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Abstract

Using combinatorial techniques, we derive a recurrence identity that expresses an

exponential power sum with negative powers in terms of another exponential power

sum with positive powers. Consequently, we derive a formula for the power sum of

the first k natural numbers when the power is odd, which when used in combina-

tion with Faulhaber’s formula for computing power sums helps us to retrieve the

Bernoulli numbers in certain cases.

1. Introduction

A Dirichlet character χ modulo k (where k is a positive integer) is defined to be odd

if χ(−1) = −1 and even if χ(−1) = 1. The Dirichlet L-function L(s, χ) is defined

by the infinite series
∞∑
n=1

χ(n)
ns , where s ∈ C with Re (s) > 1. The Gauss sum G(z, χ)

for any complex number z is defined as

G(z, χ) :=

k∑
m=1

χ(m)e
2πimz
k .

E. Alkan established the following identity connecting L(r, χ) with Gauss sums
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and Bernoulli numbers:

(−1)v+1kr!

ir2r−1πr
L(r, χ) =

2[ r2 ]∑
q=0

(
r

q

)
BqS(r − q, χ) [3, Theorem 1], (1)

where

S(m,χ) :=

k∑
j=1

(
j

k

)m
G(j, χ).

and Bq are the qth Bernoulli numbers. See [5, Chapter 12] for the definition and

other properties of Bernoulli numbers and Bernoulli polynomials.

E. Alkan derived formulae in [1] for the sums
∑
χ odd

|L(1, χ)|2 and
∑

χ even
|L(2, χ)|2

using Identity (1). His computations involved the simplification of sums of the

form
k−1∑
s=1

spe
−2πims

k . He mainly tried to express such sums in terms of positive

arguments of the exponential function. It seems that the complexity of simplifying

these exponential power sums prevented him from establishing an exact formula for

computing the value of
∑

χ,r with same parity

|L(r, χ)|2 in general.

In this paper, we derive an identity that expresses the exponential power sum
k−1∑
s=1

spe
−2πims

k in terms of another exponential power sum with positive powers.

Consequently, we derive a recursive formula for the power sum of the first k natural

numbers h(p, k) :=
k∑
s=1

sp when p is odd.

We note that Schaumberger and Faulhaber gave two different techniques for find-

ing the power sums of natural numbers. In [9], Schaumberger used the exponential

generating function
∞∑
p=0

h(p, k)
xk

k!
=

p∑
r=1

erx

and L’Hôspital’s rule for evaluating h(p, k).

Faulhaber’s formula [7, Identity 1] is a non-recursive formula for finding h(p, k).

It involves the Bernoulli numbers Bs and is given by

h(p, k) =
1

(p+ 1)

kp+1 +

p∑
j=1

(−1)j
(
p+ 1

j

)
Bjk

p−j+1

 . (2)

In [10], J. Singh defined the power sum ψp(k) = ap1 + ap2 + · · · + apϕ(k), where

a1, a2, · · · , aϕ(k) are positive integers each of which is less than or equal to n and

relatively prime to n. There he gave a relation between h(p, k) and ψp(k). In [2],
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E. Alkan used the results from [10] to obtain a formula for the weighted average

1
kr+1

k∑
j=1

jrck(j), where ck(j) =
r∑

m=1
(m,k)=1

e
2πimj
k is the Ramanujan sum. Later in [11],

J. Singh studied the sum of products of power sums via the multiple products of

their exponential generating functions.

For non integral power sums, some approximate results only seem to exist in the

literature. See, for example Theorem 1 in [8].

2. The Main Result and Proof

We state and prove our main identity in this section. To begin with, we introduce the

terms which we use in this paper. An ordered partition or composition of a positive

integer n is an m-tuple (j1, . . . , jm) with j1 + . . .+ jm = n, where 1 ≤ jl ≤ n. The

jl are called parts of the composition and m, the number of parts in it, is called the

length of the composition. We use C(n) to denote the set of all compositions of n.

For 1 ≤ m ≤ n, C(m,n) will denote the set of all compositions of n with length m.

The number of elements in C(m,n) is
(
n−1
m−1

)
([4, Theorem 4.1]). More properties

and results related to compositions can be found, for example, in [4, Chapter 4].

In this paper, we mainly derive the identity given in the next proposition.

Proposition 1. For k, p positive integers with k - m and p ≥ 1, we have

k−1∑
s=1

spe
−2πims

k = −kp +

p−1∑
a=0

(−1)p−a
(
p

a

)
ka

k−1∑
s=1

sp−ae
2πims
k .

We state and prove a lemma which is essential in the proof of the main proposi-

tion.

Lemma 1. Let r ≥ 1. The set {(i1, . . . , ir) : i1, i2, · · · , ir ∈ {1, · · · , p − 1}, i1 >
i2 > · · · > ir} is in one to one correspondence with the set C(r + 1, p).

Proof. Write p − i1 = j1, i1 − i2 = j2, · · · , ir−1 − ir = jr, ir − 0 = jr+1. Since

j1 + j2 + · · · + jr+1 = p and jl are all positive, (j1, . . . , jr+1) ∈ C(r + 1, p). Let

(i1, i2, . . . , ir) and (i′1, i
′
2, . . . , i

′
r) be distinct. Let l be the largest index such that

il 6= i′l (with the convention that il+1 = 0 if l = r). Thus jl+1 = il − il+1 and

j′l+1 = i′l− i′l+1 will be distinct. Hence (j1, j2, . . . , jr+1) and (j′1, j
′
2, . . . , j

′
r+1) will be

distinct. On the other hand, if (j1, j2, . . . , jr+1) ∈ C(r + 1, p), let i1 = p − j1, i2 =

p − (j1 + j2), . . . so that i1, . . . , ir ∈ {1, . . . , p − 1} and they satisfy i1 > . . . > ir,

with r = 0 giving the empty set. This shows that this correspondence is onto as

well.

Since C(r + 1, p) has
(
p−1
r

)
elements, we obtain the following corollary.
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Corollary 1. The set defined in the above proposition has
(
p−1
r

)
elements.

We state a result from [6] which we will be using in the proof of our main

proposition.

Lemma 2. ([6, Lemma 1]) If u1, u2, u3, . . . is any sequence of numbers, then the

coefficient of xn in

(
1−

∞∑
i=1

uix
i

)−1
is

∑
(a1,...,ak)∈C(n)

ua1ua2 · · ·uak .

Now we prove Proposition 1.

Proof of Proposition 1. We start the proof using the binomial expansion:

k−1∑
s=1

spe
2πims
k =

k−1∑
s=1

(k − s)pe
2πim(k−s)

k

=

k−1∑
s=1

(k − s)pe− 2πims
k

=

k−1∑
s=1

(−1)pspe−
2πims
k +

p−1∑
a=0

(−1)a
(
p

a

)
kp−a

k−1∑
s=1

sae
−2πims

k .

Hence

k−1∑
s=1

spe−
2πims
k = (−1)p

k−1∑
s=1

spe
2πims
k +

p−1∑
a=0

(−1)p+a+1

(
p

a

)
kp−a

k−1∑
s=1

sae
−2πims

k . (3)

For notational convenience, we write f(p) =
k−1∑
s=1

spe
−2πims

k and g(p) =
k−1∑
s=1

spe
2πims
k .

With this notation, we rewrite Equation (3) and expand it recursively as

f(p) =(−1)pg(p) +

p−1∑
a=0

(−1)p+a+1kp−a
(
p

a

)
f(a)

=(−1)pg(p) + (−1)p+1

(
p

p− 1

)
kg(p− 1)

+

[
(−1)p+1

(
p

p− 2

)
+ (−1)p+2

(
p

p− 1

)(
p− 1

p− 2

)]
k2g(p− 2)

+

[
(−1)p+1

(
p

p− 3

)
+ (−1)p+2

(
p

p− 2

)(
p− 2

p− 3

)

+ (−1)p+2

(
p

p− 1

)(
p− 1

p− 3

)
+ (−1)p+3

(
p

p− 1

)(
p− 1

p− 2

)(
p− 2

p− 3

)]
× k3g(p− 3) + · · · .
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It can be seen by induction that for a ≥ 2, g(p− a) has coefficient as the sum∑
i1,i2,··· ,ir∈{p−a+1,··· ,p−1}

i1>i2>···>ir

(−1)p+r+1

(
p

i1

)(
i1
i2

)
. . .

(
ir−1
ir

)(
ir

p− a

)
ka, (4)

with the convention that {i1, . . . , ir} can also be the empty set to allow the binomial

coefficient
(
p

p−a
)
. Thus the coefficient of kpg(0) is

∑
i1,i2,··· ,ir∈{1,··· ,p−1}

i1>i2>···>ir

(−1)p+r+1

(
p

i1

)(
i1
i2

)
. . .

(
ir−1
ir

)(
ir
0

)
. (5)

Now(
p

i1

)(
i1
i2

)
. . .

(
ir−1
ir

)(
ir
0

)
=

p!

(p− i1)!i1!

i1!

(i1 − i2)!i2!
· · · ir−1!

(ir−1 − ir)!ir!
ir!

(ir − 0)!0!

=
p!

(p− i1)!(i1 − i2)! · · · (ir − 0)!0!
.

Now we use Lemma 1. The binomial product sum in Equation (5) consists of the

summand (−1)p+1
(
p
0

)
. This term corresponds to the empty subset of {1, . . . , p−1}.

Corresponding to this empty set we may take the single available element (p) from

C(1, p). Hence,
(
p
i1

)(
i1
i2

)
· · ·
(
ir−1

ir

)(
ir
0

)
and

(
p
0

)
can be replaced with the multinomial

coefficient
(

p
j1,j2,··· ,jr+1

)
and so the coefficient of kpg(0) can be rewritten as

p−1∑
r=0

∑
(j1,j2,...,jr+1)∈C(r+1,p)

(−1)p+r+1

(
p

j1, j2, · · · , jr+1

)

=

p∑
r=1

∑
(j1,j2,...,jr)∈C(r,p)

(−1)p+r
(

p

j1, j2, · · · , jr

)

= (−1)pp!

p∑
r=1

∑
(j1,j2,...,jr)∈C(r,p)

(−1)r
1

j1!j2! · · · jr!

= (−1)pp!× coefficient of xp in

(
1 +

∞∑
i=1

xi

i!

)−1
(

obtained by taking ui =
−1

i!
in Lemma 2

)
= (−1)pp!× coefficient of xp in (ex)

−1

= 1.

Now we compute the coefficient of kag(p − a). We take the product of binomial
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coefficients appearing in Equation (4) and simplify it further:(
p

i1

)(
i1
i2

)
. . .

(
ir−1
ir

)(
ir

p− a

)
=

(
p

p− i1

)(
i1

i1 − i2

)
. . .

(
ir−1

ir−1 − ir

)(
ir

ir − p+ a

)
=

p!

(p− i1)!(i1 − i2)! · · · (ir − p+ a)!(p− a)!

=
a!

(p− i1)!(i1 − i2)! · · · (ir − p+ a)!

(
p

a

)
.

Write p − i1 = j1, i1 − i2 = j2, · · · , ir−1 − ir = jr, ir − (p − a) = jr+1. So

j1 + j2 + · · ·+ jr+1 = a. As in the above case, we can see that (j1, j2, · · · , jr+1) is in

a one to one correspondence with (i1, i2, · · · , ir), where i1 > . . . > ir. So we have(
p

i1

)(
i1
i2

)
· · ·
(
ir−1
ir

)(
ir

p− a

)
=

(
p

a

)(
a

j1, j2, · · · , jr+1

)
.

Hence we get the coefficient of kag(p− a) as

(−1)p−a
p−1∑
r=0

∑
(j1,j2,...,jr+1)∈C(a,r+1)

(−1)a+r+1

(
p

a

)(
a

j1, j2, · · · , jr+1

)

= (−1)p−a
(
p

a

) p−1∑
r=0

∑
(j1,j2,...,jr+1)∈C(a,r+1)

(−1)a+r+1

(
a

j1, j2, · · · , jr+1

)

= (−1)p−a
(
p

a

)
.

Thus

f(p) = (−1)pg(p) + (−1)p−1
(

p

p− 1

)
kg(p− 1) +

p∑
a=2

(−1)p−a
(
p

a

)
kag(p− a)

=

p−1∑
a=0

(−1)p−a
(
p

a

)
kag(p− a) + kpg(0)

= −kp +

p−1∑
a=0

(−1)p−a
(
p

a

)
kag(p− a)

which is what we claimed. In the last step above, we used the fact that g(0) =
k−1∑
s=1

e
2πims
k = −1 when e

2πims
k 6= 1.

Let us see an application of the computations above. When k|m, e
2πims
k = 1 and

g(0) = k − 1 in the above so that we get

k−1∑
s=1

sp = kp(k − 1) +

p−1∑
a=0

(−1)p−a
(
p

a

)
ka

k−1∑
s=1

sp−a. (6)
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Let h(p, k) =
k∑
s=1

sp. If p is odd, from the above, we get a recursive formula for

the sum of pth powers of the first k natural numbers as

h(p, k) =
1

2

(
(k + 1)pk +

p−1∑
a=1

(−1)p−a
(
p

a

)
(k + 1)ah(p− a, k)

)
.

On replacing p− a with j, we get the following.

Corollary 2. For p, k positive integers with p odd, we have

h(p, k) =
1

2

(k + 1)pk +

p−1∑
j=1

(−1)j
(
p

j

)
(k + 1)p−jh(j, k)

 . (7)

Such a formula cannot be derived when p is even because of the cancellation of

h(p, k) taking place from both sides of Identity (6).

To illustrate the use of the above identity, let us compute
k∑
s=1

s3. Note that the

knowledge of h(1, k) =
k∑
s=1

s and h(2, k) =
k∑
s=1

s2 is necessary for this computation.

We have h(1, k) = k(k+1)
2 and h(2, k) = k(k+1)(2k+1)

6 . Thus

h(3, k) =
1

2

(
(k + 1)3k +

2∑
a=1

(−1)3−a
(

3

a

)
(k + 1)ah(3− a, k)

)

=
1

2

(
(k + 1)3k + (−1)2

(
3

1

)
(k + 1)h(2, k) + (−1)1

(
3

2

)
(k + 1)2h(1, k)

)
=

1

2

(
(k + 1)3k + 3(k + 1)

k(k + 1)(2k + 1)

6
− 3(k + 1)2

k(k + 1)

2

)
=

1

4

(
k(k + 1)2(2k + 1)− (k + 1)3k

)
=

[
k(k + 1)

2

]2
.

We cannot compute h(4, k) using Identity (7). But if we use the known formula

h(4, k) = k(k+1)(2k+1)(3k2+3k−1)
30 , we get h(5, k) as k2(k+1)2(2k2+2k−1)

12 if we proceed

as in the above computation for h(3, k).

Another application of Identity (7) is that we can retrieve the Bernoulli numbers

using Identities (2) and (7). For example, if we put p = 1 in the right-hand side of

both the Equations (2) and (7) and equate them, we get

k(k + 1)

2
=

1

2

(
k2 + (−1)

(
2

1

)
B1k

)
=

1

2

(
k2 − 2B1k

)
.
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On comparing the coefficients of k on both sides, we get B1 = − 1
2 .

Similarly, if we put p = 3 in the right-hand side of both identities (2) and (7),

we get

k4

4
−B1k

3 +
3

2
B2k

2 − 4B3k =
(k + 1)3k

2
− 3

2
(k + 1)2

k(k + 1)

2

+
3

2
(k + 1)

k(k + 1)(2k + 1)

6
.

By comparing the coefficients of k2 on both sides in the above, we get B2 = 1
6 .

Proceeding like this we can find the values of B4, B6,· · · . Note that B2n−1 = 0 for

all positive integers n except when n = 1.
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