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Abstract
We establish some g-congruences related to Sun and Tauraso’s congruence:
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k=0

where p is an odd prime and r is a positive integer.

1. Introduction

Congruences involving central binomial coefficients (2:) have attracted many ex-
perts’ attention in recent years. In 2010, Sun and Tauraso [6] proved that for any
odd prime p and positive integer r,

Ei@FHﬂlmW- (1)

k=0

Sun [5] showed that (1) also holds modulo p? in the same year.
Subsequently, Guo and Zeng [4, Corollary 4.2] first established a g-analogue of
(1) as follows:

¢ = (1" "7 (mod @,(q)). 2)

where n is an odd positive integer. We remark that Guo [2] further showed that (2)
holds modulo ®,,(¢)?. Here and throughout the paper, the g-shifted factorials are
given by (a;¢), = (1—a)(1—aq)---(1—aq™?t) for n > 1 and (a;q)o = 1. The nth
cyclotomic polynomial is given by

1<k<n
(n,k)=1
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where ¢ denotes a primitive nth root of unity.

For more g-congruences related to (1), we refer the interested reader to [1, 3, 7, 8].
It is worth mentioning that Guo [3, Theorem 1] recently established two new g-
analogues of (1):

y (o ()q’é.(;f)k;q it = (15 (mod 940, ®)
k=0 ’
and
i 1kq )quk = (_1)”771 (mod @,(q)), (4)
k=0

where n is an odd positive integer.
The first aim of the paper is to give two different g-analogues of (1) as follows.

Theorem 1. For any positive odd integer n, we have

i = q>kq)’“q4<’“+1>z<—1>”21<1—q+q2> (mod @, (), (5)
and
> (q;q&]’é.(q;)l;q Jigiint Z (1) (2 ) (mod @,(g). (6)
k=0 ’

Letting ¢ — 1 and n = p" in the Theorem 1, (5) and (6) reduce to (1). So (5)
and (6) are g-analogues of (1).

Gu and Guo [1, Theorem 1] established g-analogues of the following two congru-
ences related to (1):

p ! 1 2k p’—1
kZ:o 2’“(2I<:1)<k) =(-1)"> (mod p), (7)

and

p -1
2k +1 2k p" 41
Z 2k<k> =(-1)"=2 (mod p).

k=0
The second aim of the paper is to give two new g-analogues of (7) as follows.

Theorem 2. For any positive odd integer n > 3, we have

- ql,q( : e 2 (18 (mod w,(0)), (8)

HM\
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and

n—1 71; 2 —1; 2 ntl
Z(q ?qz?q(mq)kq‘*k(lw(?ql) (mod ,(g)). ©)
k=0 ’

Next, we shall extend Theorems 1 and 2 through Carlitz’s identity.

Theorem 3. For any integer d and odd positive integer n withn > 2 | d | —1, we
have

nf (92d+12522,)§2(),€1; @)k ¢ = (=) (mod @,(q)), (10)
k=0 ’
and
Tf (q2d+1é§22.);2()k1?q2)k o = (—1)51+d2q2gidl+1 (mod ®x(q))- ()
k=0 ’
In fact, Theorem 2 is a special case of Theorem 3 for d = —1.

Theorem 4. For any integer d and odd positive integer n with n > 2 | d | —1, we
have

n—1  oqi1. 2 2. 2
q 37 )(—475 97 )k 2st4d, -
( 2). (2 ) P = (—1)"7 tg2 (mod B, (q)), (12)
~ (4% )
and
n—1 2d+1. 2 2. .2 2 2d+1
P ) k(=% )i ntyad” t1—4g
Z( 2). (2 e guoin) = (1) M (mod ().
i (4% )i 1
(13)

Letting ¢ — 1 in Theorems 3 and 4 and using L’hospital rule, we are led to the
following result.

Corollary 1. For any integer d, positive integer r and odd prime p withp > 2 | d |
—1, we have

P =1 ok 1

2 (d+7) pl—1
> =D (mod p), (14)
k=0 ’

where () =x(zx+1)---(x +k—1).

We remark that letting d =0 and n = p" in (14) reduces to (1).
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2. Proof of Theorem 1

Let

Al(ka Q) =

It is easy to check that
(1—¢*) Ak, q) = (1 - ¢*7) (1 +¢*) Ai(k — 1,q). (15)

Summing both sides of (15) over k from 1 to n — 1 gives

n—1 _
Z(l—q Alkq :Z gk 1 1+q2k)A1(k—l,q).
k=1 k=1

It follows that

I
-
3\
-

n

(1= ) (1+¢2) Ar(k.q) — > (1= ¢*) Ai(k,q)
0

£
I
£
I

0
=(1-¢"7") (1+¢*) Ai(n—1,9). (16)
We can rewrite (16) as
1— g+ q2 n—1 n—1
— D A (k) = > ¢ A (R, q)
k=0 k=0

4%),_, (—a*d°),_,

— (1 _ q2n—1 +q2n _ q4n—1) (

17
(¢ Dn1(=¢ @)n 17)
Furthermore, note that (see [7, Lemma 2.2])
(:4%),,_,
— "= =0 (mod ®,(q)), 18
(¢ n— ( @) (18)

for any positive odd integer n.
Finally, combining (3), (17) and (18), we arrive at

n—1/ _ 2 2.2
Z (Qaq )kz( 2(] 1 q )kq4(k+1) — (_1)(n—1)/2(1 _ q+q2) (mod ,,(q)),
= (%)

which completes the proof of (5).
We shall prove (6) similarly. Let

(:4%), (—1;q2)k.

Aalkq) = (4% )k
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It is easy to verify that
(1—¢*) Aa(k,q) = (1= ¢* 1) (14 ¢*72) Aa(k — 1,9). (19)

By using the same method as in the proof of (5), we can deduce from (19) that

n—1 n—1
2=a) Y ¢ As(k,q) = > q* " As(k, q)
k=0 k=0

4%, , (-1d%),_,

_ (1 _ q2n—1 4 q2n—2 _ q4n—3) (

20
(4 @)n-1(=a;@)n—1 (20)
Combining (4), (18) and (20), we arrive at
n—1 2 2
q9°), (—15q "
@ 0) CL0 ks 2 (o020 —) (mod 0,(a),
= (%
as desired. O

3. Proof of Theorem 2

Let

—1. g2 12
Bi(k,q) = (q ((]qucqg)k : )k

It is easy to verify that
(1-¢*") Bi(k,q) = (1 - ¢*%) (1+¢**7?) Bi(k — 1, ).

It follows that

n—

|
-

n

(1=¢*") (1 +¢*) Bu(k,q) = ) (1~ ¢*") Bi(k,q)
0 0

~
Il

k=
=(1-¢"7°) (1+¢**)Bi(n—1,q). (21)
By (18) and (21), we have

n—1 n—1
1
2=-)>_¢*Bi(k,q) = Y ¢" ' Bi(k,q)
q k=0 k=0

=1+ ?)1-q"

=0 (mod ®,(q)). (22)
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On the other hand, we set

(507, (L) o

Balhy) = (425 4%

It is easy to check that
(1= ¢*) Ba(k,q) = (1= ¢* %) (1 +¢*7%) ¢ Ba(k — 1,0).

It follows that

i
L

n—1
(1—¢**") (14¢*) ¢’Balk,q) = > (1 — ¢**) Ba(k, q)
k=0

=~
I

0

=(1-¢"") (14+¢" ) ¢Ba(n—1,q). (23)
Note that
(1= ¢*" " ")Ba(k,q) = ¢*"(1 — ¢ ") As(k, q), (24)
and
By (k,q) = ¢** Bi(k, q). (25)

Substituting (24) and (25) into the left-hand side of (23) and using (18), we obtain

n—1 n—1
(@ = a)> (" + ™) Aa(k,q) = > (¢** = ¢*) Bi(k,q) =0 (mod @, (q)).
k=0 k=0
(26)
Furthermore, applying (4) and (6) to the left-hand side of (26) gives
n—1
> (@ = q") Bilk,g) =2(-1)" V(g — 1) (mod @u(g)).  (27)
k=0

Finally, combining (22) and (27), we arrive at

Zq%&kq (=)™ (mod ®,,(q)).
k=0

and

Zq‘*kBlkq (~1)® /22— 1) (mod @, (g)).

which completes the proof of (8) and (9). O
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4. Proof of Theorem 3

Firstly, letting ¢ — ¢! in (10), we find that (10) is equivalent to

1 (g2, =
)kl sk g2k = (,1)71“1 (mod ®,(q))-
k=0

M

Recall the following Carlitz identity [9]:

i W(ab)nkq(nk)(n+k1)/z _ Zn: - q(a~ Dt (—b)Fq(2) 8)

= (G = (@ )¢ On—r(1 — ag" =)

Letting ¢ = ¢>, n = n—1,a —2d+1 and b = —1, we get

n—1
3 (@ P)r(=1;¢%) (1= (k) (n+2d-1)
= (4% %) 9)
n—1 (k—
_ Z (q2d+1;q2)nqk(k 1)
(02 k(4% qH)n—k—1 (1 — g2n+2d-2k=1)

=0

Note that (¢2¢*+1;¢?), has a factor 1 — ¢" for n>2|d| — 1. Thus, except for k =
o241 the rlght hand side of (29) is congruent to 0 modulo @, (¢), and so

_ 2d+1 —1;q )kq(n—(1+k))(n+k+2d—1)

M

)k

1
(qzd“;qQ)k(*l;qQ)k k?_odk—2d41 30
2. 2 q (30)
. (¢%:4%)k

n

>
Il

(q2d+1; qZ)nq

(qg; q2) nt2d-1 (q2; q2) n-2d-1 (1—qgm)

2d—1 2d—1
%(%71)

(mod ®y,(q)).

For any integer s and n, we have
=1 (mod ®,(q)), (31)
where the g-binomial coefficients are defined as:

(¢ D i
m (@GOG D FOsks

0 otherwise.
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Simplying the right-hand side of (30) gives

2d+1 n+22d—1(n+22d7171)

(@) q
(4% ¢%) nt2am1 (4% %) n=20=1 (1 — ¢7)
7q(n+2d71)(n+2d73)/4 (q; qz)n(l _ q2n+1)(1 _ q2”+3)...(1 _ q2n+2d71)
; 1—qn Q-1 =¢%)..(1—¢*1)
(1 _ qn—2d+1)(1 _ qn—2d+3)m(1 _ qn—l)
(6% 625y (1= g +1)(1 = g"*+2)...(1 — g 2471

X

] B e
)
Note that (see [3, (2.5) and (2.6)))
B e A T C XU
and
=1 mea e, 1)

Substituting (33) and (34) into the right-hand side of (32), we get

= (—1)" g2 (mod @,,(q)).

[n _ 1} [Qn _ 1] (_1)dq(n+2d—1)(n+2d—3)/4—d2
q

z1 (—:9)%_,

5 n—1

(35)
Combining (30), (31), (32) and (35), we get

— 2d+1

—1: ' q )k —k?—2dk—2d+1 = (_1)%+dq1—2d (mod (I)n(q))

M

2 n

as desired.
Next we shall prove (11). Let

(@ @) (=162

Culk..d) = (a% %)k

It is easy to check that

(1—¢**)Ci(k,q,d) = (1 — @211 + ¢*HC1(k — 1,¢,4d). (36)
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Summing both side of (36) over k from 1 to n — 1, we get

n—1 n—1

Y 1=k, q,d) =D (1= g1+ ¢ ) Ci(k — 1,9, 4).

k=1 k=1

It follows that

_ 2d+1 —1: 2d+1 —1: )
2d+1 ‘1 k 2k 2d+1 47 )k 4k
Z >k Z >k I -
=(1- gl | gn2 q4n+2d—3>(q2d+17q ) ( L5 %)
(@%¢*)n—1
Note that
(@) n-1 (@611 = @1 = ¢? ). (1 — ¢ H2073)
(4% ¢*)n—1 (g% q*)n-1(1 = q@)(1 = ¢3)...(1 — g?¢~1) (38)
_ (4 ¢*)n—1
T (@ (1= P (mod 24()).
y (18), we have
.2
Bt _ ) (1mod @, (), (39)

(@%4*)n—1
for any integer n > 3.

Combining (31), (38) and (39), we find that the right-hand side of (37) is con-
gruent to

PRIeas
(1 _ q2n+2d71 + q2n72 _ q4n+2d73)( ((] ; )( ) —1 =0 (mod (I)n(q))
—1

(40)

Using (10), (37) and (40), we arrive at

— 2d+1 —1: iq ) ik ”—*1+d2 _ q2d+1
kz:: )k gt =(-1)> TR (mod @,,(q))
as desired. O

5. Proof of Theorem 4

We first prove (12). Letting ¢ — ¢! in (12), we find that (12) is equivalent to

1 (g2,
- )k q —(k+1)*—2dk — (71)%+dq2d (mod ®,,(q)).

)k

* M
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Letting ¢ = ¢>,n —-n—1,a — 2d+ 1 and b — —¢? in (28), we obtain

(q2d+1vq) (- q2§q2)kq(n_(1+k-))(n+k+2d+1)

(q yq )k
k=0
« 2d+1, 2y ok(k+1) (41)
- Z (q $q%)ng
= ( k(@2 @) n_p—1(1 — g2nt2d=2k-1)

The right-hand side of (41) has a factor 1—g¢" for n>2|d|—1. Thus, for k # “+2=1,
we have

_ 2d+1

( % Q) q(n—(1+k))(n+k+2d+1)

)k

nol o 2d+, .
Z (¢? +17q2)k(_q27q2)kq—(k+1)2—2dk—2d (42)

2. 12
= (% a*)k

n+22d— 1 'n,+22d—1 1)

* M

(q2d+1; q2)nq

(q2; q2) nt2d-1 (qz; q2) n-2d-1 (1 — qn)

(mod ®,,(q)).

Using the same method as in the proof of (32) and combining (31)—(34), we get

(q2d+1; q2)nq

(4% 62) nt2a-1 (4% ¢%) n=2a-1 (1 — ")

2d—1 2d+41
%(%H)

=(-1)"= ™  (mod ®,(q)). (43)

Combining (42) and (43), we have

n—

2d+1. 2. 2 , o
e i = ()P (od 34(0)

= (a% a*)k

which completes the proof of (12).
Next we shall prove (13). Let

2L ) (=425 )

(@ )k

Dl(k>qad) = (q

It is easy to check that

(1= ¢**)D1(k,q,d) = (1 = @** (1 + ¢**)Dy(k - 1,4,4d). (44)
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By using the same method as in the proof of (11), we can deduce from (44) that

-1
@ +1— @S (PP (- a)k op

2. 42
q P (¢ ¢*)k

-1
. q2d—1 nz (QZdH;qz)k(_q2§q2)kq4(k+l)

Pt (@ 4%k
= (1— g2l 4 g2 _ q4n+2d—1)(q2d+1;q2)n—1(—q2§q2)n—l

(¢% ¢*)n—
(45)

Combining (31), (38) and (39), we find that the right-hand side of (45) is congruent
to

2d+1. .2 2. 2
n - n n — q 497 )n—1(—q75;9" )n— _
(46)
Finally, combining (12), (45) and (46), we arrive at
n—1
(q2d+1§ QQ)k(_QQQ qg)k 4(k—+1) n=1_4 q2 +1-— q2d+1
q =(-1)"=2 - (mod ®,, ,
= (a% q*)k 1) q*d ( @)
as desired. O
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