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Abstract

In this work, we present continued fractions for the arithmetic, geometric, harmonic,
and cotangent means of [a0, a1, . . . , ak] and [a0, a1, . . . , ak, ak+1]. We also show some
applications of these results.

1. Introduction

In this work, continued fractions will be denoted by

[a0, a1, a2, . . . , aj , . . . ] := a0 +
1

a1 +
1

a2 +
1

· · ·+ 1

aj + . . .

.

Two finite continued fractions are said to be near if one of them has one more term

than the other. A pair of near continued fractions is represented by [a0, a1, . . . , ak]

and [a0, a1, . . . , ak, ak+1]. In particular, two consecutive convergents of an irrational

number are near continued fractions.

Our main theorem gives formulas for the arithmetic, geometric, harmonic, and

cotangent means of near continued fractions. This theorem must certainly be

known, but unfortunately we were not able to find it in the literature.

Theorem 1 (Means of near continued fractions). Let a0, a1, . . . , ak+1 be positive

real numbers. Then,

[a0, a1, . . . , ak] + [a0, a1, . . . , ak, ak+1]

2
= [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1],
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[a0, a1, . . . , ak] · [a0, a1, . . . , ak, ak+1] = [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, 2a0],

2
1

[a0, a1, . . . , ak]
+

1

[a0, a1, . . . , ak, ak+1]

= [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0],

and

cot

(
cot−1[a0, a1, . . . , ak] + cot−1[a0, a1, . . . , ak, ak+1]

2

)

= [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0].

Theorem 1 also admits a complex analogue.

Theorem 2 (Means of near complex continued fractions). Let a0, a1, . . . , ak+1 be

positive real numbers. Then,

[a0, a1, . . . , ak, ak+1 − i] + [a0, a1, . . . , ak, ak+1 + i]

2
= [a0, a1, . . . , ak, ak+1, ak+1, ak, . . . , a1],

√
[a0, a1, . . . , ak, ak+1 − i] · [a0, a1, . . . , ak, ak+1 + i]

= [a0, a1, . . . , ak, ak+1, ak+1, ak, . . . , a1, 2a0],

2
1

[a0, a1, . . . , ak, ak+1 − i]
+

1

[a0, a1, . . . , ak, ak+1 + i]

= [a0, a1, . . . , ak, ak+1, ak+1, ak, . . . , a1, a0],

cot

(
cot−1[a0, a1, . . . , ak, ak+1 − i] + cot−1[a0, a1, . . . , ak, ak+1 + i]

2

)
= [a0, a1, . . . , ak, ak+1, ak+1, ak, . . . , a1, a0].

Theorems 1 and 2 are proved using only algebraic manipulations of continuant

polynomials, which are numerators and denominators of continued fractions. We

note that the positive real number condition in both statements is just to ensure

convergence and that the objects are well defined, but the results apply to other

types of continued fraction entries and notions of convergence.

A special case of the geometric mean formula in Theorem 1 is contained in

an article by Van der Poorten and Walsh [13], but it is written differently. The



INTEGERS: 23 (2023) 3

result in this article is presented in terms of solutions to the Lagrange equation

and reflections on the period of periodic continued fractions. The arithmetic mean

formula in Theorem 1 should also be compared with a result that appears in Mendès

France’s work [6] that was further explored by Van der Poorten and Shallit [11, 12].

The result in these three articles is analogous to the arithmetic mean formula in

Theorem 1, but with some changed signs, and is used to transform some series into

continued fractions. For more information on the theory of continued fractions and

topics related to this work, we also recommend Perron’s classic treatise [8, 9].

In Section 2 we define the continuant polynomials, present some of their proper-

ties, and use them to prove Theorems 1 and 2. In Sections 3 and 4, we reinterpret

some classical results about Pell’s equation in terms of Theorems 1 and 2.

2. Continuant Polynomials

We begin by recalling Euler’s continuant polynomials [3] (or see [4]). Define recur-

sively K[ ] = 1, K[a0] = a0, K[a0, a1] = a0a1 + 1, and

K[a0, . . . , an] = an ·K[a0, . . . , an−1] + K[a0, . . . , an−2],

for every natural number n ≥ 2. Note that K[a0, . . . , an] is a multilinear polynomial

in the variables a0, a1, . . . , an.

The continuant polynomials are the numerators and denominators of continued

fractions:

[a0, a1, . . . , an] =
K[a0, a1, . . . , an]

K[a1, . . . , an]
,

for every natural number n. The next two lemmas present the main properties of

continuants that will be needed later.

Lemma 1 (Properties of continuants). Let n and j be two natural numbers with

j < n. Then,

(a) K[a0, a1, . . . , an−1, an] = K[an, an−1, . . . , a1, a0];

(b) K[a0, . . . , aj−1, aj , aj+1, . . . , an]

= aj ·K[a0, . . . , aj−1] ·K[aj+1, . . . , an] +K[a0, . . . , aj−2] ·K[aj+1, . . . , an]

+K[a0, . . . , aj−1] ·K[aj+2, . . . , an];

(c) K[a0, . . . , aj , aj+1, . . . , an]

= K[a0, . . . , aj ] ·K[aj+1, . . . , an] + K[a0, . . . , aj−1] ·K[aj+2, . . . , an];

(d) K[a0, . . . , an] ·K[a1, . . . , an+1]−K[a1, . . . , an] ·K[a0, . . . , an+1] = (−1)n+1.
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Proof. All items can be proved by induction on the number of entries in the con-

tinuant polynomials. For reference, see [4].

Lemma 2 (Properties of symmetric continuants). Let k be a natural number. Then,

(a) K[a0, . . . , ak, 2ak+1, ak, . . . , a0] = 2 ·K[a0, . . . , ak] ·K[a0, . . . , ak, ak+1];

(b) K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1]

= K[a0, . . . , ak] ·K[a1, . . . , ak+1] + K[a0, . . . , ak+1] ·K[a1, . . . , ak];

(c) K[a0, . . . , ak+1, ak+1, . . . , a0]

= K[a0, . . . , ak+1]2 + K[a0, . . . , ak]2

= K[a0, . . . , ak, ak+1 − i] ·K[a0, . . . , ak, ak+1 + i];

(d) K[a0, a1, . . . , ak+1, ak+1, . . . , a1]

= K[a0, . . . , ak+1] ·K[a1, . . . , ak+1] + K[a0, . . . , ak] ·K[a1, . . . , ak].

Proof. The proof uses the properties of continuants presented in Lemma 1.

(a) Note that

K[a0, . . . , ak, 2ak+1, ak, . . . , a0]

= 2ak+1 ·K[a0, . . . , ak]2 + 2 ·K[a0, . . . , ak−1] ·K[a0, . . . , ak]

= 2 ·K[a0, . . . , ak] · (ak+1 ·K[a0, . . . , ak] + K[a0, . . . , ak−1])

= 2 ·K[a0, . . . , ak] ·K[a0, . . . , ak, ak+1],

where the first equality is due to items (a) and (b) of Lemma 1.

(b) Observe that

K[a0, . . . , ak, 2ak+1, ak, . . . , a1]

= 2ak+1 ·K[a0, . . . , ak] ·K[a1, . . . , ak] + K[a0, . . . , ak−1] ·K[a1, . . . , ak]

+ K[a0, . . . , ak] ·K[a1, . . . , ak−1]

= K[a0, . . . , ak] · (ak+1 ·K[a1, . . . , ak] + K[a1, . . . , ak−1])

+ K[a1, . . . , ak] · (ak+1 ·K[a0, . . . , ak] + K[a0, . . . , ak−1])

= K[a0, . . . , ak] ·K[a1, . . . , ak+1] + K[a0, . . . , ak+1] ·K[a1, . . . , ak],

where the first equality is due to items (a) and (b) of Lemma 1.

The proofs of items (c) and (d) are analogous and follow from items (a) and (c)

of Lemma 1.

Theorems 1 and 2 are immediate consequences of Lemmas 1 and 2. We will only

prove Theorem 1, as the proof of Theorem 2 is analogous and uses items (c) and

(d) from Lemma 2.
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Proof of Theorem 1. To prove the arithmetic mean formula, observe that

[a0, a1, . . . , ak] + [a0, a1, . . . , ak, ak+1]

2

=

K[a0, a1, . . . , ak]

K[a1, . . . , ak]
+

K[a0, a1, . . . , ak+1]

K[a1, . . . , ak+1]

2

=
K[a0, a1, . . . , ak] ·K[a1, . . . , ak+1] + K[a0, a1, . . . , ak+1] ·K[a1, . . . , ak]

2 ·K[a1, . . . , ak] ·K[a1, . . . , ak+1]

=
K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1]

K[a1, . . . , ak, 2ak+1, ak, . . . , a1]

= [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1],

where the third equality is by items (a) and (b) of Lemma 2.

To obtain the harmonic mean, simply note that

2
1

[a0, a1, . . . , ak]
+

1

[a0, a1, . . . , ak, ak+1]

= [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0],

is equivalent to

[0, a0, a1, . . . , ak] + [0, a0, a1, . . . , ak, ak+1]

2
= [0, a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0],

which is true by the formula for the arithmetic mean.

In order to prove the geometric mean formula, consider

x := [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, 2a0].

We need to prove that x is equal to
√

[a0, a1, . . . , ak] · [a0, a1, . . . , ak, ak+1]. Note

that

x = [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0 + x]

=
K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0 + x]

K[a1, . . . , ak, 2ak+1, ak, . . . , a1, a0 + x]

=
K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1] · x + K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0]

K[a1, . . . , ak, 2ak+1, ak, . . . , a1] · x + K[a1, . . . , ak, 2ak+1, ak, . . . , a1, a0]
,

and, by item (a) of Lemma 1 and by rearranging the terms,

K[a1, . . . , ak, 2ak+1, ak, . . . , a1]x2 = K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0],
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which is equivalent to

x =

√
K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0]

K[a1, . . . , ak, 2ak+1, ak, . . . , a1]

=

√
2 ·K[a0, a1 . . . , ak] ·K[a0, a1, . . . , ak, ak+1]

2 ·K[a1, . . . , ak] ·K[a1, . . . , ak, ak+1]

=
√

[a0, a1, . . . , ak] · [a0, a1, . . . , ak, ak+1],

where the second equality is by item (a) of Lemma 2.

Finally, to obtain the cotangent mean, consider

x := [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0].

We need to prove that x is equal to

cot

(
cot−1[a0, a1, . . . , ak] + cot−1[a0, a1, . . . , ak, ak+1]

2

)
.

Note that

x = [a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0, x]

=
K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0, x]

K[a1, . . . , ak, 2ak+1, ak, . . . , a1, a0, x]

=
K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0] · x + K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1]

K[a1, . . . , ak, 2ak+1, ak, . . . , a1, a0] · x + K[a1, . . . , ak, 2ak+1, ak, . . . , a1]
,

and, by item (a) of Lemma 1 and by rearranging the terms,

x2 − 1

2x
=

K[a0, a1, . . . , ak, 2ak+1, ak, . . . , a1, a0]−K[a1, . . . , ak, 2ak+1, ak, . . . , a1]

2 ·K[a1, . . . , ak, 2ak+1, ak, . . . , a1, a0]

=
K[a0, . . . , ak] ·K[a0, a1, . . . , ak, ak+1]−K[a1, . . . , ak] ·K[a1, . . . , ak+1]

K[a0, . . . , ak] ·K[a1, . . . , ak+1] + K[a0, a1, . . . , ak, ak+1] ·K[a1, . . . , ak]

=
[a0, a1, . . . , ak] · [a0, a1, . . . , ak, ak+1]− 1

[a0, a1, . . . , ak] + [a0, a1, . . . , ak, ak+1]
,

where the second equality is due to items (a) and (b) of Lemma 2. As a consequence,

x2 − 1

2x
=

[a0, a1, . . . , ak] · [a0, a1, . . . , ak, ak+1]− 1

[a0, a1, . . . , ak] + [a0, a1, . . . , ak, ak+1]
.

Using this last equation and the formula for the cotangent of the sum,

cot(y + z) =
cot y · cot z − 1

cot y + cot z
,

we obtain 2 cot−1 x = cot−1[a0, a1, . . . , ak] + cot−1[a0, a1, . . . , ak, ak+1], from which

the result follows.
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3. Pell Equation and Factorization

For a rational number p/q > 1 which is not a square in Q, it is well known that√
p/q = [a0/2, a1, a2, . . . , a2, a1, a0],

1 +
√
p/q

2
= [(1+b0)/2, b1, b2, . . . , b2, b1, b0],

where aj and bj are natural numbers for each j, a0 is even and b0 is odd, and

where the central words (a1, a2, . . . , a2, a1) and (b1, b2, . . . , b2, b1) are palindromes.

Assume from now on that the periods of these continued fractions are minimal and

equal to l and m, respectively.

For the natural numbers, these continued fraction expansions are of particular

interest, as they give rise to the fundamental solutions of Pell’s equation. If p/q is

equal to a natural number n, then it is well known that

K[a0/2, a1, a2, . . . , a2, a1]2 − n ·K[a1, a2, . . . , a2, a1]2 = (−1)l,

(2 ·K[b0/2, b1, b2, . . . , b2, b1])2 − n ·K[b1, b2, . . . , b2, b1]2 = 4(−1)m.

We will focus on the first equation above, but similar considerations hold for the

second equation as well. Recall that the period l is odd if and only if the negative

Pell equation x2 − ny2 = −1 has an integer solution. As is well known, if n is

divisible by a prime p congruent to 3 modulo 4, then x2 − ny2 = −1 has no integer

solutions because −1 is not a square modulo p. It follows that the period l is even

whenever n is divisible by a prime congruent to 3 modulo 4.

Note that if l = 2k + 2 is even, then
√
n = [a0/2, a1, a2, . . . , ak, ak+1, ak, . . . , a2, a1, a0].

whereas if l = 2k + 1 is odd, then
√
n = [a0/2, a1, a2, . . . , ak, ak, . . . , a2, a1, a0].

In this first case, we can apply the geometric mean formula in Theorem 1 to

obtain
√
n =

√
[a0/2, a1, . . . , ak] · [a0/2, a1, . . . , ak, ak+1/2], which is equivalent to

n = [a0/2, a1, . . . , ak] · [a0/2, a1, . . . , ak, ak+1/2].

We conclude that the natural number n can be written as the product of near

continued fractions. As we will now see, we can obtain a non-trivial factorization

of n from this product whenever ak+1 is even. Observe that if ak+1 is even, then n

is the product of two near continued fractions with natural numbers as entries.

Since K[a0/2, a1, . . . , ak] and K[a1, . . . , ak], and K[a0/2, a1, . . . , ak, ak+1/2] and

K[a1, . . . , ak, ak+1/2], are pairs of coprime natural numbers, it follows that n can

be factored as the product of two natural numbers as

n =
K[a0/2, a1, . . . , ak]

K[a1, . . . , ak, ak+1/2]
· K[a0/2, a1, . . . , ak, ak+1/2]

K[a1, . . . , ak]
.
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The two factors of the natural number n obtained this way are also coprime

because K[a0/2, a1, . . . , ak] and K[a0/2, a1, . . . , ak, ak+1/2] are coprime.

Furthermore, the factorization of n obtained in this way is non-trivial. Indeed, if

this were not the case, then K[a0/2, a1, . . . , ak] = K[a1, . . . , ak, ak+1/2], and from

item (d) in Lemma 1 K[a0/2, a1, . . . , ak] · K[a1, . . . , ak, ak+1/2] − K[a1, . . . , ak] ·
K[a0/2, a1, . . . , ak, ak+1/2] = (−1)k+1. As a consequence, K[a0/2, a1, . . . , ak]2−n ·
K[a1, . . . , ak]2 = (−1)k+1 is a nontrivial solution for the Pell equation of n that is

smaller than the fundamental solution, which is impossible.

In conclusion, from the continued fraction of
√
n it is sometimes possible to obtain

a non-trivial factorization of n as the product of two coprime natural numbers. In

fact, as we have shown, this is possible whenever the period and central term of the

continued fraction
√
n are even. This simple factoring procedure is best shown in

practice in the next example.

Example 1. Note that

√
741 = [27, 4, 1, 1, 13, 18, 13, 1, 1, 4, 54]

=
√

[27, 4, 1, 1, 13] · [27, 4, 1, 1, 13, 9]

=

√
3321

122
· 30134

1107

=

√
3321

1107
· 30134

122

=
√

3 · 247,

and thus we obtain the non-trivial factorization 741 = 3 · 247.

Of course, the fact that one can obtain a non-trivial factorization of a natural

number from the continued fraction of its square root or a solution of the corre-

sponding Pell equation is not new. This observation already appears in the work

of van der Poorten and Walsh [13], where they also mention a connection to the

Lagrange equation. Furthermore, using the theory of quadratic forms it is possible

to obtain faster factorization algorithms, as can be seen in the work of Shanks [10].

However, the advantage of our approach is that the geometric mean formula in

Theorem 1 is valid under more general conditions and immediately shows that there

is a factorization associated with the continued fraction of the square root.

If the period length of the continued fraction of
√
n is odd, then it was already

known by Legendre [5] that n can be written as a primitive sum of squares. This

fact can also be proved using the geometric mean formula in Theorem 2.

It is also possible, using Theorems 1 and 2, to provide conceptually simpler proofs

of some other results about the Pell and Lagrange equations and continued fractions

of square roots. In the next section, we illustrate this by analyzing the continued

fraction of the square root of a prime odd power.
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4. Continued Fraction of
√
p2m−1

In this section, we study, using the procedure of Section 3, the continued fraction of√
p2m−1, where p is a prime congruent to 3 modulo 4 and m is a natural number. As

a consequence, we also obtain, following Chakraborty and Saikia [2], a restatement

of a conjecture by Mordell [7].

First, note that since p is congruent to 3 modulo 4, the period length of the

continued fraction of
√

p2m−1 is even. Write√
p2m−1 = [a0/2, a1, . . . , ak, ak+1, ak, . . . , a1, a0],

where a0 = 2b
√

p2m−1c is even and the period is minimal.

Note that ak+1 is odd, because otherwise, by the procedure of Section 3, one can

obtain a non-trivial factorization of p2m−1 as the product of two coprime natural

numbers, which is impossible.

Define, s0,k+1 := 2·K[a0/2, a1, . . . , ak, ak+1/2], s0 := K[a0/2, a1, . . . , ak], sk+1 :=

2·K[a1, . . . , ak, ak+1/2] and s := K[a1, . . . , ak], and observe that s0,k+1, s0, sk+1 and

s are natural numbers. By the geometric mean formula in Theorem 1 and item (d)

of Lemma 1,

p2m−1 =
s0 · s0,k+1

s · sk+1
=

s0
sk+1

· s0,k+1

s
, and s0 · sk+1 − s · s0,k+1 = 2(−1)k+1.

We will prove that s0/sk+1 and s0,k+1/s are coprime natural numbers and s0,k+1,

s0, sk+1 and s are all odd, and therefore s0 = sk+1 and s0,k+1/s = p2m−1.

Note that by the second equation above, both gcd(s0,k+1, sk+1) and gcd(s0,k+1, s0)

are equal to 1 or 2. It is also clear that gcd(s0, s) = 1. Now, using the defini-

tion of continuant we also have s0,k+1 = ak+1 · s0 + 2 · K[a0/2, a1, . . . , ak−1] and

sk+1 = ak+1 · s + 2 · K[a1, . . . , ak−1], from which follows, since ak+1 is odd, that

both s0,k+1 and s0, and sk+1 and s, are pairs of natural numbers with the same

parity.

As gcd(s0, s) = 1, we obtain that the parity of the pair s0,k+1 and s0 is different

from the parity of the pair sk+1 and s. It follows that gcd(s0,k+1, sk+1) = 1. As

a consequence, since gcd(s0,k+1, sk+1) and gcd(s0,k+1, sk+1) are equal to 1 and the

product (s0/sk+1) · (s0,k+1/s) is a natural number, we obtain that s0/sk+1 and

s0,k+1/s are natural numbers where s0 and sk+1 are odd.

Now, as gcd(s0,k+1, s0) is either 1 or 2, s0,k+1 and s0 have the same parity and the

product (s0/sk+1) · (s0,k+1/s) is odd, it then follows that (s0/sk+1) and (s0,k+1/s)

are coprime natural numbers and s0,k+1, s0, sk+1 and s, are all odd.

Finally, as s ≤ s0, sk+1 < s0,k+1, we have that s0/sk+1 < s0,k+1/s and therefore

s0/sk+1 = 1 and s0,k+1/s = p2m−1, as we wanted to prove.

Using this last fact we can also obtain information about the continued fraction
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of (1 +
√

p2m−1)/2 and ak+1. By the geometric mean formula in Theorem 1,

√
p2m−1 =

√
sk+1

s0
· s0,k+1

s

=

√
sk+1

s
· s0,k+1

s0

= 2
√

[ak+1/2, ak, . . . , a1] · [ak+1/2, ak, . . . , a1, a0/2]

= 2 · [ak+1/2, ak, . . . , a1, a0, a1, . . . , ak, ak+1],

and therefore

1 +
√

p2m−1

2
= [(1 + ak+1)/2, ak, . . . , a1, a0, a1, . . . , ak, ak+1],

from which follows that ak+1 is either b
√

p2m−1c or b
√
p2m−1c − 1, whichever is

odd.

Mordell’s conjecture [7] concerns a divisibility property of the fundamental solu-

tion of the Pell equation of p, where p is a prime congruent to 3 modulo 4. This

conjecture was inspired by a similar conjecture of Ankeny, Artin and Chowla [1].

Conjecture 1 (Mordell [7]). Let (x0, y0) be the fundamental solution of the Pell

equation x2 − py2 = 1, where p is a prime congruent to 3 modulo 4. Then p does

not divide y0.

This conjecture can be rewritten in terms of continued fractions. Write
√
p =

[a0/2, a1, . . . , ak, ak+1, ak, . . . , a1, a0], then Conjecture 1 is easily seen as equivalent

to the statement that p does not divide K[a1, . . . , ak, ak+1, ak, . . . , a1].

In their work, Chakraborty and Saikia [2] proved that Conjecture 1 is equiva-

lent to the statement that p does not divide K[a1, . . . , ak]. This is an immediate

consequence of our results presented above.

Indeed, note that, by item (a) of Lemma 2, K[a1, . . . , ak, ak+1, ak, . . . , a1] equals

sk+1 · s, and that s is, by definition, equal to K[a1, . . . , ak]. Therefore, to obtain

the equivalence, it is enough to verify that sk+1 is not divisible by p. But, as we

showed, p = s0,k+1/s and gcd(s0,k+1, sk+1) = 1, and therefore sk+1 is not divisible

by p.
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