1− x)n log(x)dx

= −
∫ 1

0

ν∑
j=0

(
ν

j

)
(−λ)ν−jxj(1− x)n log(x)dx

=

ν∑
j=0

(
ν

j

)
(−λ)ν−jS(n, j), (2.4)

where

S(n, j) = −
∫ 1

0

xj(1− x)n log(x)dx

= −
∫ 1

0

xj
n∑
k=0

(
n

k

)
(−x)k log(x)dx

= −
n∑
k=0

(
n

k

)
(−1)k

∫ 1

0

xj+k log(x)dx. (2.5)

Since ∫ 1

0

xm log(x)dx = − 1

(m+ 1)2
(0 ≤ m ∈ Z), (2.6)

we obtain

S(n, j) =

n∑
k=0

(−1)k

(k + j + 1)2

(
n

k

)
. (2.7)

From (2.3), (2.4) and (2.7) we conclude that (1.18) holds.

(ii) Let 0 < t < 1 and 0 < µ < 2. Since −1 < 1− µt < 1, we obtain

1

t
=

µ

1− (1− µt)
= µ

∞∑
ν=0

(1− µt)ν . (2.8)
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It follows from (1.1) and (2.6) that

Hn

n
= −

∫ 1

0

tn log(1− t)
t

dt

= −
∫ 1

0

tn log(1− t)µ
∞∑
ν=0

(1− µt)ν

= −µ
∞∑
ν=0

∫ 1

0

tn log(1− t)
ν∑
j=0

(
ν

j

)
(−µt)jdt

= −µ
∞∑
ν=0

ν∑
j=0

(−µ)j
(
ν

j

)∫ 1

0

tn+j log(1− t)dt

=

∞∑
ν=0

ν∑
j=0

(−1)jµj+1

(
ν

j

)
Hn+j+1

n+ j + 1
.

Proof of Theorem 5. (i) Using (1.1) and (2.2) gives

n∑
k=1

Hk

k
= −

∫ 1

0

log(1− t)
n∑
k=1

tk−1dt

= −
∫ 1

0

log(1− t)(1− tn)

1− t
dt

= −
∫ 1

0

log(1− t)1− tn

1− λ

∞∑
ν=0

( t− λ
1− λ

)ν
dt

= −
∞∑
ν=0

1

(1− λ)ν+1

∫ 1

0

log(1− t)(1− tn)(t− λ)νdt

=

∞∑
ν=0

1

(1− λ)ν+1

ν∑
j=0

(
ν

j

)
(−λ)ν−j

(∫ 1

0

tn+j log(1− t)dt−
∫ 1

0

tj log(1− t)dt
)

=

∞∑
ν=0

1

(1− λ)ν+1

ν∑
j=0

(
ν

j

)
(−λ)ν−j

(Hj+1

j + 1
− Hn+j+1

n+ j + 1

)
.
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(ii) We apply (1.1) and (2.8). Then

n∑
k=1

Hk

k
= −

∫ 1

0

(1− tn) log(1− t)
1− t

dt

= −
∫ 1

0

(1− (1− x)n) log(x)

x
dx

= −
∫ 1

0

log(x)(1− (1− x)n)µ

∞∑
ν=0

(1− µx)νdx

= −µ
∞∑
ν=0

∫ 1

0

log(x)(1− (1− x)n)(1− µx)νdx

= −µ
∞∑
ν=0

ν∑
j=0

(
ν

j

)
(−µ)jT (n, j) (2.9)

with

T (n, j) =

∫ 1

0

log(x)(1− (1− x)n)xjdx.

Using (2.5), (2.6) and (2.7) gives

T (n, j) = S(n, j)− 1

(j + 1)2
=

n∑
k=1

(−1)k

(k + j + 1)2

(
n

k

)
. (2.10)

From (2.9) and (2.10) we conclude that (1.21) holds.
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