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Abstract

The main aim of this note is to show that the set of closed triples of generalized
Fibonacci arithmetic functions under the Dirichlet convolution is a singleton set.
This unique Dirichlet convolution identity is the Binet Fibonacci number formula
in terms of arithmetic functions and the Dirichlet convolution.

1. Introduction

Exactly 180 years ago, J.Ph.M. Binet published the formula bearing his name, which

still attracts the interest of various authors. Binet’s Fibonacci number formula

(Equation (5) below; and in the convolution setting Equation (6) below) is really

captivating. The presence of the golden ratio (4) in this formula creates a close

connection between the Fibonacci sequence (3) and this irrational number. Among

many formulas with Fibonacci numbers, the Binet formula has a central and unique

position. Our present article, emphasizes unequivocally this position of Binet’s

formula and of the golden ratio.

The connection of this formula with the Dirichlet convolution (defined by Equa-

tion (1) below) becomes visible through generalized Fibonacci sequences (defined by

Equation (8) below). Certain sequences uniquely generate prime-independent mul-

tiplicative arithmetic functions (see Equation (2) below). In this field the Dirichlet

convolution acts with maximum efficiency. Binet’s formula in this framework has

again a central and unique position (see Theorem 4). The generalized Fibonacci

arithmetic functions Gα = αΩ and Gβ = βΩ (where α = 1+
√

5
2 is the golden ratio,

β = 1−α = − 1
α , and Ω(n) is the number of prime factors of n, each being counted

according to its multiplicity) and their Dirichlet inverses G−1
α and G−1

β fit perfectly
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into the model created by the Dirichlet convolution. As for the unitary convolu-

tion, this describes the analog of Binet’s Fibonacci formula for the Lucas arithmetic

function (see Theorem 5).

By Theorem 2, the Fibonacci arithmetic function F is specially multiplicative

(i.e., it is the Dirichlet convolution of two completely multiplicative arithmetic func-

tions). Haukkanen [1], and McCarthy and Sivaramakrishnan [5] were the first to

highlight the connection that exists between Fibonacci sequences and specially mul-

tiplicative arithmetic functions. In [9], Newton sequences are characterized using

Dirichlet and unitary convolutions. There are many book-references for theory and

basis of arithmetic functions and Fibonacci numbers. We referred to [4], [8] and [3].

Sections 2 and 3 contain several theoretical foundations. In Section 4, the main

Theorem is presented, and the 5th Section also includes the unitary convolution in

the discussed topic.

Throughout this article, p is a prime, m is a non-negative integer and n is a

positive integer.

2. Prime-Independent and Multiplicative Arithmetic Functions

An arithmetic function is a complex-valued function defined on the set of positive

integers. An arithmetic function f is said to be multiplicative if f(1) = 1 and

f(n1n2) = f(n1)f(n2) whenever (n1, n2) = 1, where (n1, n2) is the g.c.d. of n1 and

n2. The Dirichlet convolution f ∗ g of two arithmetic functions f and g (see [4,

Chapter 1] and [8, Section 1.1 and Chapter 2]) is defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
), (1)

where the summation is over the positive divisors d of n. The set of all multiplicative

functions with this operation is a commutative group denoted (M, ∗). The identity

ι of this group is given by

ι(n) =

{
1 if n = 1
0 otherwise.

Multiplicative arithmetic functions arise in the study of the prime factorization of

an integer. First of all, we need to mention the fact that a multiplicative arithmetic

function is completely determined by its values at the prime powers.

We will say that an arithmetic function f is prime-independent if

f(pm) = f(qm)

for all prime pairs (p, q) and m ≥ 0. Some examples of prime-independent and

multiplicative arithmetic functions are given below:
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− the identity ι of the group (M, ∗) defined above;

− the zeta function ζ defined by ζ(n) = 1 for all n ≥ 1;

− cΩ, where Ω(n) is the number of prime factors of n, each being counted ac-

cording to its multiplicity (with Ω(1) = 0), and c 6= 0 is a complex constant;

− cω, where ω(n) is the number of distinct prime factors of n (ω(1) = 0);

− τ(n) is the number of divisors of n;

− θ(n) is the number of square-free divisors of n (θ(n) = 2ω(n) =
∑
d|n |µ(d)|);

− the Möbius function µ:

µ(n) =


1 if n = 1
0 if p2|n for some prime p
(−1)ω(n) otherwise;

− Liouville’s Lambda function λ: λ(n) = (−1)Ω(n);

− the Dirichlet inverse of Liouville’s Lambda function:

λ−1(n) = λ(n)µ(n) =

{
1 if n is square-free
0 otherwise.

Now, given a sequence {Un}n≥1 that begins with U1 = 1,

U1 = 1, U2, U3, U4, · · ·

we define the prime-independent and multiplicative arithmetic function U by

U(pm) = Um+1 for all primes p and m ≥ 0, (2)

that is,

U(n) =

{
1 if n = 1∏

p Un(p)+1 if n =
∏
p p

n(p) is the canonical factorization of n.

We call {Un}n≥1 the generating sequence of the prime-independent and multiplica-

tive arithmetic function U , and we will say that U is the associate prime-independent

multipicative arithmetic function of the sequence {Un}n≥1.
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3. The Fibonacci Sequence and Generalized Fibonacci Sequences

The Fibonacci sequence {Fn}n≥1 starts with F1 = F2 = 1 and each term is the sum

of the two preceding ones,

Fn+2 = Fn+1 + Fn

for all n > 0. Thus the Fibonacci sequence begins:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, · · · (3)

Binet’s Fibonacci numbers formula (published in 1843) expresses the nth Fibonacci

number Fn in terms of the golden ratio

α =
1 +
√

5

2
and β = 1− α = − 1

α
=

1−
√

5

2
. (4)

Theorem 1 ([3, Theorem 5.6]). We have:

Fn =
αn − βn

α− β
. (5)

This famous formula has the following expression in terms of arithmetic functions

and Dirichlet convolution (see [6, Theorem 1] and [7, Theorem 2.1] in a larger

context).

Theorem 2. We have:

F = αΩ ∗ βΩ, (6)

where F is the associate prime-independent multiplicative arithmetic function of the

Fibonacci sequence {Fn}n≥1.

Obviously,

F(pm) = Fm+1 =
αm+1 − βm+1

α− β
=

m∑
i=0

αiβm−i = (αΩ ∗ βΩ)(pm),

for all primes p and m ≥ 0.

Remark 1. This is an opportune moment to notice that the Dirichlet inverse F−1

of F (i.e., the inverse of F in the group (M, ∗)) is the prime-independent and

multiplicative arithmetic function given by

F−1(pm) =

 1 if m = 0
−1 if m = 1, 2
0 if m > 2.

(7)

Indeed,

(F ∗ F−1)(pm) =

 1 if m = 0
F2 − F1 if m = 1
Fm+1 − Fm − Fm−1 if m > 1,

and therefore F ∗ F−1 = F−1 ∗ F = ι.
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The Fibonacci numbers have been generalized in many ways. Extremely exten-

sive bibliography exists in this field. In what follows we will refer to Chapter 7 of

Koshy’s book [3] which contains a few pages on generalized Fibonacci numbers.

A sequence {Gn}n≥1 with given first and second terms G1 = a, G2 = b, and

Gn+2 = Gn+1 +Gn (n ≥ 1) (8)

is called in [3] a generalized Fibonacci sequence. The first theorem in Chapter 7 of

the book [3] provides a useful characterization of generalized Fibonacci sequences

in terms of ordinary Fibonacci numbers.

Theorem 3 ([3, Theorem 7.1]). Let {Gn}n≥1 be a generalized Fibonacci sequence

that begins with G1 = a and G2 = b. Then

Gn+2 = aFn + bFn+1 (9)

for all n ≥ 1.

Now, if a = 1 then the generalized Fibonacci sequence {Gn}n≥1 begins with

1, b, 1 + b, 1 + 2b, 2 + 3b, 3 + 5b, 5 + 8b, · · · .

We will call the associate prime-independent multiplicative arithmetic function Gb
of this sequence,

Gb(pm) = Gm+1 =

 1 if m = 0
b if m = 1
Fm−1 + bFm if m > 1,

a generalized Fibonacci arithmetic function (GFAF in short).

A first example of a GFAF is G1 = F . The GFAF G3 is the prime-independent

and multiplicative arithmetic function defined by

G3(pm) = Lm+1,

for all primes p and m ≥ 0, where

L1 = 1, L2 = 3, L3 = 4, L4 = 7, L5 = 11, L6 = 18, · · · (Ln+2 = Ln+1 + Ln)

is the Lucas sequence. Using Equation (9) it follows that

Ln+1 = Fn−1 + 3Fn = Fn+1 + 2Fn = Fn+2 + Fn (n ≥ 1). (10)

The GFAF G2 is the left shift Fibonacci multiplicative arithmetic function given by

G2(pm) = Fm+2,

for all primes p and m ≥ 0. A routine check shows that

G2 = λ−1 ∗ F . (11)

It is also straightforward to check that the set of all GFAF’s is not closed under the

Dirichlet convolution.
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4. Closed Triples Under the Dirichlet Convolution and the Binet Formula

We will say that a triple (Gb,Gc,Gd) of GFAF’s is closed under the Dirichlet convo-

lution if

Gb = Gc ∗ Gd.

Since the Dirichlet convolution is commutative we will not consider the closed triples

(Gb,Gc,Gd) and (Gb,Gd,Gc) different. In the convolution-identity (11) the triple

(G2, λ
−1,F) is not a closed triple under the Dirichlet convolution since λ−1 is not

a GFAF.

Theorem 4. We have:

(i) the set of all closed triples under the Dirichlet convolution is a singleton set;

(ii) the Binet formula

F = αΩ ∗ βΩ

is the only convolution-identity for which the Dirichlet convolution of two

GFAF’s is a GFAF.

Proof. (i). Suppose that Gb = Gc ∗ Gd and n ≥ 1. Then

0 = Gb(pn+1)− Gb(pn)− Gb(pn−1)

=

n+1∑
i=0

Gc(pi)Gd(pn+1−i)−
n∑
i=0

Gc(pi)Gd(pn−i)−
n−1∑
i=0

Gc(pi)Gd(pn−1−i)

= Gc(pn+1)Gd(p0) + Gc(pn)Gd(p)− Gc(pn)Gd(p0)

+

n−1∑
i=0

Gc(pi)(Gd(pn+1−i)− Gd(pn−i)− Gd(pn−1−i))

= Gc(pn+1)Gd(p0) + Gc(pn)Gd(p)− Gc(pn)Gd(p0)

= (Gc(pn) + Gc(pn−1))Gd(p0) + Gc(pn)Gd(p)− Gc(pn)Gd(p0)

= Gc(pn−1) + Gc(pn)Gd(p).

We observe that for n = 1 and n = 2,

0 = Gc(pn−1) + Gc(pn)Gd(p) =

{
1 + Gc(p)Gd(p) if n = 1
Gc(p) + (1 + Gc(p))Gd(p) if n = 2.

Hence, {
Gc(p)Gd(p) = −1
Gc(p) + Gd(p) = 1.
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Thus, Gc(p) = α and Gd(p) = β, that is, c = α and d = β. Under these conditions,

Gc(pn−1) + Gc(pn)Gd(p) = 0 if n > 2. That is because

Gα(pn−1) + Gα(pn)Gβ(p) = Fn−2 + αFn−1 + (Fn−1 + αFn)β = Fn−2 + Fn−1 − Fn.

The value of b remains to be found. We have

b = Gb(p) = (Gα ∗ Gβ)(p) = α+ β,

and therefore b = 1, that is, Gb = F . Thus,

F = Gα ∗ Gβ ,

and (G1,Gα,Gβ) is the unique closed triple under the Dirichlet convolution.

(ii)-(a). Since α2 = α + 1, multiplying both sides by αn we obtain αn+2 =

αn+1 + αn, and similarly we get βn+2 = βn+1 + βn. It follows that the sequences

1, α, α2, α3, α4, α5, · · ·

and

1, β, β2, β3, β4, β5, · · ·

are both generalized Fibonacci sequences starting with 1, α, and 1, β, respectively.

Thus, Gα = αΩ and Gβ = βΩ.

(ii)-(b) (A second proof of (ii)). In the group (M, ∗) the equalities

F = Gα ∗ Gβ and F = αΩ ∗ βΩ

imply that

G−1
α = Gβ ∗ F−1 and (αΩ)−1 = βΩ ∗ F−1.

Thus, using Equation (7) we get:

G−1
α (p0) = 1, G−1

α (p) = (Gβ ∗ F−1)(p) = β − 1,

G−1
α (pn) = (Gβ ∗ F−1)(pn)

= Gβ(pn)− Gβ(pn−1)− Gβ(pn−2) = 0 (if n ≥ 2);

and

(αΩ)−1(p0) = 1, (αΩ)−1(p) = (βΩ ∗ F−1)(p) = β − 1,

(αΩ)−1(pn) = (βΩ ∗ F−1)(pn) = βΩ(pn) − βΩ(pn−1) − βΩ(pn−2)

= βn − βn−1 − βn−2 = βn−2(β2 − β − 1) = 0 (if n ≥ 2).

So, G−1
α = (αΩ)−1, that is, Gα = αΩ, and analogously Gβ = βΩ.
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Remark 2. The proof (ii)-(a) (the fact that αΩ and βΩ are GFAF’s) leads us

(using Equation (9)) to the formula (see [3, Lemma 5.1])

αn+1 = Fn + αFn+1 (and βn+1 = Fn + βFn+1). (12)

This identity allows any polynomial in the golden ratio α (respectively, β) to be

reduced directly to a linear expression. In addition, using Equations (12) and (10)

it follows that the analog of Binet’s Fibonacci number formula (5) for the Lucas

numbers is (see [3, Theorem 5.8])

αn + βn = Ln. (13)

Remark 3. The second proof (ii)-(b) allows for the extended expression of the

Dirichlet inverses of Gα and Gβ (of αΩ and βΩ):

G−1
α (n) =


1 if n = 1
0 if p2|n for some prime p
(β − 1)ω(n) otherwise,

(14)

and

G−1
β (n) =


1 if n = 1
0 if p2|n for some prime p
(α− 1)ω(n) otherwise.

(15)

Corollary 1. For any positive integer n, the following assertions are true:

∑
d|n

G−1
α (d)G−1

β (
n

d
) =


1 if n = 1
0 if p3|n for some prime p
(−1)ω(n) otherwise,

(16)

∑
d|n

G−1
α (d) +

∑
d|n

G−1
β (d) = Lω(n) (with L0 = 2 − if n = 1). (17)

Proof. The Equation (16) follows from the convolution-identity F−1 = G−1
α ∗ G−1

β .

For the Equation (17) we refer to the Equations (14) and (15). It is clear that

for any prime p we have

(G−1
α ∗ ζ)(p0) = 1 = (G−1

β ∗ ζ)(p0)

and

(G−1
α ∗ ζ)(pn) = G−1

α (p) + G−1
α (p0) = β ; (G−1

β ∗ ζ)(pn) = G−1
β (p) + G−1

β (p0) = α

for all n ≥ 1. Therefore,

(G−1
α ∗ ζ)(n) = βω(n) and (G−1

β ∗ ζ)(n) = αω(n).

The proof is complete since αω(n) + βω(n) = Lω(n) (see Equation (13)).
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5. Some Remarks on the Unitary Convolution

The unitary convolution f t g of two arithmetic functions f and g is defined by

(f t g)(n) =
∑
d‖n

f(d)g(
n

d
),

where the summation is over the unitary divisors d of n, i.e., those positive divi-

sors d for which (d, nd ) = 1. The triple (M,t, ∗) is a quasi-field in the sense of

Kesava-Menon [2], i.e., (M,t) and (M, ∗) are commutative isomorphic groups (the

identity element ι under multiplication ∗ also serves as the identity element under

the addition t) with the following quasi-distributive law (see [8, Theorem 26]):

f ∗ (g t h) t f = (f ∗ g) t (f ∗ h).

In what follows, we will denote by L the prime-independent multiplicative arith-

metic function defined by

L(pm) =

{
1 if m = 0
Lm if m > 0,

and we will say that L is the Lucas arithmetic function.

Theorem 5. The following assertions are true.

(i) The analog of Binet’s Fibonacci arithmetic function formula for the Lucas

arithmetic function is given by:

L = Gα t Gβ (i.e., L = αΩ t βΩ).

(ii) The Möbius function is the unitary convolution of the Dirichlet inverses of Gα
and Gβ:

µ = G−1
α t G−1

β .

(iii) The characteristic arithmetic function χ of the set of squares of square-free

positive integers (n is square-free if and only if µ(n) 6= 0) is a bridge between

the Fibonacci and the Lucas arithmetic functions given by:

F ∗ χ = L.

Proof. Let p be a prime number and n > 0. Then

(i).

(Gα t Gβ)(pn) = Gα(pn) + Gβ(pn) = αΩ(pn) + βΩ(pn)

= αn + βn = Ln = L(pn).

Since GαtGβ and L are prime-independent and multiplicative arithmetic functions,

it follows that L = Gα t Gβ .
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(ii). Once again, we refer to the Equations (14) and (15). We have:

(G−1
α t G−1

β )(p) = G−1
α (p) + G−1

β (p) = β − 1 + α− 1 = −1,

and

(G−1
α t G−1

β )(pn) = G−1
α (pn) + G−1

β (pn) = 0 if n > 1.

It follows that G−1
α t G−1

β = µ.

(iii). Since χ is the prime-independent, multiplicative arithmetic function defined

by:

χ(pm) =

{
1 if m = 0; 2
0 otherwise,

and

(F−1 ∗ L)(pm) =


1 if m = 0
−1 + L1 = 0 if m = 1
−1− L1 + L2 = 1 if m = 2
−Lm−2 − Lm−1 + Lm = 0 if m > 2,

the proof is complete.
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