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Abstract

We establish some q-congruences related to Sun and Tauraso’s congruence:

pr−1∑
k=0

1

2k

(
2k

k

)
≡ (−1)

pr−1
2 (mod p),

where p is an odd prime and r is a positive integer.

1. Introduction

Congruences involving central binomial coefficients
(
2n
n

)
have attracted many ex-

perts’ attention in recent years. In 2010, Sun and Tauraso [6] proved that for any

odd prime p and positive integer r,

pr−1∑
k=0

1

2k

(
2k

k

)
≡ (−1)

pr−1
2 (mod p). (1)

Sun [5] showed that (1) also holds modulo p2 in the same year.

Subsequently, Guo and Zeng [4, Corollary 4.2] first established a q-analogue of

(1) as follows:

n−1∑
k=0

(q; q2)k
(q; q)k

qk ≡ (−1)
n−1
2 q

n2−1
4 (mod Φn(q)), (2)

where n is an odd positive integer. We remark that Guo [2] further showed that (2)

holds modulo Φn(q)2. Here and throughout the paper, the q-shifted factorials are

given by (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) for n ≥ 1 and (a; q)0 = 1. The nth

cyclotomic polynomial is given by

Φn(q) =
∏

1≤k≤n

(n,k)=1

(q − ζk),
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where ζ denotes a primitive nth root of unity.

For more q-congruences related to (1), we refer the interested reader to [1, 3, 7, 8].

It is worth mentioning that Guo [3, Theorem 1] recently established two new q-

analogues of (1):

n−1∑
k=0

(
q; q2

)
k

(
−q2; q2

)
k

(q2; q2)k
q2k+1 ≡ (−1)

n−1
2 (mod Φn(q)), (3)

and

n−1∑
k=0

(
q; q2

)
k

(
−1; q2

)
k

(q2; q2)k
q2k ≡ (−1)

n−1
2 (mod Φn(q)), (4)

where n is an odd positive integer.

The first aim of the paper is to give two different q-analogues of (1) as follows.

Theorem 1. For any positive odd integer n, we have

n−1∑
k=0

(
q; q2

)
k

(
−q2; q2

)
k

(q2; q2)k
q4(k+1) ≡ (−1)

n−1
2 (1− q + q2) (mod Φn(q)), (5)

and

n−1∑
k=0

(
q; q2

)
k

(
−1; q2

)
k

(q2; q2)k
q4k+1 ≡ (−1)

n−1
2 (2− q) (mod Φn(q)). (6)

Letting q → 1 and n = pr in the Theorem 1, (5) and (6) reduce to (1). So (5)

and (6) are q-analogues of(1).

Gu and Guo [1, Theorem 1] established q-analogues of the following two congru-

ences related to (1):

pr−1∑
k=0

1

2k(2k − 1)

(
2k

k

)
≡ (−1)

pr−1
2 (mod p), (7)

and

pr−1∑
k=0

2k + 1

2k

(
2k

k

)
≡ (−1)

pr+1
2 (mod p).

The second aim of the paper is to give two new q-analogues of (7) as follows.

Theorem 2. For any positive odd integer n ≥ 3, we have

n−1∑
k=0

(
q−1; q2

)
k

(
−1; q2

)
k

(q2; q2)k
q2k ≡ (−1)

n+1
2 (mod Φn(q)), (8)



INTEGERS: 23 (2023) 3

and

n−1∑
k=0

(
q−1; q2

)
k

(
−1; q2

)
k

(q2; q2)k
q4k ≡ (−1)

n+1
2 (2q − 1) (mod Φn(q)). (9)

Next, we shall extend Theorems 1 and 2 through Carlitz’s identity.

Theorem 3. For any integer d and odd positive integer n with n > 2 | d | −1, we

have

n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q2k ≡ (−1)
n−1
2 +d (mod Φn(q)), (10)

and

n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q4k ≡ (−1)
n−1
2 +d 2− q2d+1

q2d+1
(mod Φn(q)). (11)

In fact, Theorem 2 is a special case of Theorem 3 for d = −1.

Theorem 4. For any integer d and odd positive integer n with n > 2 | d | −1, we

have

n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q2k+1 ≡ (−1)
n−1
2 +dq−2d (mod Φn(q)), (12)

and

n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q4(k+1) ≡ (−1)
n−1
2 +d q

2 + 1− q2d+1

q4d
(mod Φn(q)).

(13)

Letting q → 1 in Theorems 3 and 4 and using L’hospital rule, we are led to the

following result.

Corollary 1. For any integer d, positive integer r and odd prime p with p > 2 | d |
−1, we have

pr−1∑
k=0

2k(d+ 1
2 )k

k!
≡ (−1)

pr−1
2 +d (mod p), (14)

where (x)k = x(x+ 1) · · · (x+ k − 1).

We remark that letting d = 0 and n = pr in (14) reduces to (1).
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2. Proof of Theorem 1

Let

A1(k, q) =

(
q; q2

)
k

(
−q2; q2

)
k

(q2; q2)k
.

It is easy to check that(
1− q2k

)
A1(k, q) =

(
1− q2k−1

) (
1 + q2k

)
A1(k − 1, q). (15)

Summing both sides of (15) over k from 1 to n− 1 gives

n−1∑
k=1

(
1− q2k

)
A1(k, q) =

n−1∑
k=1

(
1− q2k−1

) (
1 + q2k

)
A1(k − 1, q).

It follows that

n−1∑
k=0

(
1− q2k+1

) (
1 + q2k+2

)
A1(k, q)−

n−1∑
k=0

(
1− q2k

)
A1(k, q)

=
(
1− q2n−1

) (
1 + q2n

)
A1(n− 1, q). (16)

We can rewrite (16) as

1− q + q2

q

n−1∑
k=0

q2k+1A1(k, q)−
n−1∑
k=0

q4k+3A1(k, q)

=
(
1− q2n−1 + q2n − q4n−1

) (q; q2)n−1

(
−q2; q2

)
n−1

(q; q)n−1(−q; q)n−1
. (17)

Furthermore, note that (see [7, Lemma 2.2])(
q; q2

)
n−1

(q; q)n−1
≡ 0 (mod Φn(q)), (18)

for any positive odd integer n.

Finally, combining (3), (17) and (18), we arrive at

n−1∑
k=0

(
q; q2

)
k

(
−q2; q2

)
k

(q2; q2)k
q4(k+1) ≡ (−1)(n−1)/2(1− q + q2) (mod Φn(q)),

which completes the proof of (5).

We shall prove (6) similarly. Let

A2(k, q) =

(
q; q2

)
k

(
−1; q2

)
k

(q2; q2)k
.
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It is easy to verify that(
1− q2k

)
A2(k, q) =

(
1− q2k−1

) (
1 + q2k−2

)
A2(k − 1, q). (19)

By using the same method as in the proof of (5), we can deduce from (19) that

(2− q)
n−1∑
k=0

q2kA2(k, q)−
n−1∑
k=0

q4k+1A2(k, q)

=
(
1− q2n−1 + q2n−2 − q4n−3

) (q; q2)n−1

(
−1; q2

)
n−1

(q; q)n−1(−q; q)n−1
. (20)

Combining (4), (18) and (20), we arrive at

n−1∑
k=0

(
q; q2

)
k

(
−1; q2

)
k

(q2; q2)k
q4k+1 ≡ (−1)(n−1)/2(2− q) (mod Φn(q)),

as desired.

3. Proof of Theorem 2

Let

B1(k, q) =

(
q−1; q2

)
k

(
−1; q2

)
k

(q2; q2)k
.

It is easy to verify that(
1− q2k

)
B1(k, q) =

(
1− q2k−3

) (
1 + q2k−2

)
B1(k − 1, q).

It follows that

n−1∑
k=0

(
1− q2k−1

) (
1 + q2k

)
B1(k, q)−

n−1∑
k=0

(
1− q2k

)
B1(k, q)

=
(
1− q2n−3

) (
1 + q2n−2

)
B1(n− 1, q). (21)

By (18) and (21), we have

(2− 1

q
)

n−1∑
k=0

q2kB1(k, q)−
n−1∑
k=0

q4k−1B1(k, q)

=
(
1 + q2n−2

)
(1− q−1)

(
q; q2

)
n−1

(
−1; q2

)
n−1

(q; q)n−1(−q; q)n−1

≡ 0 (mod Φn(q)). (22)
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On the other hand, we set

B2(k, q) =

(
q−1; q2

)
k

(
−1; q2

)
k

(q2; q2)k
q2k.

It is easy to check that(
1− q2k

)
B2(k, q) =

(
1− q2k−3

) (
1 + q2k−2

)
q2B2(k − 1, q).

It follows that

n−1∑
k=0

(
1− q2k−1

) (
1 + q2k

)
q2B2(k, q)−

n−1∑
k=0

(
1− q2k

)
B2(k, q)

=
(
1− q2n−3

) (
1 + q2n−2

)
q2B2(n− 1, q). (23)

Note that

(1− q2k−1)B2(k, q) = q2k(1− q−1)A2(k, q), (24)

and

B2(k, q) = q2kB1(k, q). (25)

Substituting (24) and (25) into the left-hand side of (23) and using (18), we obtain

(q2 − q)
n−1∑
k=0

(
q4k + q2k

)
A2(k, q)−

n−1∑
k=0

(
q2k − q4k

)
B1(k, q) ≡ 0 (mod Φn(q)).

(26)

Furthermore, applying (4) and (6) to the left-hand side of (26) gives

n−1∑
k=0

(
q2k − q4k

)
B1(k, q) ≡ 2(−1)(n−1)/2(q − 1) (mod Φn(q)). (27)

Finally, combining (22) and (27), we arrive at

n−1∑
k=0

q2kB1(k, q) ≡ (−1)(n+1)/2 (mod Φn(q)),

and

n−1∑
k=0

q4kB1(k, q) ≡ (−1)(n+1)/2(2q − 1) (mod Φn(q)),

which completes the proof of (8) and (9).



INTEGERS: 23 (2023) 7

4. Proof of Theorem 3

Firstly, letting q → q−1 in (10), we find that (10) is equivalent to

n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q−k2−2dk ≡ (−1)
n−1
2 +d (mod Φn(q)).

Recall the following Carlitz identity [9]:

n∑
k=0

(a; q)k(b; q)k
(q; q)k

(−ab)n−kq(n−k)(n+k−1)/2 =

n∑
k=0

(a; q)n+1(−b)kq(
k
2)

(q; q)k(q; q)n−k(1− aqn−k)
. (28)

Letting q → q2, n→ n− 1, a→ 2d+ 1 and b→ −1, we get

n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q(n−(1+k))(n+k+2d−1)

=

n−1∑
k=0

(q2d+1; q2)nq
k(k−1)

(q2; q2)k(q2; q2)n−k−1(1− q2n+2d−2k−1)
.

(29)

Note that (q2d+1; q2)n has a factor 1 − qn for n>2|d| − 1. Thus, except for k =
n+2d−1

2 , the right-hand side of (29) is congruent to 0 modulo Φn(q), and so

n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q(n−(1+k))(n+k+2d−1)

≡
n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q−k2−2dk−2d+1

≡ (q2d+1; q2)nq
n+2d−1

2 (n+2d−1
2 −1)

(q2; q2)n+2d−1
2

(q2; q2)n−2d−1
2

(1− qn)
(mod Φn(q)).

(30)

For any integer s and n, we have

qsn ≡ 1 (mod Φn(q)), (31)

where the q-binomial coefficients are defined as:

[
n

k

]
q

=


(q; q)n

(q; q)k(q; q)n−k
if 0 6 k 6 n,

0 otherwise.
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Simplying the right-hand side of (30) gives

(q2d+1; q2)n
(q2; q2)n+2d−1

2

q
n+2d−1

2 (n+2d−1
2 −1)

(q2; q2)n−2d−1
2

(1− qn)

=
q(n+2d−1)(n+2d−3)/4

1− qn
(q; q2)n(1− q2n+1)(1− q2n+3)...(1− q2n+2d−1)

(1− q)(1− q3)...(1− q2d−1)

× (1− qn−2d+1)(1− qn−2d+3)...(1− qn−1)

(q2; q2)2n−1
2

(1− qn+1)(1− qn+3)...(1− qn+2d−1)

≡
[
n− 1
n−1
2

]
q2

[
2n− 1

n− 1

]
(−1)dq(n+2d−1)(n+2d−3)/4−d2

(−q; q)2n−1

(mod Φn(q)).

(32)

Note that (see [3, (2.5) and (2.6)])[
n− 1
n−1
2

]
q2

≡ (−1)(n−1)/2q(1−n2)/4(−q; q)2 (mod Φn(q)2), (33)

and [
2n− 1

n− 1

]
≡ 1 (mod Φn(q)). (34)

Substituting (33) and (34) into the right-hand side of (32), we get[
n− 1
n−1
2

]
q2

[
2n− 1

n− 1

]
(−1)dq(n+2d−1)(n+2d−3)/4−d2

(−q; q)2n−1

≡ (−1)
n−1
2 +dq1−2d (mod Φn(q)).

(35)

Combining (30), (31), (32) and (35), we get

n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q−k2−2dk−2d+1 ≡ (−1)
n−1
2 +dq1−2d (mod Φn(q)),

as desired.

Next we shall prove (11). Let

C1(k, q, d) =
(q2d+1; q2)k(−1; q2)k

(q2; q2)k
.

It is easy to check that

(1− q2k)C1(k, q, d) = (1− q2k+2d−1)(1 + q2k−2)C1(k − 1, q, d). (36)
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Summing both side of (36) over k from 1 to n− 1, we get

n−1∑
k=1

(1− q2k)C1(k, q, d) =

n−1∑
k=1

(1− q2k+2d−1)(1 + q2k−2)C1(k − 1, q, d).

It follows that

(2− q2d+1)

n−1∑
k=0

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q2k − q2d+1
n−1∑
k=1

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q4k

= (1− q2n+2d−1 + q2n−2 − q4n+2d−3)
(q2d+1; q2)n−1(−1; q2)n−1

(q2; q2)n−1
.

(37)

Note that

(q2d+1; q2)n−1

(q2; q2)n−1
=

(q; q2)n−1(1− q2n+1)(1− q2n+3)...(1− q2n+2d−3)

(q2; q2)n−1(1− q)(1− q3)...(1− q2d−1)

≡ (q; q2)n−1

(q2; q2)n−1(1− q2d−1)
(mod Φn(q)).

(38)

By (18), we have

(q; q2)n−1

(q2; q2)n−1
≡ 0 (mod Φn(q)), (39)

for any integer n ≥ 3.

Combining (31), (38) and (39), we find that the right-hand side of (37) is con-

gruent to

(1− q2n+2d−1 + q2n−2 − q4n+2d−3)
(q2d+1; q2)n−1(−1; q2)n−1

(q2; q2)n−1
≡ 0 (mod Φn(q)).

(40)

Using (10), (37) and (40), we arrive at

n−1∑
k=1

(q2d+1; q2)k(−1; q2)k
(q2; q2)k

q4k ≡ (−1)
n−1
2 +d 2− q2d+1

q2d+1
(mod Φn(q))

as desired.

5. Proof of Theorem 4

We first prove (12). Letting q → q−1 in (12), we find that (12) is equivalent to

n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q−(k+1)2−2dk ≡ (−1)
n−1
2 +dq2d (mod Φn(q)).
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Letting q → q2, n→ n− 1, a→ 2d+ 1 and b→ −q2 in (28), we obtain

n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q(n−(1+k))(n+k+2d+1)

=

n−1∑
k=0

(q2d+1; q2)nq
k(k+1)

(q2; q2)k(q2; q2)n−k−1(1− q2n+2d−2k−1)
.

(41)

The right-hand side of (41) has a factor 1−qn for n>2|d|−1. Thus, for k 6= n+2d−1
2 ,

we have

n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q(n−(1+k))(n+k+2d+1)

≡
n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q−(k+1)2−2dk−2d

≡ (q2d+1; q2)nq
n+2d−1

2 (n+2d−1
2 +1)

(q2; q2)n+2d−1
2

(q2; q2)n−2d−1
2

(1− qn)
(mod Φn(q)).

(42)

Using the same method as in the proof of (32) and combining (31)–(34), we get

(q2d+1; q2)nq
n+2d−1

2 (n+2d+1
2 +1)

(q2; q2)n+2d−1
2

(q2; q2)n−2d−1
2

(1− qn)
≡ (−1)

n−1
2 +d (mod Φn(q)). (43)

Combining (42) and (43), we have

n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q−(k+1)2−2dk−2d ≡ (−1)
n−1
2 +d (mod Φn(q)),

which completes the proof of (12).

Next we shall prove (13). Let

D1(k, q, d) =
(q2d+1; q2)k(−q2; q2)k

(q2; q2)k
.

It is easy to check that

(1− q2k)D1(k, q, d) = (1− q2k+2d−1)(1 + q2k)D1(k − 1, q, d). (44)
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By using the same method as in the proof of (11), we can deduce from (44) that

q2 + 1− q2d+1

q

n−1∑
k=0

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q2k+1

− q2d−1
n−1∑
k=1

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q4(k+1)

= (1− q2n+2d−1 + q2n − q4n+2d−1)
(q2d+1; q2)n−1(−q2; q2)n−1

(q2; q2)n−1
.

(45)

Combining (31), (38) and (39), we find that the right-hand side of (45) is congruent

to

(1− q2n+2d−1 + q2n − q4n+2d−1)
(q2d+1; q2)n−1(−q2; q2)n−1

(q2; q2)n−1
≡ 0 (mod Φn(q)).

(46)

Finally, combining (12), (45) and (46), we arrive at

n−1∑
k=1

(q2d+1; q2)k(−q2; q2)k
(q2; q2)k

q4(k+1) ≡ (−1)
n−1
2 +d q

2 + 1− q2d+1

q4d
(mod Φn(q)),

as desired.
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