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Abstract

In this paper, we study the functions b3(n) and b5(n), which denote the number of
3-regular partitions and 5-regular partitions of n, respectively. Using the theory of
modular forms, we prove several arithmetic properties of b3(n) and b5(n) modulo
primes greater than 3.

1. Introduction

The number of partitions of n in which no parts are multiples of k is denoted by

bk(n); such partitions are known as k-regular partitions. It is also the number of

partitions of n into at most k − 1 copies of each part.

We define b3(0) = b5(0) = 1 for convenience. Moreover, let b3(n) = b5(n) = 0 if

n 6∈ Z≥0. The k-regular partitions have a generating function as follows:

∞∑
n=0

bk(n)qn =

∞∏
n=1

1− qkn

1− qn
.

In 1919, Ramanujan found three remarkable congruences for the partition function

p(n) as follows:
p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In 2000, Ono [9] proved that for each prime number m ≥ 5, there exist infinitely

many arithmetic sequences An+B such that

p(An+B) ≡ 0 (mod m).
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We refer to such congruences as Ramanujan-type congruences. Subsequently, Love-

joy [6] obtained similar results for the function Q(n), which counts the number of

partitions of n into distinct parts. Following the strategies of Ono and Lovejoy, we

prove the following theorem.

Theorem 1. The following hold:

• For each prime m ≥ 5, there are infinitely many Ramanujan-type congruences

of b3(n) modulo m.

• For each prime m ≥ 7, there are infinitely many Ramanujan-type congruences

of b5(n) modulo m.

Lovejoy and Penniston [7] studied the distribution of b3(n) modulo 3, while Keith

and Zanello [5] studied the parity of b3(n). As for 5-regular partitions, Calkin et

al. [1] as well as Hirschhorn and Sellers [4] studied the parity of b5(n). Gordon and

Ono [3] analyzed the distribution of b5(n) modulo 5. Moreover, they proved that

b5(5n+ 4) ≡ 0 (mod 5). (1)

So far, we have only studied the distribution of b3(n) and b5(n) modulo the primes

mentioned above. In this paper, we extend our investigation to the distribution

of b3(n) and b5(n) modulo primes m ≥ 5. It is worth noting that we still lack

information about b5(n) modulo 3.

We can naturally derive a corollary from Theorem 1, which is as follows:

Corollary 1. If m ≥ 5 is a prime and k ∈ {3, 5}, then there are infinitely many

positive integers n for which

bk(n) ≡ 0 (mod m).

More precisely, we have

#{0 ≤ n ≤ X : bk(n) ≡ 0 (mod m)} � X.

For other residue classes i 6≡ 0 (mod m), we provide a useful criterion to verify

whether there are infinitely many n such that bk(n) ≡ i (mod m).

Theorem 2. If m ≥ 5 is a prime and there exists an integer k such that

b3

(
mk +

m2 − 1

12

)
≡ e 6≡ 0 (mod m),

then for each i = 1, 2, · · · ,m− 1, we have

#{0 ≤ n ≤ X : b3(n) ≡ i (mod m)} � X

logX
.

Moreover, if such a k exists, then k < 18(m− 1).
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We obtain similar results for b5(n).

Theorem 3. If m ≥ 5 is a prime and there exists an integer k such that

b5

(
mk +

m2 − 1

6

)
≡ e 6≡ 0 (mod m),

then for each i = 1, 2, · · · ,m− 1, we have

#{0 ≤ n ≤ X | b5(n) ≡ i (mod m)} � X

logX
.

Moreover, if such a k exists, then k < 10(m− 1).

Remark 1. The congruence (1) shows that our criterion is inapplicable for the case

m = 5. Nevertheless, the case m = 5 is studied in [3].

2. Preliminaries on Modular Forms

First, we introduce the U operator on formal series. For a positive integer j, we

define it as follows: ( ∞∑
n=0

a(n)qn

)
| U(j) :=

∞∑
n=0

a(jn)qn.

Recalling that Dedekind’s eta function is defined by

η(z) = q
1
24

∞∏
n=1

(1− qn),

where q = e2πiz and z is a complex number with Im z > 0.

If m is a prime, let Mk(Γ0(N), χ)m (respectively Sk(Γ0(N), χ)m) denote the

Fm-vector space of the reductions modulo m of the q-expansions of modular forms

(respectively cusp forms) in Mk(Γ0(N), χ) (respectively Sk(Γ0(N), χ)) with integer

coefficients.

We need the following theorem to construct modular forms.

Theorem 4 ([2]). Let

f(z) =
∏
δ|N

ηrδ(δz)

be an η-quotient. If f(z) has the additional properties that

(i) ∑
δ|N

δrδ ≡ 0 (mod 24);
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(ii) ∑
δ|N

Nrδ
δ
≡ 0 (mod 24);

(iii)

k :=
1

2

∑
δ|N

rδ ∈ Z,

then

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z),

for each

(
a b
c d

)
∈ Γ0(N). Here the Dirichlet character χ (mod N) is defined by

χ(n) :=

(
(−1)k

∏
δ|N δ

rδ

n

)
, if n > 0 and (n, 6) = 1.

If f(z) is holomorphic (respectively vanishes) at all cusps of Γ0(N), then f(z) ∈
Mk(Γ0(N), χ) (respectively Sk(Γ0(N), χ)), since η(z) never vanishes on H. The

following theorem provides a useful criterion for computing the orders of an η-

quotient at all cusps of Γ0(N).

Theorem 5 ([8]). Let c, d and N be positive integers with d |N and (c, d) = 1.

If f(z) is an η-quotient satisfying the conditions of Theorem 4, then the order of

vanishing of f(z) at the cusp c/d is

N

24

∑
δ|N

rδ(d
2, δ2)

δ(d2, N)
.

3. Ramanujan-Type Congruences

In this section, we will prove Theorem 1 using the theory of modular forms. How-

ever, the generating function of the regular partition function is not a modular form.

For primes m ≥ 5, it turns out that for a properly chosen function hm(n),

∞∑
n=0

bk(hm(n))qn

is the Fourier expansion of a cusp form modulo m. In fact, we can state the following

theorem.
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Theorem 6. If m ≥ 5 is a prime, then

∞∑
n=0

b3

(
mn− 1

12

)
qn ∈ S3m−3(Γ0(432), χ12)m,

where χ12(n) =
(
3
n

)
.

Theorem 7. If m ≥ 5 is a prime, then

∞∑
n=0

b5

(
mn− 1

6

)
qn ∈ S2m−2(Γ0(180), χ5)m,

where χ5(n) =
(
n
5

)
.

Proof of Theorem 6. We begin with an η-quotient defined as follows:

f(m; z) :=
η(3z)

η(z)
ηa(3mz)ηb(mz),

where m′ := (m mod 12), a := 9−m′, and b := m′ − 3.

It is easy to verify that f(m; z) ≡m ηam+1(3z)ηbm−1(z) satisfies the condi-

tions of Theorem 4. Furthermore, by applying Theorem 5, one can compute that

ηam+1(3z)ηbm−1(z) has the minimal order of vanishing of (m(3a+ b) + 2)/24 at the

cusp ∞ and (m(a+ 3b)− 2)/24 at the cusp 0.

Since (m(3a+ b) + 2)/24 = (m(12−m′) + 1)/12 > 0 and (m(a+ 3b)− 2)/24 =

(mm′ − 1)/12 > 0, we can conclude that ηam+1(3z)ηbm−1(z) ∈ S3m(Γ0(3), χ3),

where χ3(n) =
(
n
3

)
. On the other hand,

f(m; z) =

∞∑
n=0

b3(n)qn+
m(3a+b)+2

24 ·
∞∏
n=1

(1− q3mn)a(1− qmn)b. (2)

Applying the U operator to both sides of (2), we have

ηam+1(3z)ηbm−1(z) | U(m)

≡m

( ∞∑
n=0

b3(n)qn+
m(3a+b)+2

24 | U(m)

)
·
∞∏
n=1

(1− q3n)a(1− qn)b.
(3)

As for the right-hand side of (3), we have

∞∑
n=0

b3(n)qn+
m(3a+b)+2

24 | U(m) =
∑
n≥0

∗
b3(n)q

24n+m(3a+b)+2
24m ,

where
∑∗

denotes taking the integral power coefficients of q, i.e.

24n+m(3a+ b) + 2 ≡ 0 (mod 24m).
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It is easy to check that 24 | 24n+m(3a+ b) + 2. Therefore, the condition simplifies

to m | 12n+ 1.

As for the left-hand side of (3), we have

ηam+1(3z)ηbm−1(z) | U(m) ≡m ηam+1(3z)ηbm−1(z) | T (m),

where T (m) denotes the usual Hecke operator acting on S3m(Γ0(3), χ3).

Now, let us analyze the η-product η6(z)η6(3z). According to Theorem 4 and

Theorem 5, we find that η6(z)η6(3z) is a cusp form of weight 6 and level 3, with the

minimal order of vanishing of 1 at the two cusps of Γ0(3). Since η(z) never vanishes

on H, we can derive that ηam+1(3z)ηbm−1(z) | T (m) = η6(z)η6(3z)g(m; z), where

g(m; z) ∈M3m−6(Γ0(3), χ3).

In summary, we have∑
n≥0

m|12n+1

b3(n)q
24n+m(3a+b)+2

24m ≡m
η6(z)η6(3z)g(m; z)∏∞
n=1(1− q3n)a(1− qn)b

. (4)

By replacing q with q12 and then multiplying both sides of (4) by q−(3a+b)/2, we

obtain ∑
n≥0

m|12n+1

b3(n)q
12n+1
m ≡m η6−a(36z)η6−b(12z)g(m; 12z),

namely,
∞∑
n=0

b3

(
mn− 1

12

)
qn ≡m η6−a(36z)η6−b(12z)g(m; 12z).

Using Theorem 4 and Theorem 5 once again, one can verify that η6−a(36z)η6−b(12z)

is a cusp form of weight 3 and level 432. It has the minimal order of vanishing of

m′ at the cusps c/d if d ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}, and 12−m′ at the cusp if d

is any other divisor of 432.

Therefore, we obtain

η6−a(36z)η6−b(12z) ∈ S3 (Γ0(432), χ4) ,

where χ4(n) =
(−1
n

)
. Together with g(m; 12z) ∈M3m−6(Γ0(36), χ3), we have

∞∑
n=0

b3

(
mn− 1

12

)
qn ∈ S3m−3(Γ0(432), χ12)m.

Proof of Theorem 7. For a fixed prime m, let

f(m; z) :=
η(5z)

η(z)
ηa(5mz)ηb(mz),
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where m′ := (m mod 6), a := 5 − m′, and b := m′ − 1. It is easy to show that

f(m; z) ≡ ηam+1(5z)ηbm−1(z) (mod m) and

ηam+1(5z)ηbm−1(z) ∈ S2m(Γ0(5), χ5),

where χ5(n) =
(
n
5

)
. On the other hand,

f(m; z) =

∞∑
n=0

b5(n)q
24n+m(5a+b)+4

24 ·
∞∏
n=1

(1− q5mn)a(1− qmn)b.

Having the operator U(m) act on f(m; z) and using the fact that U(m) ≡m T (m),

we obtain
∞∑
n=0

b5(n)q
24n+m(5a+b)+4

24 | U(m) ≡ ηam+1(5z)ηbm−1(z) | T (m)∏∞
n=1(1− q5n)a(1− qn)b

(mod m) , (5)

where T (m) denotes the usual Hecke operator acting on S2m(Γ0(5), χ5). As for the

left-hand side of (5), we have

∞∑
n=0

b5(n)q
24n+m(5a+b)+4

24 | U(m) =

∞∑
n=0

m|6n+1

b5(n)q
24n+m(5a+b)+4

24m .

Using Theorems 4 and 5, one can verify that η4(5z)η4(z) ∈ S4(Γ0(5)) and has order

of 1 at all cusps. Thus, we can write ηam+1(5z)ηbm−1(z) | T (m) = η4(5z)η4(z)g(m; z),

where g(m; z) ∈M2m−4(Γ0(5), χ5). Hence

∞∑
n=0

m|6n+1

b5(n)q
6n+1
6m ≡ η4−a(5z)η4−b(z)g(m; z) (mod m) .

Replacing q with q6 shows that

∞∑
n=0

m|6n+1

b5(n)q
6n+1
m ≡ η4−a(30z)η4−b(6z)g(m; 6z) (mod m) .

Since b5(n) vanishes for non-integer n, we have

∞∑
n=0

b5

(
mn− 1

6

)
qn ≡ η4−a(30z)η4−b(6z)g(m; 6z) (mod m) .

Moreover, one can verify that η4−a(30z)η4−b(6z) ∈ S2(Γ0(180)). Together with the

fact that g(m; 6z) ∈ M2m−4(Γ0(30), χ5), we have

∞∑
n=0

b5

(
mn− 1

6

)
qn ∈ S2m−2(Γ0(180), χ5)m.
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We need some important results of Serre, which are critical factors in the existence

of Ramanujan-type congruences.

Theorem 8 ([10]). The set of primes l ≡ −1 (mod Nm) such that

f | T (l) ≡ 0 (mod m)

for each f(z) ∈ Sk(Γ0(N), ψ)m has positive density, where T (l) denotes the usual

Hecke operator acting on Sk(Γ0(N), ψ).

Now, Theorem 1 is an immediately corollary of the next two theorems.

Theorem 9. Let m ≥ 5 be a prime. A positive density of the primes l has the

property that

b3

(
mln− 1

12

)
≡ 0 (mod m)

for each nonnegative integer n coprime to l.

Theorem 10. Let m ≥ 5 be a prime. A positive density of the primes l has the

property that

b5

(
mln− 1

6

)
≡ 0 (mod m)

for each nonnegative integer n coprime to l.

Proof of Theorem 9. Let

F (m; z) =

∞∑
n=0

b3

(
mn− 1

12

)
qn ∈ S3m−3(Γ0(432), χ12)m.

For a fixed prime m ≥ 5, let S(m) denote the set of primes l such that

f | T (l) ≡ 0 (mod m)

for each f ∈ S3m−3(Γ0(432), χ12). By Theorem 8, the set S(m) contains a positive

density of primes. Hence for l ∈ S(m), we have

F (m; z) | T (l) ≡ 0 (mod m).

Then by the theory of Hecke operators, we have

F (m; z) | T (l) =

∞∑
n=0

(
b3

(
mln− 1

12

)
+

(
3

l

)
l3m−4b3

(
mn/l − 1

12

))
qn ≡ 0 (modm).

Since b3(n) vanishes when n is not an integer, we have b3 ((mn/l − 1)/12) = 0 for

each n coprime to l. Thus

b3

(
mln− 1

12

)
≡ 0 (mod m)
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is satisfied for each integer n coprime to l. Moreover, the set of such primes l is of

positive density.

Proof of Theorem 10. Let

F (m; z) =

∞∑
n=0

b5

(
mn− 1

6

)
qn ∈ S2m−2(Γ0(180), χ5)m.

According to Theorem 8, the set of primes l for which

F (m; z) | T (l) ≡ 0 (mod m)

has positive density, where T (l) denotes the Hecke operator on S2m−2(Γ0(180), χ5).

Moreover, by the theory of Hecke operators, we have

∞∑
n=0

F (m; z) | T (l) =

∞∑
n=0

(
b5

(
mln− 1

6

)
+

(
l

5

)
l2m−3b5

(
mn/l − 1

6

))
qn.

Since b5(n) vanishes for non-integer n, we have b5((mn/l−1)/6) = 0 when (n, l) = 1.

Thus

b5

(
mln− 1

6

)
≡ 0 (mod m)

is satisfied for each integer n with (n, l) = 1. Moreover, the set of such primes l is

of positive density.

Since the selections for l are infinite, let us choose l > 3. By replacing n with

12nl+ml+ 12, we then have b3(ml2n+ml+ (m2l2− 1)/12) ≡ 0 (mod m) satisfied

for each integer n. A similar approach can be applied to b5(n). Hence, we obtain

Theorem 1. Moreover, using the fact that the selections for l are infinite, together

with the Chinese Remainder Theorem and previous results, we obtain the following

result.

Corollary 2. If m is a squarefree integer, then there are infinitely many Ramanujan-

type congruences of b3(n) modulo m; if k is a squarefree integer coprime to 3, then

there are infinitely many Ramanujan-type congruences of b5(n) modulo k.

4. Distribution on Nonzero Residues

Following Lovejoy [6], we need the following theorem of Serre.

Theorem 11 ([10]). The set of primes l ≡ 1 (mod Nm) such that

a(nlr) ≡ (r + 1)a(n) (mod m)

for every f(z) =
∑∞
n=0 a(n)qn ∈ Sk(Γ0(N), ψ)m has positive density, where r is a

positive integer and n is coprime to l.
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Here, we introduce a theorem of Sturm, which provides a useful criterion for de-

termining when modular forms with integer coefficients become congruent to zero

modulo a prime through finite computation.

Theorem 12 ([11]). Let f(z) =
∑∞
n=0 a(n)qn ∈Mk(Γ0(N), χ)m be a modular form

such that

a(n) ≡ 0 (mod m)

for all n ≤ kN
12

∏
p|N

(
1 + 1

p

)
. Then a(n) ≡ 0 (mod m) for all n ∈ Z.

We next present the proof of Theorem 2. The proof of Theorem 3 is very similar,

so we omit it.

Proof of Theorem 2. If there is one k ∈ Z such that

b3

(
mk +

m2 − 1

12

)
≡ e 6≡ 0 (mod m),

let s = 12k + m. Since b3(n) vanishes for negative n, we have mk + m2−1
12 ≥ 0.

Hence s = 12k +m > 0 and

b3

(
ms− 1

12

)
= b3

(
mk +

m2 − 1

12

)
≡ e (mod m).

For a fixed prime m ≥ 5, let R(m) denote the set of primes l such that

a(nlr) ≡ (r + 1)a(n) (mod m)

for each f(z) =
∑∞
n=0 a(n)qn ∈ S3m−3(Γ0(432), χ12)m, where r is a positive integer,

and n is coprime to l. By the proof of Theorem 9, we have
∑∞
n=0 b3

(
mn−1

12

)
qn ∈

S3m−3(Γ0(432), χ12)m. Since R(m) is infinite by Theorem 11, we can choose an

l ∈ R(m) such that l > s, then

b3

(
mlrs− 1

12

)
≡ (r + 1)b3

(
ms− 1

12

)
≡ (r + 1)e (mod m).

Now, we fix l and choose ρ ∈ R(m) such that ρ > l, then

b3

(
mρn− 1

12

)
≡ 2b3

(
mn− 1

12

)
(mod m) (6)

is satisfied for each n coprime to ρ. For each i = 1, 2, · · · ,m− 1, let ri ≡ i(2e)−1 −
1 (mod m) and ri > 0. Let n = lris in (6), to obtain

b3

(
mρlris− 1

12

)
≡ 2b3

(
mlris− 1

12

)
≡ 2(ri + 1)e ≡ i (mod m).
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Since the variables, except for ρ, are fixed, it suffices to prove that the estimate for

the choices of ρ� X/ logX, which can be easily derived from Theorem 11 and the

Prime Number Theorem.

Moreover, by Sturm’s Theorem, if b3
(
mn−1

12

)
≡ 0 (mod m) for each n ≤ 216(m−

1), then b3
(
mn−1

12

)
≡ 0 (mod m) for all n ∈ Z. Since b3(n) vanishes if n is not an

integer, it suffices to compute those n of the form 12j+m for 12j+m ≤ 216(m−1).

This implies that j < 18(m− 1). In addition,

b3

(
m(12j +m)− 1

12

)
= b3

(
mj +

m2 − 1

12

)
.

Thus, if such a k exists, then k < 18(m− 1).

5. Examples of Ramanujan-Type Congruences

By Theorem 12, we find that

∞∑
n=0

b3

(
mn− 1

12

)
qn | T (l) ≡ 0 (mod m)

for the pairs (m, l) listed in the following table.

m l
61,79,97,181,211,233,283,383,401,439,449,463,

5 557,641,647,691,739,743,751,863,887,907,947,
953,977,983,997,1093,1097,1129,1153,1201

7 71,761,1321,1607,1657,2543,2617
11 12553

An elementary computation yields the following result.

Proposition 1. For the pairs (m, l) listed above, we have

b3

(
ml(ln+ j) +

m2l2 − 1

12

)
≡ 0 (mod m)

for each n and 1 ≤ j ≤ l − 1.

We have the following examples.

Example 1.

b3(18605n+ 127) ≡ 0 (mod 5),

b3(35287n+ 207) ≡ 0 (mod 7),

b3(1733355899n+ 126576) ≡ 0 (mod 11).
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Our method is not applicable to the case m = 3. Nevertheless, it can be proven

that there are infinitely many Ramanujan-type congruences modulo 3 through the

results of Lovejoy and Penniston [7, Corollary 4].

Proposition 2. If Q is a prime of the form 12k + 1, then

b3

(
Q3n+

Q2 − 1

12

)
≡ 0 (mod 3).

For example, we obtain

b3 (2197n+ 14) ≡ 0 (mod 3).

As for b5(n), we compute that

∞∑
n=0

b5

(
mn− 1

6

)
qn | T (l) ≡ 0 (mod m)

for the pairs (m, l) listed in the following table.

m l
17,37,197,211,239,263,269,271,331,

7 397,457,503,563,569,587,811,
823,853,929,941,1049,1163

11 41,1553,1867,4021,4783,6947,7193,7559
13 16519

An elementary computation yields the following result.

Proposition 3. For the pairs (m, l) listed above, we have

b5

(
ml(ln+ j) +

m2l2 − 1

6

)
≡ 0 (mod m)

for each n and 1 ≤ j ≤ l − 1.

We have the following examples.

Example 2.

b5(2023n+ 99) ≡ 0 (mod 7) ,

b5(18491n+ 75) ≡ 0 (mod 11) ,

b5(3547405693n+ 35791) ≡ 0 (mod 13) .

Moreover, the congruence b5(5n+ 4) ≡ 0 (mod 5) implies that

∞∑
n=0

b5

(
5n− 1

6

)
qn | T (l) ≡ 0 (mod 5)

for all primes l.
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6. More on k-Regular Partitions

In this paper, we prove that for b3(n) (respectively b5(n)) and each prime m ≥ 5 (re-

spectively m ≥ 7), there are infinitely many Ramanujan-type congruences modulo

m. However, the situation for b5(n) modulo 3 remains a topic of investigation.

Problem 1. Find a congruence modulo 3 for b5(n), or provide a proof that no such

congruence exists.

We also propose the following conjecture, which is analogous to Newman’s Conjec-

ture.

Conjecture 1. Ifm is an integer and k = 3, 5, then for each residue class r (modm),

there exist infinitely many integers n such that bk(n) ≡ r (mod m).

While Ramanujan-type congruences modulo primes m ≥ 5 do exist, discovering

them may require extensive computational efforts. We encourage interested readers

to explore congruences modulo different primes and seek examples.

We can adapt our proof to derive partial results for b11(n), which counts the

number of 11-regular partitions of n. Specifically, if p is a prime greater than 5 and

satisfies p ≡ 5, 7 (mod 12), then we can discover infinitely many Ramanujan-type

congruences for b11(n) modulo p. For instance, we obtain b11(43687n + 230) ≡
0 (mod 7). However, even more promisingly, the existence of such congruences is

assured by [12]. We plan to explore these findings in a future paper.
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