SOME VARIATIONS OF q-ANALOGUES OF SUN AND TAURASO'S CONGRUENCE

Wei-Wei Qi
Department of Mathematics, Wenzhou University, Wenzhou, PR China
wwqi2022@foxmail.com

Received: 7/12/23, Revised: 10/9/23, Accepted: 11/27/23, Published: 12/8/23

Abstract
We establish some q-congruences related to Sun and Tauraso's congruence:

$$
\sum_{k=0}^{p^{r}-1} \frac{1}{2^{k}}\binom{2 k}{k} \equiv(-1)^{\frac{p^{r}-1}{2}} \quad(\bmod p)
$$

where p is an odd prime and r is a positive integer.

1. Introduction

Congruences involving central binomial coefficients $\binom{2 n}{n}$ have attracted many experts' attention in recent years. In 2010, Sun and Tauraso [6] proved that for any odd prime p and positive integer r,

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1} \frac{1}{2^{k}}\binom{2 k}{k} \equiv(-1)^{\frac{p^{r}-1}{2}} \quad(\bmod p) \tag{1}
\end{equation*}
$$

Sun [5] showed that (1) also holds modulo p^{2} in the same year.
Subsequently, Guo and Zeng [4, Corollary 4.2] first established a q-analogue of (1) as follows:

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}}{(q ; q)_{k}} q^{k} \equiv(-1)^{\frac{n-1}{2}} q^{\frac{n^{2}-1}{4}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{2}
\end{equation*}
$$

where n is an odd positive integer. We remark that Guo [2] further showed that (2) holds modulo $\Phi_{n}(q)^{2}$. Here and throughout the paper, the q-shifted factorials are given by $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ for $n \geq 1$ and $(a ; q)_{0}=1$. The nth cyclotomic polynomial is given by

$$
\Phi_{n}(q)=\prod_{\substack{1 \leq k \leq n \\(n, k)=1}}\left(q-\zeta^{k}\right)
$$

where ζ denotes a primitive nth root of unity.
For more q-congruences related to (1), we refer the interested reader to $[1,3,7,8]$. It is worth mentioning that Guo [3, Theorem 1] recently established two new q analogues of (1):

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k+1} \equiv(-1)^{\frac{n-1}{2}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k} \equiv(-1)^{\frac{n-1}{2}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{4}
\end{equation*}
$$

where n is an odd positive integer.
The first aim of the paper is to give two different q-analogues of (1) as follows.
Theorem 1. For any positive odd integer n, we have

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4(k+1)} \equiv(-1)^{\frac{n-1}{2}}\left(1-q+q^{2}\right) \quad\left(\bmod \Phi_{n}(q)\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4 k+1} \equiv(-1)^{\frac{n-1}{2}}(2-q) \quad\left(\bmod \Phi_{n}(q)\right) \tag{6}
\end{equation*}
$$

Letting $q \rightarrow 1$ and $n=p^{r}$ in the Theorem 1, (5) and (6) reduce to (1). So (5) and (6) are q-analogues of (1).

Gu and Guo [1, Theorem 1] established q-analogues of the following two congruences related to (1):

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1} \frac{1}{2^{k}(2 k-1)}\binom{2 k}{k} \equiv(-1)^{\frac{p^{r}-1}{2}} \quad(\bmod p) \tag{7}
\end{equation*}
$$

and

$$
\sum_{k=0}^{p^{r}-1} \frac{2 k+1}{2^{k}}\binom{2 k}{k} \equiv(-1)^{\frac{p^{r}+1}{2}} \quad(\bmod p)
$$

The second aim of the paper is to give two new q-analogues of (7) as follows.
Theorem 2. For any positive odd integer $n \geq 3$, we have

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{-1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k} \equiv(-1)^{\frac{n+1}{2}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{-1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4 k} \equiv(-1)^{\frac{n+1}{2}}(2 q-1) \quad\left(\bmod \Phi_{n}(q)\right) \tag{9}
\end{equation*}
$$

Next, we shall extend Theorems 1 and 2 through Carlitz's identity.
Theorem 3. For any integer d and odd positive integer n with $n>2|d|-1$, we have

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k} \equiv(-1)^{\frac{n-1}{2}+d} \quad\left(\bmod \Phi_{n}(q)\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4 k} \equiv(-1)^{\frac{n-1}{2}+d} \frac{2-q^{2 d+1}}{q^{2 d+1}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{11}
\end{equation*}
$$

In fact, Theorem 2 is a special case of Theorem 3 for $d=-1$.
Theorem 4. For any integer d and odd positive integer n with $n>2|d|-1$, we have

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k+1} \equiv(-1)^{\frac{n-1}{2}+d} q^{-2 d} \quad\left(\bmod \Phi_{n}(q)\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4(k+1)} \equiv(-1)^{\frac{n-1}{2}+d} \frac{q^{2}+1-q^{2 d+1}}{q^{4 d}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{13}
\end{equation*}
$$

Letting $q \rightarrow 1$ in Theorems 3 and 4 and using L'hospital rule, we are led to the following result.

Corollary 1. For any integer d, positive integer r and odd prime p with $p>2|d|$ -1, we have

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1} \frac{2^{k}\left(d+\frac{1}{2}\right)_{k}}{k!} \equiv(-1)^{\frac{p^{r}-1}{2}+d} \quad(\bmod p) \tag{14}
\end{equation*}
$$

where $(x)_{k}=x(x+1) \cdots(x+k-1)$.
We remark that letting $d=0$ and $n=p^{r}$ in (14) reduces to (1).

2. Proof of Theorem 1

Let

$$
A_{1}(k, q)=\frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}}
$$

It is easy to check that

$$
\begin{equation*}
\left(1-q^{2 k}\right) A_{1}(k, q)=\left(1-q^{2 k-1}\right)\left(1+q^{2 k}\right) A_{1}(k-1, q) \tag{15}
\end{equation*}
$$

Summing both sides of (15) over k from 1 to $n-1$ gives

$$
\sum_{k=1}^{n-1}\left(1-q^{2 k}\right) A_{1}(k, q)=\sum_{k=1}^{n-1}\left(1-q^{2 k-1}\right)\left(1+q^{2 k}\right) A_{1}(k-1, q)
$$

It follows that

$$
\begin{align*}
\sum_{k=0}^{n-1}\left(1-q^{2 k+1}\right)\left(1+q^{2 k+2}\right) A_{1}(k, q) & -\sum_{k=0}^{n-1}\left(1-q^{2 k}\right) A_{1}(k, q) \\
& =\left(1-q^{2 n-1}\right)\left(1+q^{2 n}\right) A_{1}(n-1, q) \tag{16}
\end{align*}
$$

We can rewrite (16) as

$$
\begin{align*}
& \frac{1-q+q^{2}}{q} \sum_{k=0}^{n-1} q^{2 k+1} A_{1}(k, q)-\sum_{k=0}^{n-1} q^{4 k+3} A_{1}(k, q) \\
& \quad=\left(1-q^{2 n-1}+q^{2 n}-q^{4 n-1}\right) \frac{\left(q ; q^{2}\right)_{n-1}\left(-q^{2} ; q^{2}\right)_{n-1}}{(q ; q)_{n-1}(-q ; q)_{n-1}} \tag{17}
\end{align*}
$$

Furthermore, note that (see [7, Lemma 2.2])

$$
\begin{equation*}
\frac{\left(q ; q^{2}\right)_{n-1}}{(q ; q)_{n-1}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right) \tag{18}
\end{equation*}
$$

for any positive odd integer n.
Finally, combining (3), (17) and (18), we arrive at

$$
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4(k+1)} \equiv(-1)^{(n-1) / 2}\left(1-q+q^{2}\right) \quad\left(\bmod \Phi_{n}(q)\right)
$$

which completes the proof of (5).
We shall prove (6) similarly. Let

$$
A_{2}(k, q)=\frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}}
$$

It is easy to verify that

$$
\begin{equation*}
\left(1-q^{2 k}\right) A_{2}(k, q)=\left(1-q^{2 k-1}\right)\left(1+q^{2 k-2}\right) A_{2}(k-1, q) \tag{19}
\end{equation*}
$$

By using the same method as in the proof of (5), we can deduce from (19) that

$$
\begin{align*}
& (2-q) \sum_{k=0}^{n-1} q^{2 k} A_{2}(k, q)-\sum_{k=0}^{n-1} q^{4 k+1} A_{2}(k, q) \\
& \quad=\left(1-q^{2 n-1}+q^{2 n-2}-q^{4 n-3}\right) \frac{\left(q ; q^{2}\right)_{n-1}\left(-1 ; q^{2}\right)_{n-1}}{(q ; q)_{n-1}(-q ; q)_{n-1}} \tag{20}
\end{align*}
$$

Combining (4), (18) and (20), we arrive at

$$
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4 k+1} \equiv(-1)^{(n-1) / 2}(2-q) \quad\left(\bmod \Phi_{n}(q)\right)
$$

as desired.

3. Proof of Theorem 2

Let

$$
B_{1}(k, q)=\frac{\left(q^{-1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}}
$$

It is easy to verify that

$$
\left(1-q^{2 k}\right) B_{1}(k, q)=\left(1-q^{2 k-3}\right)\left(1+q^{2 k-2}\right) B_{1}(k-1, q)
$$

It follows that

$$
\begin{align*}
\sum_{k=0}^{n-1}\left(1-q^{2 k-1}\right)\left(1+q^{2 k}\right) B_{1}(k, q) & -\sum_{k=0}^{n-1}\left(1-q^{2 k}\right) B_{1}(k, q) \\
& =\left(1-q^{2 n-3}\right)\left(1+q^{2 n-2}\right) B_{1}(n-1, q) \tag{21}
\end{align*}
$$

By (18) and (21), we have

$$
\begin{align*}
\left(2-\frac{1}{q}\right) \sum_{k=0}^{n-1} q^{2 k} B_{1}(k, q) & -\sum_{k=0}^{n-1} q^{4 k-1} B_{1}(k, q) \\
& =\left(1+q^{2 n-2}\right)\left(1-q^{-1}\right) \frac{\left(q ; q^{2}\right)_{n-1}\left(-1 ; q^{2}\right)_{n-1}}{(q ; q)_{n-1}(-q ; q)_{n-1}} \\
& \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right) \tag{22}
\end{align*}
$$

On the other hand, we set

$$
B_{2}(k, q)=\frac{\left(q^{-1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k} .
$$

It is easy to check that

$$
\left(1-q^{2 k}\right) B_{2}(k, q)=\left(1-q^{2 k-3}\right)\left(1+q^{2 k-2}\right) q^{2} B_{2}(k-1, q)
$$

It follows that

$$
\begin{align*}
\sum_{k=0}^{n-1}\left(1-q^{2 k-1}\right) & \left(1+q^{2 k}\right) q^{2} B_{2}(k, q)-\sum_{k=0}^{n-1}\left(1-q^{2 k}\right) B_{2}(k, q) \\
& =\left(1-q^{2 n-3}\right)\left(1+q^{2 n-2}\right) q^{2} B_{2}(n-1, q) \tag{23}
\end{align*}
$$

Note that

$$
\begin{equation*}
\left(1-q^{2 k-1}\right) B_{2}(k, q)=q^{2 k}\left(1-q^{-1}\right) A_{2}(k, q) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2}(k, q)=q^{2 k} B_{1}(k, q) \tag{25}
\end{equation*}
$$

Substituting (24) and (25) into the left-hand side of (23) and using (18), we obtain

$$
\begin{equation*}
\left(q^{2}-q\right) \sum_{k=0}^{n-1}\left(q^{4 k}+q^{2 k}\right) A_{2}(k, q)-\sum_{k=0}^{n-1}\left(q^{2 k}-q^{4 k}\right) B_{1}(k, q) \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right) \tag{26}
\end{equation*}
$$

Furthermore, applying (4) and (6) to the left-hand side of (26) gives

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left(q^{2 k}-q^{4 k}\right) B_{1}(k, q) \equiv 2(-1)^{(n-1) / 2}(q-1) \quad\left(\bmod \Phi_{n}(q)\right) \tag{27}
\end{equation*}
$$

Finally, combining (22) and (27), we arrive at

$$
\sum_{k=0}^{n-1} q^{2 k} B_{1}(k, q) \equiv(-1)^{(n+1) / 2} \quad\left(\bmod \Phi_{n}(q)\right)
$$

and

$$
\sum_{k=0}^{n-1} q^{4 k} B_{1}(k, q) \equiv(-1)^{(n+1) / 2}(2 q-1) \quad\left(\bmod \Phi_{n}(q)\right)
$$

which completes the proof of (8) and (9).

4. Proof of Theorem 3

Firstly, letting $q \rightarrow q^{-1}$ in (10), we find that (10) is equivalent to

$$
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-k^{2}-2 d k} \equiv(-1)^{\frac{n-1}{2}+d} \quad\left(\bmod \Phi_{n}(q)\right)
$$

Recall the following Carlitz identity [9]:

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(a ; q)_{k}(b ; q)_{k}}{(q ; q)_{k}}(-a b)^{n-k} q^{(n-k)(n+k-1) / 2}=\sum_{k=0}^{n} \frac{(a ; q)_{n+1}(-b)^{k} q^{\binom{k}{2}}}{(q ; q)_{k}(q ; q)_{n-k}\left(1-a q^{n-k}\right)} \tag{28}
\end{equation*}
$$

Letting $q \rightarrow q^{2}, n \rightarrow n-1, a \rightarrow 2 d+1$ and $b \rightarrow-1$, we get

$$
\begin{align*}
\sum_{k=0}^{n-1} & \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{(n-(1+k))(n+k+2 d-1)} \tag{29}\\
& =\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{n} q^{k(k-1)}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{n-k-1}\left(1-q^{2 n+2 d-2 k-1}\right)}
\end{align*}
$$

Note that $\left(q^{2 d+1} ; q^{2}\right)_{n}$ has a factor $1-q^{n}$ for $n>2|d|-1$. Thus, except for $k=$ $\frac{n+2 d-1}{2}$, the right-hand side of (29) is congruent to 0 modulo $\Phi_{n}(q)$, and so

$$
\begin{align*}
\sum_{k=0}^{n-1} & \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{(n-(1+k))(n+k+2 d-1)} \\
& \equiv \sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-k^{2}-2 d k-2 d+1} \tag{30}\\
& \equiv \frac{\left(q^{2 d+1} ; q^{2}\right)_{n} q^{\frac{n+2 d-1}{2}\left(\frac{n+2 d-1}{2}-1\right)}}{\left(q^{2} ; q^{2}\right)_{\frac{n+2 d-1}{2}}^{2}\left(q^{2} ; q^{2}\right)_{\frac{n-2 d-1}{2}}\left(1-q^{n}\right)} \quad\left(\bmod \Phi_{n}(q)\right)
\end{align*}
$$

For any integer s and n, we have

$$
\begin{equation*}
q^{s n} \equiv 1 \quad\left(\bmod \Phi_{n}(q)\right) \tag{31}
\end{equation*}
$$

where the q-binomial coefficients are defined as:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} & \text { if } 0 \leqslant k \leqslant n \\
0 & \text { otherwise }\end{cases}
$$

Simplying the right-hand side of (30) gives

$$
\begin{align*}
\frac{\left(q^{2 d+1} ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{\frac{n+2 d-1}{2}}} & \frac{q^{\frac{n+2 d-1}{2}\left(\frac{n+2 d-1}{2}-1\right)}}{\left(q^{2} ; q^{2}\right)_{\frac{n-2 d-1}{2}}^{2}\left(1-q^{n}\right)} \\
= & \frac{q^{(n+2 d-1)(n+2 d-3) / 4}}{1-q^{n}} \frac{\left(q ; q^{2}\right)_{n}\left(1-q^{2 n+1}\right)\left(1-q^{2 n+3}\right) \ldots\left(1-q^{2 n+2 d-1}\right)}{(1-q)\left(1-q^{3}\right) \ldots\left(1-q^{2 d-1}\right)} \\
& \times \frac{\left(1-q^{n-2 d+1}\right)\left(1-q^{n-2 d+3}\right) \ldots\left(1-q^{n-1}\right)}{\left(q^{2} ; q^{2}\right)_{\frac{n-1}{2}}^{2}\left(1-q^{n+1}\right)\left(1-q^{n+3}\right) \ldots\left(1-q^{n+2 d-1}\right)} \\
\equiv & {\left[\begin{array}{c}
n-1 \\
\frac{n-1}{2}
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 n-1 \\
n-1
\end{array}\right] \frac{(-1)^{d} q^{(n+2 d-1)(n+2 d-3) / 4-d^{2}}}{(-q ; q)_{n-1}^{2}} \quad\left(\bmod \Phi_{n}(q)\right) . } \tag{32}
\end{align*}
$$

Note that (see $[3,(2.5)$ and (2.6)])

$$
\left[\begin{array}{c}
n-1 \tag{33}\\
\frac{n-1}{2}
\end{array}\right]_{q^{2}} \equiv(-1)^{(n-1) / 2} q^{\left(1-n^{2}\right) / 4}(-q ; q)^{2} \quad\left(\bmod \Phi_{n}(q)^{2}\right)
$$

and

$$
\left[\begin{array}{c}
2 n-1 \tag{34}\\
n-1
\end{array}\right] \equiv 1 \quad\left(\bmod \Phi_{n}(q)\right)
$$

Substituting (33) and (34) into the right-hand side of (32), we get

$$
\left[\begin{array}{c}
n-1 \tag{35}\\
\frac{n-1}{2}
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 n-1 \\
n-1
\end{array}\right] \frac{(-1)^{d} q^{(n+2 d-1)(n+2 d-3) / 4-d^{2}}}{(-q ; q)_{n-1}^{2}} \equiv(-1)^{\frac{n-1}{2}+d} q^{1-2 d} \quad\left(\bmod \Phi_{n}(q)\right)
$$

Combining (30), (31), (32) and (35), we get

$$
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-k^{2}-2 d k-2 d+1} \equiv(-1)^{\frac{n-1}{2}+d} q^{1-2 d} \quad\left(\bmod \Phi_{n}(q)\right)
$$

as desired.
Next we shall prove (11). Let

$$
C_{1}(k, q, d)=\frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}}
$$

It is easy to check that

$$
\begin{equation*}
\left(1-q^{2 k}\right) C_{1}(k, q, d)=\left(1-q^{2 k+2 d-1}\right)\left(1+q^{2 k-2}\right) C_{1}(k-1, q, d) \tag{36}
\end{equation*}
$$

Summing both side of (36) over k from 1 to $n-1$, we get

$$
\sum_{k=1}^{n-1}\left(1-q^{2 k}\right) C_{1}(k, q, d)=\sum_{k=1}^{n-1}\left(1-q^{2 k+2 d-1}\right)\left(1+q^{2 k-2}\right) C_{1}(k-1, q, d)
$$

It follows that

$$
\begin{array}{r}
\left(2-q^{2 d+1}\right) \sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k}-q^{2 d+1} \sum_{k=1}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4 k} \tag{37}\\
\quad=\left(1-q^{2 n+2 d-1}+q^{2 n-2}-q^{4 n+2 d-3}\right) \frac{\left(q^{2 d+1} ; q^{2}\right)_{n-1}\left(-1 ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n-1}}
\end{array}
$$

Note that

$$
\begin{align*}
\frac{\left(q^{2 d+1} ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n-1}} & =\frac{\left(q ; q^{2}\right)_{n-1}\left(1-q^{2 n+1}\right)\left(1-q^{2 n+3}\right) \ldots\left(1-q^{2 n+2 d-3}\right)}{\left(q^{2} ; q^{2}\right)_{n-1}(1-q)\left(1-q^{3}\right) \ldots\left(1-q^{2 d-1}\right)} \tag{38}\\
& \equiv \frac{\left(q ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n-1}\left(1-q^{2 d-1}\right)} \quad\left(\bmod \Phi_{n}(q)\right)
\end{align*}
$$

By (18), we have

$$
\begin{equation*}
\frac{\left(q ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n-1}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right) \tag{39}
\end{equation*}
$$

for any integer $n \geq 3$.
Combining (31), (38) and (39), we find that the right-hand side of (37) is congruent to

$$
\begin{equation*}
\left(1-q^{2 n+2 d-1}+q^{2 n-2}-q^{4 n+2 d-3}\right) \frac{\left(q^{2 d+1} ; q^{2}\right)_{n-1}\left(-1 ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n-1}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right) \tag{40}
\end{equation*}
$$

Using (10), (37) and (40), we arrive at

$$
\sum_{k=1}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4 k} \equiv(-1)^{\frac{n-1}{2}+d} \frac{2-q^{2 d+1}}{q^{2 d+1}} \quad\left(\bmod \Phi_{n}(q)\right)
$$

as desired.

5. Proof of Theorem 4

We first prove (12). Letting $q \rightarrow q^{-1}$ in (12), we find that (12) is equivalent to

$$
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-(k+1)^{2}-2 d k} \equiv(-1)^{\frac{n-1}{2}+d} q^{2 d} \quad\left(\bmod \Phi_{n}(q)\right)
$$

Letting $q \rightarrow q^{2}, n \rightarrow n-1, a \rightarrow 2 d+1$ and $b \rightarrow-q^{2}$ in (28), we obtain

$$
\begin{align*}
\sum_{k=0}^{n-1} & \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{(n-(1+k))(n+k+2 d+1)} \\
& =\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{n} q^{k(k+1)}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{n-k-1}\left(1-q^{2 n+2 d-2 k-1}\right)} . \tag{41}
\end{align*}
$$

The right-hand side of (41) has a factor $1-q^{n}$ for $n>2|d|-1$. Thus, for $k \neq \frac{n+2 d-1}{2}$, we have

$$
\begin{align*}
\sum_{k=0}^{n-1} & \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{(n-(1+k))(n+k+2 d+1)} \\
& \equiv \sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-(k+1)^{2}-2 d k-2 d} \tag{42}\\
& \equiv \frac{\left(q^{2 d+1} ; q^{2}\right)_{n} q^{\frac{n+2 d-1}{2}\left(\frac{n+2 d-1}{2}+1\right)}}{\left(q^{2} ; q^{2}\right)_{\frac{n+2 d-1}{2}}^{2}\left(q^{2} ; q^{2}\right)_{\frac{n-2 d-1}{2}}\left(1-q^{n}\right)} \quad\left(\bmod \Phi_{n}(q)\right)
\end{align*}
$$

Using the same method as in the proof of (32) and combining (31)-(34), we get

$$
\begin{equation*}
\frac{\left(q^{2 d+1} ; q^{2}\right)_{n} q^{\frac{n+2 d-1}{2}\left(\frac{n+2 d+1}{2}+1\right)}}{\left(q^{2} ; q^{2}\right)_{\frac{n+2 d-1}{2}}\left(q^{2} ; q^{2}\right)_{\frac{n-2 d-1}{2}}\left(1-q^{n}\right)} \equiv(-1)^{\frac{n-1}{2}+d} \quad\left(\bmod \Phi_{n}(q)\right) \tag{43}
\end{equation*}
$$

Combining (42) and (43), we have

$$
\sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-(k+1)^{2}-2 d k-2 d} \equiv(-1)^{\frac{n-1}{2}+d} \quad\left(\bmod \Phi_{n}(q)\right)
$$

which completes the proof of (12).
Next we shall prove (13). Let

$$
D_{1}(k, q, d)=\frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}}
$$

It is easy to check that

$$
\begin{equation*}
\left(1-q^{2 k}\right) D_{1}(k, q, d)=\left(1-q^{2 k+2 d-1}\right)\left(1+q^{2 k}\right) D_{1}(k-1, q, d) . \tag{44}
\end{equation*}
$$

By using the same method as in the proof of (11), we can deduce from (44) that

$$
\begin{align*}
\frac{q^{2}+1-q^{2 d+1}}{q} & \sum_{k=0}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k+1} \\
& -q^{2 d-1} \sum_{k=1}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4(k+1)} \\
& =\left(1-q^{2 n+2 d-1}+q^{2 n}-q^{4 n+2 d-1}\right) \frac{\left(q^{2 d+1} ; q^{2}\right)_{n-1}\left(-q^{2} ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n-1}} \tag{45}
\end{align*}
$$

Combining (31), (38) and (39), we find that the right-hand side of (45) is congruent to

$$
\begin{equation*}
\left(1-q^{2 n+2 d-1}+q^{2 n}-q^{4 n+2 d-1}\right) \frac{\left(q^{2 d+1} ; q^{2}\right)_{n-1}\left(-q^{2} ; q^{2}\right)_{n-1}}{\left(q^{2} ; q^{2}\right)_{n-1}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right) \tag{46}
\end{equation*}
$$

Finally, combining (12), (45) and (46), we arrive at

$$
\sum_{k=1}^{n-1} \frac{\left(q^{2 d+1} ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{4(k+1)} \equiv(-1)^{\frac{n-1}{2}+d} \frac{q^{2}+1-q^{2 d+1}}{q^{4 d}} \quad\left(\bmod \Phi_{n}(q)\right)
$$

as desired.

References

[1] G. C.-Y and V. J. W. Guo, Two q-congruences from Carlitz's formula, Period. Math. Hungar. 82 (2021), 82-86.
[2] V. J. W. Guo, Proof of a q-congruence conjectured by Tauraso, Int. J. Number Theory. 15 (2019), 37-41.
[3] V. J. W. Guo, New q-analogues of a congruence of Sun and Tauraso, Publ. Math. Debrecen. 102 (2023), 103-109.
[4] V. J. W. Guo and J. Zeng, Some congruences involving central q-binomial coefficients, Adv. Appl. Math. 45 (2010), 303-316.
[5] S. Z.-W, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China. Math. 53 (2010), 2473-2488.
[6] S. Z.-W and R. Tauraso, New congruences for central binomial coefficients, Adv. Appl. Math. 45 (2010), 125-148.
[7] C. Wang and N. H.-X, Some q-congruences arising from certain identities, Period. Math. Hungar. 85 (2022), 45-51.
[8] X. Wang and M. Yu, Some generalizations of a congruence by Sun and Tauraso, Period. Math. Hungar. 85 (2022), 240-245.
[9] L. Carlitz, A q-identity, Fibonacci Quart. 12 (1974), 369-372.

