DISTRIBUTION OF 3-REGULAR AND 5-REGULAR PARTITIONS

Qi-Yang Zheng
Department of Mathematics, Sun Yat-sen University (Zhuhai Campus), Guangdong, China
zhengqy29@mail2.sysu.edu.cn

Received: 10/11/22, Accepted: 11/22/23, Published: 12/8/23

Abstract

In this paper, we study the functions $b_{3}(n)$ and $b_{5}(n)$, which denote the number of 3 -regular partitions and 5 -regular partitions of n, respectively. Using the theory of modular forms, we prove several arithmetic properties of $b_{3}(n)$ and $b_{5}(n)$ modulo primes greater than 3 .

1. Introduction

The number of partitions of n in which no parts are multiples of k is denoted by $b_{k}(n)$; such partitions are known as k-regular partitions. It is also the number of partitions of n into at most $k-1$ copies of each part.

We define $b_{3}(0)=b_{5}(0)=1$ for convenience. Moreover, let $b_{3}(n)=b_{5}(n)=0$ if $n \notin \mathbb{Z}_{\geq 0}$. The k-regular partitions have a generating function as follows:

$$
\sum_{n=0}^{\infty} b_{k}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1-q^{k n}}{1-q^{n}}
$$

In 1919, Ramanujan found three remarkable congruences for the partition function $p(n)$ as follows:

$$
\begin{aligned}
p(5 n+4) & \equiv 0(\bmod 5) \\
p(7 n+5) & \equiv 0(\bmod 7) \\
p(11 n+6) & \equiv 0(\bmod 11) .
\end{aligned}
$$

In 2000, Ono [9] proved that for each prime number $m \geq 5$, there exist infinitely many arithmetic sequences $A n+B$ such that

$$
p(A n+B) \equiv 0(\bmod m)
$$

DOI: 10.5281/zenodo. 10307396

We refer to such congruences as Ramanujan-type congruences. Subsequently, Lovejoy [6] obtained similar results for the function $Q(n)$, which counts the number of partitions of n into distinct parts. Following the strategies of Ono and Lovejoy, we prove the following theorem.

Theorem 1. The following hold:

- For each prime $m \geq 5$, there are infinitely many Ramanujan-type congruences of $b_{3}(n)$ modulo m.
- For each prime $m \geq 7$, there are infinitely many Ramanujan-type congruences of $b_{5}(n)$ modulo m.

Lovejoy and Penniston [7] studied the distribution of $b_{3}(n)$ modulo 3, while Keith and Zanello [5] studied the parity of $b_{3}(n)$. As for 5 -regular partitions, Calkin et al. [1] as well as Hirschhorn and Sellers [4] studied the parity of $b_{5}(n)$. Gordon and Ono [3] analyzed the distribution of $b_{5}(n)$ modulo 5 . Moreover, they proved that

$$
\begin{equation*}
b_{5}(5 n+4) \equiv 0(\bmod 5) \tag{1}
\end{equation*}
$$

So far, we have only studied the distribution of $b_{3}(n)$ and $b_{5}(n)$ modulo the primes mentioned above. In this paper, we extend our investigation to the distribution of $b_{3}(n)$ and $b_{5}(n)$ modulo primes $m \geq 5$. It is worth noting that we still lack information about $b_{5}(n)$ modulo 3 .

We can naturally derive a corollary from Theorem 1, which is as follows:
Corollary 1. If $m \geq 5$ is a prime and $k \in\{3,5\}$, then there are infinitely many positive integers n for which

$$
b_{k}(n) \equiv 0(\bmod m)
$$

More precisely, we have

$$
\#\left\{0 \leq n \leq X: b_{k}(n) \equiv 0(\bmod m)\right\} \gg X
$$

For other residue classes $i \not \equiv 0(\bmod m)$, we provide a useful criterion to verify whether there are infinitely many n such that $b_{k}(n) \equiv i(\bmod m)$.

Theorem 2. If $m \geq 5$ is a prime and there exists an integer k such that

$$
b_{3}\left(m k+\frac{m^{2}-1}{12}\right) \equiv e \not \equiv 0(\bmod m)
$$

then for each $i=1,2, \cdots, m-1$, we have

$$
\#\left\{0 \leq n \leq X: \quad b_{3}(n) \equiv i(\bmod m)\right\} \gg \frac{X}{\log X}
$$

Moreover, if such a k exists, then $k<18(m-1)$.

We obtain similar results for $b_{5}(n)$.
Theorem 3. If $m \geq 5$ is a prime and there exists an integer k such that

$$
b_{5}\left(m k+\frac{m^{2}-1}{6}\right) \equiv e \not \equiv 0(\bmod m)
$$

then for each $i=1,2, \cdots, m-1$, we have

$$
\#\left\{0 \leq n \leq X \mid b_{5}(n) \equiv i(\bmod m)\right\} \gg \frac{X}{\log X}
$$

Moreover, if such a k exists, then $k<10(m-1)$.
Remark 1. The congruence (1) shows that our criterion is inapplicable for the case $m=5$. Nevertheless, the case $m=5$ is studied in [3].

2. Preliminaries on Modular Forms

First, we introduce the U operator on formal series. For a positive integer j, we define it as follows:

$$
\left(\sum_{n=0}^{\infty} a(n) q^{n}\right) \mid U(j):=\sum_{n=0}^{\infty} a(j n) q^{n} .
$$

Recalling that Dedekind's eta function is defined by

$$
\eta(z)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

where $q=e^{2 \pi i z}$ and z is a complex number with $\operatorname{Im} z>0$.
If m is a prime, let $M_{k}\left(\Gamma_{0}(N), \chi\right)_{m}$ (respectively $\left.S_{k}\left(\Gamma_{0}(N), \chi\right)_{m}\right)$ denote the \mathbb{F}_{m}-vector space of the reductions modulo m of the q-expansions of modular forms (respectively cusp forms) in $M_{k}\left(\Gamma_{0}(N), \chi\right)$ (respectively $S_{k}\left(\Gamma_{0}(N), \chi\right)$) with integer coefficients.

We need the following theorem to construct modular forms.
Theorem 4 ([2]). Let

$$
f(z)=\prod_{\delta \mid N} \eta^{r_{\delta}}(\delta z)
$$

be an η-quotient. If $f(z)$ has the additional properties that

$$
\begin{equation*}
\sum_{\delta \mid N} \delta r_{\delta} \equiv 0(\bmod 24) \tag{i}
\end{equation*}
$$

(ii)

$$
\sum_{\delta \mid N} \frac{N r_{\delta}}{\delta} \equiv 0(\bmod 24)
$$

(iii)

$$
k:=\frac{1}{2} \sum_{\delta \mid N} r_{\delta} \in \mathbb{Z}
$$

then

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{k} f(z)
$$

for each $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$. Here the Dirichlet character $\chi(\bmod N)$ is defined by

$$
\chi(n):=\left(\frac{(-1)^{k} \prod_{\delta \mid N} \delta^{r_{\delta}}}{n}\right), \text { if } n>0 \text { and }(n, 6)=1
$$

If $f(z)$ is holomorphic (respectively vanishes) at all cusps of $\Gamma_{0}(N)$, then $f(z) \in$ $M_{k}\left(\Gamma_{0}(N), \chi\right)$ (respectively $S_{k}\left(\Gamma_{0}(N), \chi\right)$), since $\eta(z)$ never vanishes on \mathcal{H}. The following theorem provides a useful criterion for computing the orders of an η quotient at all cusps of $\Gamma_{0}(N)$.

Theorem 5 ([8]). Let c, d and N be positive integers with $d \mid N$ and $(c, d)=1$. If $f(z)$ is an η-quotient satisfying the conditions of Theorem 4, then the order of vanishing of $f(z)$ at the cusp c / d is

$$
\frac{N}{24} \sum_{\delta \mid N} \frac{r_{\delta}\left(d^{2}, \delta^{2}\right)}{\delta\left(d^{2}, N\right)}
$$

3. Ramanujan-Type Congruences

In this section, we will prove Theorem 1 using the theory of modular forms. However, the generating function of the regular partition function is not a modular form. For primes $m \geq 5$, it turns out that for a properly chosen function $h_{m}(n)$,

$$
\sum_{n=0}^{\infty} b_{k}\left(h_{m}(n)\right) q^{n}
$$

is the Fourier expansion of a cusp form modulo m. In fact, we can state the following theorem.

Theorem 6. If $m \geq 5$ is a prime, then

$$
\sum_{n=0}^{\infty} b_{3}\left(\frac{m n-1}{12}\right) q^{n} \in S_{3 m-3}\left(\Gamma_{0}(432), \chi_{12}\right)_{m}
$$

where $\chi_{12}(n)=\left(\frac{3}{n}\right)$.
Theorem 7. If $m \geq 5$ is a prime, then

$$
\sum_{n=0}^{\infty} b_{5}\left(\frac{m n-1}{6}\right) q^{n} \in S_{2 m-2}\left(\Gamma_{0}(180), \chi_{5}\right)_{m}
$$

where $\chi_{5}(n)=\left(\frac{n}{5}\right)$.
Proof of Theorem 6. We begin with an η-quotient defined as follows:

$$
f(m ; z):=\frac{\eta(3 z)}{\eta(z)} \eta^{a}(3 m z) \eta^{b}(m z)
$$

where $m^{\prime}:=(m \bmod 12), a:=9-m^{\prime}$, and $b:=m^{\prime}-3$.
It is easy to verify that $f(m ; z) \equiv_{m} \eta^{a m+1}(3 z) \eta^{b m-1}(z)$ satisfies the conditions of Theorem 4. Furthermore, by applying Theorem 5 , one can compute that $\eta^{a m+1}(3 z) \eta^{b m-1}(z)$ has the minimal order of vanishing of $(m(3 a+b)+2) / 24$ at the cusp ∞ and $(m(a+3 b)-2) / 24$ at the cusp 0 .

Since $(m(3 a+b)+2) / 24=\left(m\left(12-m^{\prime}\right)+1\right) / 12>0$ and $(m(a+3 b)-2) / 24=$ $\left(m m^{\prime}-1\right) / 12>0$, we can conclude that $\eta^{a m+1}(3 z) \eta^{b m-1}(z) \in S_{3 m}\left(\Gamma_{0}(3), \chi_{3}\right)$, where $\chi_{3}(n)=\left(\frac{n}{3}\right)$. On the other hand,

$$
\begin{equation*}
f(m ; z)=\sum_{n=0}^{\infty} b_{3}(n) q^{n+\frac{m(3 a+b)+2}{24}} \cdot \prod_{n=1}^{\infty}\left(1-q^{3 m n}\right)^{a}\left(1-q^{m n}\right)^{b} . \tag{2}
\end{equation*}
$$

Applying the U operator to both sides of (2), we have

$$
\begin{align*}
& \eta^{a m+1}(3 z) \eta^{b m-1}(z) \mid U(m) \\
& \quad \equiv_{m}\left(\left.\sum_{n=0}^{\infty} b_{3}(n) q^{n+\frac{m(3 a+b)+2}{24}} \right\rvert\, U(m)\right) \cdot \prod_{n=1}^{\infty}\left(1-q^{3 n}\right)^{a}\left(1-q^{n}\right)^{b} \tag{3}
\end{align*}
$$

As for the right-hand side of (3), we have

$$
\sum_{n=0}^{\infty} b_{3}(n) q^{n+\frac{m(3 a+b)+2}{24}} \left\lvert\, U(m)=\sum_{n \geq 0}^{*} b_{3}(n) q^{\frac{24 n+m(3 a+b)+2}{24 m}}\right.
$$

where \sum^{*} denotes taking the integral power coefficients of q, i.e.

$$
24 n+m(3 a+b)+2 \equiv 0(\bmod 24 m)
$$

It is easy to check that $24 \mid 24 n+m(3 a+b)+2$. Therefore, the condition simplifies to $m \mid 12 n+1$.

As for the left-hand side of (3), we have

$$
\eta^{a m+1}(3 z) \eta^{b m-1}(z)\left|U(m) \equiv_{m} \eta^{a m+1}(3 z) \eta^{b m-1}(z)\right| T(m)
$$

where $T(m)$ denotes the usual Hecke operator acting on $S_{3 m}\left(\Gamma_{0}(3), \chi_{3}\right)$.
Now, let us analyze the η-product $\eta^{6}(z) \eta^{6}(3 z)$. According to Theorem 4 and Theorem 5 , we find that $\eta^{6}(z) \eta^{6}(3 z)$ is a cusp form of weight 6 and level 3 , with the minimal order of vanishing of 1 at the two cusps of $\Gamma_{0}(3)$. Since $\eta(z)$ never vanishes on \mathcal{H}, we can derive that $\eta^{a m+1}(3 z) \eta^{b m-1}(z) \mid T(m)=\eta^{6}(z) \eta^{6}(3 z) g(m ; z)$, where $g(m ; z) \in M_{3 m-6}\left(\Gamma_{0}(3), \chi_{3}\right)$.

In summary, we have

$$
\begin{equation*}
\sum_{\substack{n \geq 0 \\ m \mid 12 n+1}} b_{3}(n) q^{\frac{24 n+m(3 a+b)+2}{24 m}} \equiv_{m} \frac{\eta^{6}(z) \eta^{6}(3 z) g(m ; z)}{\prod_{n=1}^{\infty}\left(1-q^{3 n}\right)^{a}\left(1-q^{n}\right)^{b}} \tag{4}
\end{equation*}
$$

By replacing q with q^{12} and then multiplying both sides of (4) by $q^{-(3 a+b) / 2}$, we obtain

$$
\sum_{\substack{n \geq 0 \\ m \mid 12 n+1}} b_{3}(n) q^{\frac{12 n+1}{m}} \equiv_{m} \eta^{6-a}(36 z) \eta^{6-b}(12 z) g(m ; 12 z),
$$

namely,

$$
\sum_{n=0}^{\infty} b_{3}\left(\frac{m n-1}{12}\right) q^{n} \equiv_{m} \eta^{6-a}(36 z) \eta^{6-b}(12 z) g(m ; 12 z) .
$$

Using Theorem 4 and Theorem 5 once again, one can verify that $\eta^{6-a}(36 z) \eta^{6-b}(12 z)$ is a cusp form of weight 3 and level 432. It has the minimal order of vanishing of m^{\prime} at the cusps c / d if $d \in\{1,2,3,4,6,8,12,16,24,48\}$, and $12-m^{\prime}$ at the cusp if d is any other divisor of 432 .

Therefore, we obtain

$$
\eta^{6-a}(36 z) \eta^{6-b}(12 z) \in S_{3}\left(\Gamma_{0}(432), \chi_{4}\right)
$$

where $\chi_{4}(n)=\left(\frac{-1}{n}\right)$. Together with $g(m ; 12 z) \in M_{3 m-6}\left(\Gamma_{0}(36), \chi_{3}\right)$, we have

$$
\sum_{n=0}^{\infty} b_{3}\left(\frac{m n-1}{12}\right) q^{n} \in S_{3 m-3}\left(\Gamma_{0}(432), \chi_{12}\right)_{m}
$$

Proof of Theorem 7. For a fixed prime m, let

$$
f(m ; z):=\frac{\eta(5 z)}{\eta(z)} \eta^{a}(5 m z) \eta^{b}(m z)
$$

where $m^{\prime}:=(m \bmod 6), a:=5-m^{\prime}$, and $b:=m^{\prime}-1$. It is easy to show that $f(m ; z) \equiv \eta^{a m+1}(5 z) \eta^{b m-1}(z)(\bmod m)$ and

$$
\eta^{a m+1}(5 z) \eta^{b m-1}(z) \in S_{2 m}\left(\Gamma_{0}(5), \chi_{5}\right)
$$

where $\chi_{5}(n)=\left(\frac{n}{5}\right)$. On the other hand,

$$
f(m ; z)=\sum_{n=0}^{\infty} b_{5}(n) q^{\frac{24 n+m(5 a+b)+4}{24}} \cdot \prod_{n=1}^{\infty}\left(1-q^{5 m n}\right)^{a}\left(1-q^{m n}\right)^{b}
$$

Having the operator $U(m)$ act on $f(m ; z)$ and using the fact that $U(m) \equiv_{m} T(m)$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5}(n) q^{\frac{24 n+m(5 a+b)+4}{24}} \left\lvert\, U(m) \equiv \frac{\eta^{a m+1}(5 z) \eta^{b m-1}(z) \mid T(m)}{\prod_{n=1}^{\infty}\left(1-q^{5 n}\right)^{a}\left(1-q^{n}\right)^{b}}(\bmod m)\right. \tag{5}
\end{equation*}
$$

where $T(m)$ denotes the usual Hecke operator acting on $S_{2 m}\left(\Gamma_{0}(5), \chi_{5}\right)$. As for the left-hand side of (5), we have

$$
\sum_{n=0}^{\infty} b_{5}(n) q^{\frac{24 n+m(5 a+b)+4}{24}} \left\lvert\, U(m)=\sum_{\substack{n=0 \\ m \mid 6 n+1}}^{\infty} b_{5}(n) q^{\frac{24 n+m(5 a+b)+4}{24 m}}\right.
$$

Using Theorems 4 and 5 , one can verify that $\eta^{4}(5 z) \eta^{4}(z) \in S_{4}\left(\Gamma_{0}(5)\right)$ and has order of 1 at all cusps. Thus, we can write $\eta^{a m+1}(5 z) \eta^{b m-1}(z) \mid T(m)=\eta^{4}(5 z) \eta^{4}(z) g(m ; z)$, where $g(m ; z) \in M_{2 m-4}\left(\Gamma_{0}(5), \chi_{5}\right)$. Hence

$$
\sum_{\substack{n=0 \\ m \mid 6 n+1}}^{\infty} b_{5}(n) q^{\frac{6 n+1}{6 m}} \equiv \eta^{4-a}(5 z) \eta^{4-b}(z) g(m ; z)(\bmod m)
$$

Replacing q with q^{6} shows that

$$
\sum_{\substack{n=0 \\ m \mid 6 n+1}}^{\infty} b_{5}(n) q^{\frac{6 n+1}{m}} \equiv \eta^{4-a}(30 z) \eta^{4-b}(6 z) g(m ; 6 z)(\bmod m)
$$

Since $b_{5}(n)$ vanishes for non-integer n, we have

$$
\sum_{n=0}^{\infty} b_{5}\left(\frac{m n-1}{6}\right) q^{n} \equiv \eta^{4-a}(30 z) \eta^{4-b}(6 z) g(m ; 6 z)(\bmod m)
$$

Moreover, one can verify that $\eta^{4-a}(30 z) \eta^{4-b}(6 z) \in S_{2}\left(\Gamma_{0}(180)\right)$. Together with the fact that $g(m ; 6 z) \in M_{2 m-4}\left(\Gamma_{0}(30), \chi_{5}\right)$, we have

$$
\sum_{n=0}^{\infty} b_{5}\left(\frac{m n-1}{6}\right) q^{n} \in S_{2 m-2}\left(\Gamma_{0}(180), \chi_{5}\right)_{m}
$$

We need some important results of Serre, which are critical factors in the existence of Ramanujan-type congruences.

Theorem $8([10])$. The set of primes $l \equiv-1(\bmod N m)$ such that

$$
f \mid T(l) \equiv 0(\bmod m)
$$

for each $f(z) \in S_{k}\left(\Gamma_{0}(N), \psi\right)_{m}$ has positive density, where $T(l)$ denotes the usual Hecke operator acting on $S_{k}\left(\Gamma_{0}(N), \psi\right)$.

Now, Theorem 1 is an immediately corollary of the next two theorems.
Theorem 9. Let $m \geq 5$ be a prime. A positive density of the primes l has the property that

$$
b_{3}\left(\frac{m l n-1}{12}\right) \equiv 0(\bmod m)
$$

for each nonnegative integer n coprime to l.
Theorem 10. Let $m \geq 5$ be a prime. A positive density of the primes l has the property that

$$
b_{5}\left(\frac{m l n-1}{6}\right) \equiv 0(\bmod m)
$$

for each nonnegative integer n coprime to l.
Proof of Theorem 9. Let

$$
F(m ; z)=\sum_{n=0}^{\infty} b_{3}\left(\frac{m n-1}{12}\right) q^{n} \in S_{3 m-3}\left(\Gamma_{0}(432), \chi_{12}\right)_{m}
$$

For a fixed prime $m \geq 5$, let $S(m)$ denote the set of primes l such that

$$
f \mid T(l) \equiv 0(\bmod m)
$$

for each $f \in S_{3 m-3}\left(\Gamma_{0}(432), \chi_{12}\right)$. By Theorem 8 , the set $S(m)$ contains a positive density of primes. Hence for $l \in S(m)$, we have

$$
F(m ; z) \mid T(l) \equiv 0(\bmod m)
$$

Then by the theory of Hecke operators, we have
$F(m ; z) \left\lvert\, T(l)=\sum_{n=0}^{\infty}\left(b_{3}\left(\frac{m l n-1}{12}\right)+\left(\frac{3}{l}\right) l^{3 m-4} b_{3}\left(\frac{m n / l-1}{12}\right)\right) q^{n} \equiv 0(\bmod m)\right.$.
Since $b_{3}(n)$ vanishes when n is not an integer, we have $b_{3}((m n / l-1) / 12)=0$ for each n coprime to l. Thus

$$
b_{3}\left(\frac{m l n-1}{12}\right) \equiv 0(\bmod m)
$$

is satisfied for each integer n coprime to l. Moreover, the set of such primes l is of positive density.

Proof of Theorem 10. Let

$$
F(m ; z)=\sum_{n=0}^{\infty} b_{5}\left(\frac{m n-1}{6}\right) q^{n} \in S_{2 m-2}\left(\Gamma_{0}(180), \chi_{5}\right)_{m}
$$

According to Theorem 8, the set of primes l for which

$$
F(m ; z) \mid T(l) \equiv 0(\bmod m)
$$

has positive density, where $T(l)$ denotes the Hecke operator on $S_{2 m-2}\left(\Gamma_{0}(180), \chi_{5}\right)$. Moreover, by the theory of Hecke operators, we have

$$
\sum_{n=0}^{\infty} F(m ; z) \left\lvert\, T(l)=\sum_{n=0}^{\infty}\left(b_{5}\left(\frac{m l n-1}{6}\right)+\left(\frac{l}{5}\right) l^{2 m-3} b_{5}\left(\frac{m n / l-1}{6}\right)\right) q^{n}\right.
$$

Since $b_{5}(n)$ vanishes for non-integer n, we have $b_{5}((m n / l-1) / 6)=0$ when $(n, l)=1$. Thus

$$
b_{5}\left(\frac{m l n-1}{6}\right) \equiv 0(\bmod m)
$$

is satisfied for each integer n with $(n, l)=1$. Moreover, the set of such primes l is of positive density.

Since the selections for l are infinite, let us choose $l>3$. By replacing n with $12 n l+m l+12$, we then have $b_{3}\left(m l^{2} n+m l+\left(m^{2} l^{2}-1\right) / 12\right) \equiv 0(\bmod m)$ satisfied for each integer n. A similar approach can be applied to $b_{5}(n)$. Hence, we obtain Theorem 1. Moreover, using the fact that the selections for l are infinite, together with the Chinese Remainder Theorem and previous results, we obtain the following result.

Corollary 2. If m is a squarefree integer, then there are infinitely many Ramanujantype congruences of $b_{3}(n)$ modulo m; if k is a squarefree integer coprime to 3 , then there are infinitely many Ramanujan-type congruences of $b_{5}(n)$ modulo k.

4. Distribution on Nonzero Residues

Following Lovejoy [6], we need the following theorem of Serre.
Theorem $11([10])$. The set of primes $l \equiv 1(\bmod N m)$ such that

$$
a\left(n l^{r}\right) \equiv(r+1) a(n)(\bmod m)
$$

for every $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in S_{k}\left(\Gamma_{0}(N), \psi\right)_{m}$ has positive density, where r is a positive integer and n is coprime to l.

Here, we introduce a theorem of Sturm, which provides a useful criterion for determining when modular forms with integer coefficients become congruent to zero modulo a prime through finite computation.

Theorem 12 ([11]). Let $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k}\left(\Gamma_{0}(N), \chi\right)_{m}$ be a modular form such that

$$
a(n) \equiv 0(\bmod m)
$$

for all $n \leq \frac{k N}{12} \prod_{p \mid N}\left(1+\frac{1}{p}\right)$. Then $a(n) \equiv 0(\bmod m)$ for all $n \in \mathbb{Z}$.
We next present the proof of Theorem 2. The proof of Theorem 3 is very similar, so we omit it.

Proof of Theorem 2. If there is one $k \in \mathbb{Z}$ such that

$$
b_{3}\left(m k+\frac{m^{2}-1}{12}\right) \equiv e \not \equiv 0(\bmod m)
$$

let $s=12 k+m$. Since $b_{3}(n)$ vanishes for negative n, we have $m k+\frac{m^{2}-1}{12} \geq 0$. Hence $s=12 k+m>0$ and

$$
b_{3}\left(\frac{m s-1}{12}\right)=b_{3}\left(m k+\frac{m^{2}-1}{12}\right) \equiv e(\bmod m) .
$$

For a fixed prime $m \geq 5$, let $R(m)$ denote the set of primes l such that

$$
a\left(n l^{r}\right) \equiv(r+1) a(n)(\bmod m)
$$

for each $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in S_{3 m-3}\left(\Gamma_{0}(432), \chi_{12}\right)_{m}$, where r is a positive integer, and n is coprime to l. By the proof of Theorem 9, we have $\sum_{n=0}^{\infty} b_{3}\left(\frac{m n-1}{12}\right) q^{n} \in$ $S_{3 m-3}\left(\Gamma_{0}(432), \chi_{12}\right)_{m}$. Since $R(m)$ is infinite by Theorem 11, we can choose an $l \in R(m)$ such that $l>s$, then

$$
b_{3}\left(\frac{m l^{r} s-1}{12}\right) \equiv(r+1) b_{3}\left(\frac{m s-1}{12}\right) \equiv(r+1) e(\bmod m) .
$$

Now, we fix l and choose $\rho \in R(m)$ such that $\rho>l$, then

$$
\begin{equation*}
b_{3}\left(\frac{m \rho n-1}{12}\right) \equiv 2 b_{3}\left(\frac{m n-1}{12}\right)(\bmod m) \tag{6}
\end{equation*}
$$

is satisfied for each n coprime to ρ. For each $i=1,2, \cdots, m-1$, let $r_{i} \equiv i(2 e)^{-1}-$ $1(\bmod m)$ and $r_{i}>0$. Let $n=l^{r_{i}} s$ in (6), to obtain

$$
b_{3}\left(\frac{m \rho l^{r_{i}} s-1}{12}\right) \equiv 2 b_{3}\left(\frac{m l^{r_{i}} s-1}{12}\right) \equiv 2\left(r_{i}+1\right) e \equiv i(\bmod m)
$$

Since the variables, except for ρ, are fixed, it suffices to prove that the estimate for the choices of $\rho \gg X / \log X$, which can be easily derived from Theorem 11 and the Prime Number Theorem.

Moreover, by Sturm's Theorem, if $b_{3}\left(\frac{m n-1}{12}\right) \equiv 0(\bmod m)$ for each $n \leq 216(m-$ $1)$, then $b_{3}\left(\frac{m n-1}{12}\right) \equiv 0(\bmod m)$ for all $n \in \mathbb{Z}$. Since $b_{3}(n)$ vanishes if n is not an integer, it suffices to compute those n of the form $12 j+m$ for $12 j+m \leq 216(m-1)$. This implies that $j<18(m-1)$. In addition,

$$
b_{3}\left(\frac{m(12 j+m)-1}{12}\right)=b_{3}\left(m j+\frac{m^{2}-1}{12}\right)
$$

Thus, if such a k exists, then $k<18(m-1)$.

5. Examples of Ramanujan-Type Congruences

By Theorem 12, we find that

$$
\left.\sum_{n=0}^{\infty} b_{3}\left(\frac{m n-1}{12}\right) q^{n} \right\rvert\, T(l) \equiv 0(\bmod m)
$$

for the pairs (m, l) listed in the following table.

m	l
	$61,79,97,181,211,233,283,383,401,439,449,463$,
5	$557,641,647,691,739,743,751,863,887,907,947$,
	$953,977,983,997,1093,1097,1129,1153,1201$
7	$71,761,1321,1607,1657,2543,2617$
11	12553

An elementary computation yields the following result.
Proposition 1. For the pairs (m, l) listed above, we have

$$
b_{3}\left(m l(l n+j)+\frac{m^{2} l^{2}-1}{12}\right) \equiv 0(\bmod m)
$$

for each n and $1 \leq j \leq l-1$.
We have the following examples.
Example 1.

$$
\begin{gathered}
b_{3}(18605 n+127) \equiv 0(\bmod 5) \\
b_{3}(35287 n+207) \equiv 0(\bmod 7) \\
b_{3}(1733355899 n+126576) \equiv 0(\bmod 11)
\end{gathered}
$$

Our method is not applicable to the case $m=3$. Nevertheless, it can be proven that there are infinitely many Ramanujan-type congruences modulo 3 through the results of Lovejoy and Penniston [7, Corollary 4].

Proposition 2. If Q is a prime of the form $12 k+1$, then

$$
b_{3}\left(Q^{3} n+\frac{Q^{2}-1}{12}\right) \equiv 0(\bmod 3) .
$$

For example, we obtain

$$
b_{3}(2197 n+14) \equiv 0(\bmod 3)
$$

As for $b_{5}(n)$, we compute that

$$
\left.\sum_{n=0}^{\infty} b_{5}\left(\frac{m n-1}{6}\right) q^{n} \right\rvert\, T(l) \equiv 0(\bmod m)
$$

for the pairs (m, l) listed in the following table.

m	l
	$17,37,197,211,239,263,269,271,331$,
7	$397,457,503,563,569,587,811$,
	$823,853,929,941,1049,1163$
11	$41,1553,1867,4021,4783,6947,7193,7559$
13	16519

An elementary computation yields the following result.
Proposition 3. For the pairs (m, l) listed above, we have

$$
b_{5}\left(m l(l n+j)+\frac{m^{2} l^{2}-1}{6}\right) \equiv 0(\bmod m)
$$

for each n and $1 \leq j \leq l-1$.
We have the following examples.

Example 2.

$$
\begin{aligned}
b_{5}(2023 n+99) & \equiv 0(\bmod 7) \\
b_{5}(18491 n+75) & \equiv 0(\bmod 11) \\
b_{5}(3547405693 n+35791) & \equiv 0(\bmod 13) .
\end{aligned}
$$

Moreover, the congruence $b_{5}(5 n+4) \equiv 0(\bmod 5)$ implies that

$$
\left.\sum_{n=0}^{\infty} b_{5}\left(\frac{5 n-1}{6}\right) q^{n} \right\rvert\, T(l) \equiv 0(\bmod 5)
$$

for all primes l.

6. More on \boldsymbol{k}-Regular Partitions

In this paper, we prove that for $b_{3}(n)$ (respectively $b_{5}(n)$) and each prime $m \geq 5$ (respectively $m \geq 7$), there are infinitely many Ramanujan-type congruences modulo m. However, the situation for $b_{5}(n)$ modulo 3 remains a topic of investigation.

Problem 1. Find a congruence modulo 3 for $b_{5}(n)$, or provide a proof that no such congruence exists.

We also propose the following conjecture, which is analogous to Newman's Conjecture.

Conjecture 1. If m is an integer and $k=3,5$, then for each residue class $r(\bmod m)$, there exist infinitely many integers n such that $b_{k}(n) \equiv r(\bmod m)$.

While Ramanujan-type congruences modulo primes $m \geq 5$ do exist, discovering them may require extensive computational efforts. We encourage interested readers to explore congruences modulo different primes and seek examples.

We can adapt our proof to derive partial results for $b_{11}(n)$, which counts the number of 11-regular partitions of n. Specifically, if p is a prime greater than 5 and satisfies $p \equiv 5,7(\bmod 12)$, then we can discover infinitely many Ramanujan-type congruences for $b_{11}(n)$ modulo p. For instance, we obtain $b_{11}(43687 n+230) \equiv$ $0(\bmod 7)$. However, even more promisingly, the existence of such congruences is assured by [12]. We plan to explore these findings in a future paper.

Acknowledgements. These ideas were inspired by the works of Ono [9] and Lovejoy [6]. I would like to express my heartfelt gratitude to my advisor, Chan Ieong Kuan, for his invaluable guidance and input throughout the development of this manuscript. Furthermore, I extend my appreciation to the reviewer for their insightful feedback, which greatly contributed to the improvement of this paper.

References

[1] N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, Divisibility properties of the 5-regular and 13-regular partition functions, Integers 8 (2008), \#A60.
[2] B. Gordon and K. Hughes, Multiplicative properties of eta-products II, Contemp. Math. 143 (1993), 415-415.
[3] B. Gordon and K. Ono, Divisibility of certain partition functions by powers of primes, Ramanujan J. 1 (1997), 25-34.
[4] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc. 81 (2010), 58-63.
[5] W. J. Keith and F. Zanello, Parity of the coefficients of certain eta-quotients, J. Number Theory 235 (2022), 275-304.
[6] J. Lovejoy, Divisibility and distribution of partitions into distinct parts, Adv. Math. 158 (2001), 253-263.
[7] J. Lovejoy and D. Penniston, 3-regular partitions and a modular K3 surface, Contemp. Math. 291 (2001), 177-182.
[8] Y. Martin, Multiplicative η-quotients, Trans. Amer. Math. Soc. 348 (1996), 4825-4856.
[9] K. Ono, Distribution of the partition function modulo m, Ann. of Math. 151 (2000), 293-307.
[10] J. P. Serre, Divisibilité de certaines fonctions arithmétiques, L'Enseignement Math. 22 (1974), 1-28.
[11] J. Sturm, On the congruence of modular forms, Springer Lect. Notes in Math. 1240 (1987), 275-280.
[12] S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms. Proc. Lond. Math. Soc. 93 (2006), 304-324.

