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Abstract

We extend previous investigations into positions in the game of Sylver coinage for
which the number four has been chosen. We employ tools involving numerical semi-
groups to prove results concerning winning and losing positions as well as strategies
for playing the game from specific positions.

1. Introduction

In the game of Sylver coinage, two players alternate choosing positive integers. On

each turn, all positive integers which can be expressed as a linear combination, with

non-negative integer coefficients, of all numbers that have been chosen are removed

from play. The player that must choose the number 1 loses the game. The game

is named in honor of mathematician J.J. Sylvester (1814 - 1897) and is the topic

of Chapter 18 of Winning Ways for Your Mathematical Plays [2] by Berlekamp,

Conway, and Guy. The game is also studied by Sicherman [9] and is discussed

in Chapter 6 of Michael [6]. In [5], Guy poses 20 questions concerning the game

of Sylver coinage. More recently, Sylver coinage has been connected to numerical

semigroups, providing new tools with which to study the game, including a proof

of the Quiet End Theorem using results from numerical semigroups. See [3] for

details.

Within the existing literature concerning Sylver coinage, considerable attention

is devoted to determining if a given position is an N -position (next player wins)

or a P-position (previous player wins). For example, it is known from [2] that if

Player 1 begins the game by choosing a prime p with p ≥ 5, then they are in a
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winning position because the position {p} is a P-position. Knowing this, it may

seem like there is not much to investigate concerning Sylver coinage. However, we

quickly realize that knowing we are in an N -position does not reveal what number

we ought to choose next. For example, if Player 1 starts the game by choosing 11

and Player 2 responds by choosing 103, then Player 1 knows they are in a winning

position as {11, 103} is known to be an N -position. What should Player 1 choose

next? It is not clear. In [2], we read, “. . . from any position in Sylver coinage there

is a winning strategy for one of the two players but because of the infinite nature

of the game we cannot work through all positions and guarantee to find winning

strategies when they exist.”

In [2], we find an examination of “good responses” (that is, appropriate next

choices) for certain families of N -positions with a focus on positions in which 4

or 5 has been chosen. We will continue the examination of positions in Sylver

coinage for which 4 has been chosen but we will use the numerical semigroup tools

established in [3] to extend both the scope and detail of the analysis. In Section 2,

we establish the definitions and notations that we will use concerning the game of

Sylver coinage and numerical semigroups. We also recall some key results proved in

[3] that we will need here. In Section 3, we investigate positions in which 4 has been

played, and establish bounds on the number of legal choices that are congruent to

1, 2, or 3 modulo 4. We also establish which positions correspond to symmetric or

pseudo-symmetric numerical semigroups, both of which are known to correspond to

N -positions. We use these results to identify some choices that players should avoid.

We briefly discuss Guy’s fourteenth question concerning Sylver coinage (see [5]) in

light of these results. In Section 4, we establish which positions are P-positions

when 6 has also been played, when 10 has also been played, and when 14 has also

been played. The proofs of these results provide strategies for how to play the game

from N -positions meeting these conditions.

2. Definitions, Notation, and Previous Results

Definition 1. Sylver coinage is a two-player game played on the positive integers,

N. The rules of the game are:

1. The players alternate choosing available numbers.

2. If a1, . . . , ak represent the first k choices in the game, then the numbers avail-

able to choose on the next turn are the elements of the set

N\{n1a1 + · · ·+ nkak ni ∈ N ∪ {0}}.

3. The player who chooses the number 1 loses the game.
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Example 1. As an example of a game of Sylver coinage, say Player 1 begins the

game by choosing the number 5. Player 2 can now choose any number that is not a

multiple of 5. Say Player 2 responds by choosing 7. Next, Player 2 can choose any

number that cannot be expressed as 5x + 7y for some x, y ∈ N ∪ {0}. The entire

game might look like this:

Available Plays Player 1 Choice Player 2 Choice
N 5

N\5N 7
{1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23} 8

{1, 2, 3, 4, 6, 9, 11} 4
{1, 2, 3, 6} 6
{1, 2, 3} 3
{1, 2} 2
{1} 1

We see that Player 2 was forced to choose 1 and loses the game.

Remark 1. The following facts about Sylver coinage can be found in [2] and [3].

We omit the proofs here.

(i) If {a1, . . . , ak} represents the numbers that have been chosen in a game of

Sylver coinage and gcd{a1, . . . , ak} = 1, then the set of available plays is

finite.

(ii) Every game of Sylver coinage involves a finite number of plays.

(iii) If both players play “intelligently,” then the first player to choose 1, 2, or 3

will lose the game.

Concerning Remark 1 (iii), we will always assume that both players play “intel-

ligently,” meaning both players will always make the most advantageous choice at

every turn in the game.

Definition 2. The following definitions and notations pertain to the game of Sylver

coinage. These can be found in [2] and [9], as well as Section 1 of [3].

(i) A position in a game of Sylver coinage is a set M = {a1, . . . , ak} ⊆ N of the

numbers that have been chosen by the players.

(ii) The set of legal plays for a position M = {a1, . . . , ak}, denoted by L(M), is

L(M) = N\{n1a1 + · · ·+ nkak ni ∈ N ∪ {0}}.

(iii) Let x, y ∈ L(M) for some position M = {a1, . . . , ak}. We say x eliminates y

provided y /∈ L(M ∪ {x}). That is, choosing x results in y no longer being a

legal play. We say that x quietly eliminates y provided y−x /∈ L(M). That is,

x eliminates y and y = 1 ·x+n1a1 + · · ·+nkak for some n1, . . . , nk ∈ N∪{0}.
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(iv) For a position M = {a1, . . . , ak}, we say that ai is superfluous provided ai /∈
L(M\{ai}). Equivalently, ai is superfluous provided L(M) = L(M\{ai}).

(v) We say that a position M = {a1, . . . , ak} is in canonical form provided none

of a1, . . . , ak are superfluous. Unless otherwise stated, we will assume that

position M = {a1, . . . , ak} is in canonical form with a1 < · · · < ak.

(vi) We say that a position M is a finite position provided L(M) is a finite set.

For a finite position M , we define F (M) to be max(L(M)).

(vii) A position is called an N -position provided that the next player to play can

win the game starting at that position. A position that is not an N -position

is called a P-position. We will sometimes refer to N -positions as winning

positions and P-positions as losing positions.

(viii) Given a position M , we say that x ∈ L(M) is an end provided that L(M ∪
{x}) = L(M)\{x}. That is, x does not eliminate any legal plays other than

itself. We say that M is an ender provided F (M) is the only end. We say that

an ender M is a quiet ender provided that every x ∈ L(M) quietly eliminates

F (M). An ender that is not a quiet ender is called an unquiet ender.

Example 2. The following examples relate to Definition 2.

(i) Consider the position M = {4, 7, 17}. We compute L(M) = {1, 2, 3, 5, 6, 9, 10, 13}.
Thus, F (M) = 13 and both 10 and 13 are ends. Further, 3 and 6 both elimi-

nate 13 but 6 quietly eliminates 13 whereas 3 does not quietly eliminate 13.

(ii) Consider the position M = {4, 9}. We compute

L(M) = {1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 19, 23}.

Thus, F (M) = 23 and this is the only end. We quickly check that all elements

of L(M) quietly eliminate 23 and hence M is a quiet ender.

We note that the notation “F (M),” representing the largest legal play for a finite

position, is different from the notation “t(M)” that is usually found in the literature.

The motivation is to match the notation to the Frobenius number of a numerical

semigroup which we will define shortly. The next two propositions are mentioned

in [2] and [9]. Formal proofs of these propositions can be found in [3].

Proposition 1. If M is an ender, then for all x ∈ L(M) we have that x eliminates

F (M).

Proposition 2. If M is an ender with F (M) > 1, then M is an N -position.
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It is important to note that the converse of Proposition 2 is not true as shown

by the position M = {4, 6, 11, 13}. The details are left to the reader.

Next, we establish the necessary definitions and notations pertaining to numer-

ical semigroups. For additional material on numerical semigroups beyond what is

contained here, the reader should see [1], [4], and [8]. The following definitions are

the same as in [3].

Definition 3. A numerical semigroup is a subset S of N∪{0} satisfying the following

three conditions:

1. 0 ∈ S;

2. S is closed under addition;

3. N\S is a finite set.

The smallest positive element of S is called the multiplicity of S and is denoted

by m(S). The largest element of N\S is called the Frobenius number of S and is

denoted by F (S). The set N\S is called the gaps of S and the cardinality of this

set, |N\S| is called the genus of S and is denoted by g(S).

Example 3. Let S = {0, 4, 7, 8, 11, 12} ∪ {n ∈ N| n ≥ 14}. Then S is a numerical

semigroup with multiplicity m(S) = 4, Frobenius number F (S) = 13, and genus

g(S) = 8.

From [8], we know that for every numerical semigroup S, there exists a unique

finite subset {a1, . . . , ak} ⊂ S which is minimal with respect to containment and

such that for all s ∈ S, there exist n1, . . . , nk ∈ N ∪ {0} such that s = n1a1 + · · ·+
nkak. In this case, the set {a1, . . . , ak} is called the minimal system of generators

for S and is denoted by msg(S). It is also common to write S = 〈a1, . . . , ak〉. The

number of elements in the minimal system of generators is called the embedding

dimension of S and is denoted by e(S). For the numerical semigroup in Example

3, we have S = 〈4, 7, 17〉 and e(S) = 3.

Of particular interest to the examination of Sylver coinage are numerical semi-

groups whose genus is as small as possible. From the definition of the Frobenius

number, we know that if x ∈ S, then F (S) − x /∈ S. Thus, g(S) ≥ F (S)+1
2 when

F (S) is odd, and g(S) ≥ F (S)+2
2 when F (S) is even.

Definition 4. We say that a numerical semigroup S is symmetric provided F (S)

is odd and g(S) = F (S)+1
2 . We say that a numerical semigroup is pseudo-symmetric

provided F (S) is even and g(S) = F (S)+2
2 .

Example 4. The following examples relate to Definitions 3 and 4.

(i) From Example 3, we see that if S = 〈4, 7, 17〉, then F (S) = 13 and g(S) = 8.

We conclude that S = 〈4, 7, 17〉 is not symmetric.
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(ii) For S = 〈6, 9, 11〉 = {0, 6, 9, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24} ∪ {n ∈ N| n ≥
26} we have F (S) = 25 and g(S) = 13. We conclude that S = 〈6, 9, 11〉 is

symmetric.

(iii) For S = 〈4, 7, 9〉 = {0, 4, 7, 8, 9} ∪ {n ∈ N| n ≥ 11} we have F (S) = 10 and

g(S) = 6. We conclude that S = 〈4, 7, 9〉 is pseudo-symmetric.

There are several conditions that imply a numerical semigroup is symmetric or

pseudo-symmetric. The next proposition reviews some of these.

Proposition 3. For a numerical semigroup S, we have

(i) S is symmetric or pseudo-symmetric if and only if S is maximal with respect

to containment among all numerical semigroups with Frobenius number equal

to F (S);

(ii) S is symmetric if and only if both F (S) is odd and x ∈ N\S implies that

F (S)− x ∈ S;

(iii) S is pseudo-symmetric if and only if both F (S) is even and x ∈ N\S implies

that either F (S)− x ∈ S or x = F (S)
2 ;

(iv) If e(S) = 2, then S is symmetric;

(v) If S is a numerical semigroup with m(S) = 4 and e(S) = 3, then S is pseudo-

symmetric if and only if S = 〈4, k, k + 2〉 where k is odd and k ≥ 3.

Statements (i) - (iv) of Proposition 3 are from [8] and statement (v) is from

[7]. The reader is encouraged to see these resources for additional information on

symmetric and pseudo-symmetric numerical semigroups.

Example 5. The following examples relate to Proposition 3.

(i) From Proposition 3 (iv), we know S = 〈4, 9〉 is symmetric.

(ii) From Proposition 3 (v), we know S = 〈4, 7, 9〉 is pseudo-symmetric.

(iii) A quick check shows that F (〈4, 7, 9〉) = 10. Proposition 3 (i) tells us that if T

is any numerical semigroup such that 〈4, 7, 9〉 ( T , then F (T ) < 10.

Now that we have established the definitions and notations for Sylver coinage

and for numerical semigroups, we recall the following results from Section 4 of [3]

connecting these topics. The proofs are omitted.

Proposition 4. Let M = {a1, . . . , ak} be a finite position in a game of Sylver

coinage written in canonical form. Define S(M) = (N ∪ {0})− L(M). Then,

(i) S(M) is a numerical semigroup with msg(S(M)) = {a1, . . . , ak};
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(ii) M is an ender if and only if S(M) is symmetric or pseudo-symmetric;

(iii) M is a quiet ender if and only if S(M) is symmetric;

(iv) M is an unquiet ender if and only if S(M) is pseudo-symmetric.

Example 6. The following examples relate to Propositions 3 and 4.

(i) The position M = {5, 7} is an N -position because S(M) = 〈5, 7〉 is symmetric

by Proposition 3 (iv) and hence M is an ender.

(ii) The position M = {4, 7, 9} is an N -position because S(M) = 〈4, 7, 9〉 is

pseudo-symmetric by Proposition 3 (v) and hence M is an unquiet ender.

We will make repeated use of the results in this section as we investigate games

of Sylver coinage for which 4 has been chosen.

3. Games for Which 4 Has Been Chosen

We now focus our attention on games of Sylver coinage for which the number 4 has

been chosen. Our goal is to utilize numerical semigroup tools to extend the scope

of the investigation in [2] and provide additional details.

Definition 5. The following definitions and notations will be used throughout the

remainder of this investigation.

(i) Let SC(4) denote the set of all finite positions of Sylver coinage for which

the number 4 is the smallest number that has been chosen. That is, SC(4)

contains all positions M such that all of the following are true:

(a) 4 ∈M ;

(b) {1, 2, 3} ∩M = ∅;
(c) there exists x ∈M such that x is odd and x ≥ 5.

(ii) If M ∈ SC(4), then the elements of L(M) that are greater than 3 can be

partitioned into subsets M1, M2, and M3 such that

Mi = {x ∈ L(M) x ≡ i (mod 4) and x > 3} for i = 1, 2, 3.

We will use the notation mi = |Mi| for i = 1, 2, 3.

Example 7. Using the notation from Definition 5 for position M = {4, 11, 14} ∈
SC(4), we have
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M1 = {5, 9, 13, 17, 21}
M2 = {6, 10}
M3 = {7}.

Thus, m1 = 5, m2 = 2, and m3 = 1. Also, S(M) = 〈4, 11, 14〉 is symmetric by

Proposition 3 (ii) and hence M is an N -position by Proposition 4 (ii) and Proposi-

tion 2.

Remark 2. Let M ∈ SC(4).

(i) We can write M = {4, 4m1 +5, 4m2 +6, 4m3 +7}, not necessarily in canonical

form.

(ii) We can write L(M) = {1, 2, 3} ∪M1 ∪M2 ∪M3 where

M1 = {5, 9, . . . , 4m1 + 1}
M2 = {6, 10, . . . , 4m2 + 2}
M3 = {7, 11, . . . , 4m3 + 3}.

(iii) The set {4, 4m1 + 5, 4m2 + 6, 4m3 + 7} is a system of generators for S(M) but

it may not the minimal system of generators.

(iv) By the definition of Frobenius number, we have F (S(M)) = max{4m1 +

1, 4m2 + 2, 4m3 + 3}.

(v) By the definition of genus, we have g(S(M)) = |L(M)| = m1 +m2 +m3 + 3.

We take a moment to examine which elements of the set L(M) are eliminated

when a player makes their choice. Assume M ∈ SC(4) and that x ∈ L(M) is the

next number chosen. Let M = M ∪{x} and let M1,M2,M3,m1,m2,m3 be defined

as in Definition 5.

Consider the case in which x ∈M1. Then we know we can write x = 4(m1−k)+1

for some 0 ≤ k ≤ m1 − 1. Since 4 ∈ M , we know x, x + 4, . . . , 4m1 + 1 are all

eliminated by choosing x. Thus,

max(M1) = x− 4 = 4(m1 − k − 1) + 1

and hence m1 = m1 − k − 1.

Next, note that since x, 4m2 + 6 ∈ S(M), we have 2x, 3x, x + 4m2 + 6 ∈ S(M).

Since 2x ≡ 2 (mod 4), we have

max(M2) = min{4m2 + 2, 2x− 4 = 4(2m1 − 2k − 1) + 2}

and hence m2 = min{m2, 2m1 − 2k − 1}.
Finally, since 3x ≡ x + 4m2 + 6 ≡ 3 (mod 4), we have

max(M3) = min{4m3+3, x+4m2+2 = 4(m1+m2−k)+3, 3x−4 = 4(3m1−3k−1)+3}
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and hence m3 = min{m3,m1 + m2 − k, 3m1 − 3k − 1}.
Similar results hold in the cases x = 4(m2−k)+2 ∈M2 and x = 4(m3−k)+3 ∈

M3. We summarize these in the following proposition.

Proposition 5. Let M ∈ SC(4) and let x ∈ L(M) be the next number chosen. Let

M = M ∪ {x} and let M1,M2,M3,m1,m2,m3 be defined as in Definition 5.

(i) If x = 4(m1 − k) + 1 ∈M1 for some 0 ≤ k ≤ m1 − 1, then

(a) max(M1) = 4(m1 − k − 1) + 1 and m1 = m1 − k − 1;

(b) max(M2) = min{4m2 +2, 4(2m1−2k−1)+2} and m2 = min{m2, 2m1−
2k − 1};

(c) max(M3) = min{4m3 + 3, 4(m1 +m2 − k) + 3, 4(3m1 − 3k− 1) + 3} and

m3 = min{m3,m1 + m2 − k, 3m1 − 3k − 1}.

(ii) If x = 4(m2 − k) + 2 ∈M2 for some 0 ≤ k ≤ m2 − 1, then

(a) max(M1) = min{4m1+1, 4(m2+m3−k+1)+1} and m1 = min{m1,m2+

m3 − k + 1};
(b) max(M2) = 4(m2 − k − 1) + 2 and m2 = m2 − k − 1;

(c) max(M3) = min{4m3 + 3, 4(m1 +m2− k) + 3} and m3 = min{m3,m1 +

m2 − k}.

(iii) If x = 4(m3 − k) + 3 ∈M3 for some 0 ≤ k ≤ m3 − 1, then

(a) max(M1) = min{4m1 + 1, 4(m2 + m3 − k + 1) + 1, 4(3m3 − 3k + 1) + 1}
and m1 = min{m1,m2 + m3 − k + 1, 3m3 − 3k + 1};

(b) max(M2) = min{4m2+3, 4(2m3−2k)+2} and m2 = min{m2, 2m3−2k};
(c) max(M3) = 4(m3 − k − 1) + 3 and m3 = m3 − k − 1.

Example 8. Let M ∈ SC(4) with m1 = 4 and m2 = 3 and m3 = 6. Thus,

M1 = {5, 9, 13, 17}
M2 = {6, 10, 14}
M3 = {7, 11, 15, 19, 23, 27}.

Choosing x = 9 = 4(m1 − 2) + 1 results in

M1 = {5} and m1 = 1.
M2 = {6, 10, 14} and m2 = 3.
M3 = {7, 11, 15, 19, 23} and m3 = 5.

The values m1, m2, and m3 offer a convenient alternative notation to express

positions in SC(4). Given M ∈ SC(4), we will often write M = [m1,m2,m3]
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instead of the set notation M = {4, 4m1 + 5, 4m2 + 6, 4m3 + 7}. For example, the

position M = {4, 11, 14} can be expressed as M = [5, 2, 1] instead.

It is important to note that while every M ∈ SC(4) has a unique expression of

the from [m1,m2,m3] where mi ∈ N∪{0}, not every such ordered triple corresponds

to an element of SC(4). Indeed, [1, 3, 7] would correspond to position M such that

L(M) = {1, 2, 3} ∪ {5} ∪ {6, 10, 14} ∪ {7, 11, 15, 19, 23, 27, 31}.

However, this means that 9 has been chosen at some point in this game of Sylver

coinage so 27 and 31 are no longer legal plays. We conclude that [1, 3, 7] does not

correspond to an element of SC(4).

Proposition 6. Let M = [m1,m2,m3] ∈ SC(4). Then m1, m2, and m3 must

satisfy all of the following:

(i) m1 ≤ m2 + m3 + 2;

(ii) m3 ≤ m1 + m2 + 1;

(iii) m2 ≤ 2m1 + 1;

(iv) m2 ≤ 2m3 + 2.

Proof. Recall from Remark 2 (i) that M = {4, 4m1 +5, 4m2 +6, 4m3 +7}. To prove

the inequality in (i), assume by contradiction that m1 > m2 +m3 + 2. Multiplying

by 4 and adding 5 to both sides we have

4m1 + 5 > (4m2 + 6) + (4m3 + 7).

Now, 4m1 + 5 ≡ (4m2 + 6) + (4m3 + 7) (mod 4) and hence

4m1 + 5 = (4m2 + 6) + (4m3 + 7) + 4k

for some k ≥ 1. Subtracting 4 from both sides we have,

4m1 + 1 = (4m2 + 6) + (4m3 + 7) + 4(k − 1).

However, (4m2 + 6) + (4m3 + 7) + 4(k− 1) ∈ S(M) for k ≥ 1 by Remark 2 (iii) and

hence 4m1 + 1 ∈ S(M). Therefore, 4m1 + 1 /∈ L(M). This is a contradiction. We

conclude that m1 ≤ m2 + m3 + 2. The proofs of the inequalities in (ii) - (iv) are

similar.

Proposition 7. Let M = [m1,m2,m3] ∈ SC(4). Then S(M) is symmetric if and

only if either m1 = m2 + m3 + 2 or m3 = m1 + m2 + 1.
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Proof. First assume that the numerical semigroup S(M) is symmetric. Then we

know F (S(M)) is odd and hence max{4m1 + 1, 4m2 + 2, 4m3 + 3} is equal to

4m1 +1 or 4m3 +3. In the case max{4m1 +1, 4m2 +2, 4m3 +3} = 4m1 +1 we know

F (S(M)) = 4m1 + 1 and since S(M) is symmetric we know g(S(M)) = F (S(M))+1
2 .

By Remark 2 (v), we see

m1 + m2 + m3 + 3 =
4m1 + 2

2
.

Thus, m1 = m2 +m3 +2. The proof for the case max{4m1 +1, 4m2 +2, 4m3 +3} =

4m3 + 3 is similar.

Next assume that m1 = m2 + m3 + 2. Then max{4m1 + 1, 4m2 + 2, 4m3 +

3} = 4m1 + 1 and we have F (S(M)) = 4m1 + 1 which is odd. Further, m1 =

m2 + m3 + 2 implies m1 + m2 + m3 + 3 = 4m1+2
2 from which we conclude that

g(S(M)) = F (S(M))+1
2 . Therefore, S(M) is symmetric by definition. Assuming

m3 = m1 + m2 + 1 leads to the same conclusion by a similar argument.

Proposition 8. Let M = [m1,m2,m3] ∈ SC(4). Then S(M) is pseudo-symmetric

if and only if either m2 = 2m1 = 2m3 + 2 or m2 = 2m1 + 1 = 2m3 + 1.

Proof. First assume that S(M) is pseudo-symmetric. By Proposition 3 (v), we

know that S(M) = 〈4, k, k + 2〉 for some odd k ≥ 5. By Remark 2 (iii), we know

that either k = 4m1 + 5 or k = 4m3 + 7.

In the case k = 4m1+5, we have 4m1+7 = 4m3+7 and hence m1 = m3. Further,

since e(S(M)) = 3, we have that either 4m2 + 6 = 2k or 4m2 + 6 = 2(k + 2)). In

the latter case we see that

4m2 + 6 = 2(4m1 + 7) = 8m1 + 14

and it follows that m2 = 2m1 + 2, which contradicts Proposition 6 (iii). Thus, we

know

4m2 + 6 = 2k = 8m1 + 10.

It follows that m2 = 2m1 + 1 = 2m3 + 1. The case k = 4m3 + 7 leads to the

conclusion m2 = 2m1 = 2m3 + 2 by a similar argument.

For the converse, first consider the case m2 = 2m1 = 2m3 + 2. In this case we

have

4m2 + 6 = 8m3 + 14 = 2(4m3 + 7) and 4m1 + 5 = 4m3 + 9

and hence msg(S(M)) = {4, 4m3 + 7, 4m3 + 9} by Remark 2 (iii). By Proposition 3

(vi), we conclude S(M) is pseudo-symmetric. The case m2 = 2m1+1 = 2m3+1 also

leads to the conclusion that S(M) is pseudo-symmetric by a similar argument.

The results of this section provide some guidance for playing Sylver coinage for

positions in SC(4). Specifically, they yield some choices that players should avoid.
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Indeed, let M = [m1,m2,m3] ∈ SC(4) and let x ∈ L(M) be the next number

chosen. As in the discussion leading up to Proposition 5, we first consider the case

x = 4(m1 − k) + 1 ∈M1. Further, assume that k > max{m1 − m2+1
2 ,m1 − m3+1

3 }.
Since k > m1 − m2+1

2 , we conclude that m2 > 2m1 − 2k − 1. Multiplying by 4 and

adding 2, we have

4m2 + 2 > 4(2m1 − 2k − 1) + 2. (1)

By Proposition 5 (i)(b), we conclude that m2 = 2m1 − 2k − 1.

Next, from Equation (1) we have x + 4m2 + 2 > x + 4(2m1 − 2k − 1) + 2 and

hence

4(m1 + m2 − k) + 3 > 4(3m1 − 3k − 1) + 3.

Further, the assumption k > m1 − m3+1
3 tells us m3 > 3m1 − 3k − 1. Multiplying

by 4 and adding 3 yields

4m3 + 3 > 4(3m1 − 3k − 1) + 3.

By Proposition 5 (i)(c), we conclude that m3 = 3m1 − 3k − 1. Now,

m3 = m1 + m2 + 1

and we conclude that S(M) is symmetric by Proposition 7 and hence M is an

N -position by Proposition 2 and Proposition 4.

This discussion shows that choosing x = 4(m1−k)+1 ∈M1 with k > max{m1−
m2+1

2 ,m1 − m3+1
3 } results in an N -position for the next player. Thus, such a play

should be avoided. Similar results can be derived from other parts of Proposition 7

and from Proposition 8. We summarize these results in the following proposition.

Proposition 9. Let M = [m1,m2,m3] ∈ SC(4) and let x ∈ L(M) be the next

number chosen. Let M = M ∪ {x}. All of the following choices will result in S(M)

being symmetric or pseudo-symmetric and hence M being an N -position:

(i) x = 4(m1 − k) + 1 assuming k > max{m1 − m2+1
2 ,m1 − m3+1

3 };

(ii) x = 4(m3 − k) + 3 assuming k > max{m3 − m2

2 ,m3 − m1−1
3 };

(iii) x = 4m1 + 3 assuming m2 = 2m1;

(iv) x = 4m3 + 9 assuming m2 = 2m3 + 2;

(v) x = 4m1 + 7 assuming m2 = 2m1 + 1;

(vi) x = 4m3 + 5 assuming m2 = 2m3 + 1.

Example 9. Let M = [5, 11, 8] ∈ SC(4) Thus,

M1 = {5, 9, 13, 17, 21}
M2 = {6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46}
M3 = {7, 11, 15, 19, 23, 27, 31, 35}.
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Let x be the next number chosen and let M = M ∪ {x}.

(i) Referring to Proposition 9, we compute max{m1 − m2+1
2 ,m1 − m3+1

3 } = 2.

Thus, x ∈ {5, 9} will result in S(M) being symmetric.

(ii) Similarly, we compute max{m3 − m2

2 ,m3 − m1−1
3 } = 20

3 . Thus, x = 7 will

result in S(M) being symmetric.

(iii) Since m2 = 2m1 + 1, we know x = 4m1 + 7 = 27 will result in S(M) being

pseudo-symmetric.

We conclude that the next player should avoid playing x ∈ {5, 7, 9, 27} as any of

these choices will result in an N -position for their opponent.

We finish this section by offering a thought about one of Richard Guy’s Twenty

questions concerning Conway’s Sylver coinage, [5]. Guy defines a 4-pair to be an

ordered pair (a, b) such that ab is odd and M = {4, a, 2a, b} is a P-position. The

fourteenth question in [5] asks

Does b
a tend to a limit as a→∞ while (a, b) remains a 4-pair?

Using the notation M = [m1,m2,m3] and Remark 2 (iii), we know that if M =

{4, a, 2a, b} corresponds to a 4-pair, then either

(i) 4m2 + 6 = 2(4m1 + 5) which yields m2 = 2m1 + 1, or

(ii) 4m2 + 6 = 2(4m3 + 7) which yields m2 = 2m3 + 2.

Further, since M is a P-position we know S(M) is not symmetric or pseudo-

symmetric, so Propositions 7 and 8 yield

(iii) m2 < 2m3 + 1 (if m2 is odd);

(iv) m2 < 2m1 (if m2 is even);

(v) m1 < m2 + m3 + 2;

(vi) m3 < m1 + m2 + 1.

In [5], we see (5, 11), (7, 13), (9, 19), (15, 33), (17, 43), (21, 51), and (23, 57) are all

examples of 4-pairs and all 4-pairs up to a ≤ 707 are known. Translating the 4-pairs

in this list to the notation in this investigation we have the following:

m2 odd
(5, 11) → [0, 1, 1]

(9, 19) → [1, 3, 3]

(17, 43) → [3, 7, 9]

(21, 51) → [4, 9, 11]

m2 even
(7, 13) → [2, 2, 0]

(15, 33) → [7, 6, 2]

(23, 57) → [13, 10, 4]
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Perhaps it is possible to express m3 as a function of m1 when m2 is odd, and

to express m1 as a function of m3 when m2 is even. If so, then 4-pairs can be

completely characterized which would significantly contribute to resolving the four-

teenth question of Sylver coinage.

4. Positions in SC(4) For Which 6 Or 10 Or 14 Has Been Chosen

In this section we examine positions in SC(4) with m2 = 0 (that is, 6 has been cho-

sen) and with m2 = 1 (that is, 10 has been chosen). We will completely determine

which positions are N and which are P. At the end of the section, we offer some

discussion of positions with m3 = 3 (that is, 14 has been chosen) and m2 ≥ 4.

Proposition 10. Let M = [m1, 0,m3] ∈ SC(4). If m1 = m3, then M is a P-

position.

Proof. Consider the position [m, 0,m] for some m ≥ 0. We proceed by induction.

For the base case, we note that M = [0, 0, 0] is a P-position by Remark 1 (iii) since

L(M) = {1, 2, 3}.
For the inductive step, assume [n, 0, n] is a P-position for all 0 ≤ n ≤ m− 1 and

consider M = [m, 0,m]. Then,

M1 = {5, 9, . . . , 4m + 1}

and

M3 = {7, 11, . . . , 4m + 3}.

Assume that the next player is Player 1 and they choose x = 4(m − k) + 1 ∈ M1

for some 0 ≤ k ≤ m − 1 resulting in position M = [m − k − 1, 0,m3] where

m3 = min{m, 2m−k, 3m−3k−1} by Proposition 5 (i). In any of these three cases

we note that m3 ≥ m− k, so Player 2 can choose y = 4(m− k) + 3, resulting in the

position [m− k− 1, 0,m− k− 1] which is a P-position by the induction hypothesis.

Similarly, if Player 1 chooses x = 4(m− k) + 3 ∈M3, then Player 2 can respond by

choosing y = 4(m− k) + 1 resulting in the position [m− k − 1, 0,m− k − 1].

We conclude that for any number chosen by Player 1 in the position M =

[m, 0,m], Player 2 can respond with a choice that returns a P-position back to

Player 1. Thus, M = [m, 0,m] is a P-position for all m ≥ 0.

The proof of Proposition 10 reveals the N -positions for m2 = 0 as well.

Corollary 1. The position [m1, 0,m3] for m1 6= m3 is an N -position.

The following also results from Proposition 10.
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Corollary 2. If M = [m1,m2,m3] ∈ SC(4) and m1 = m3, then M is an N -

position.

Proof. Assume that m1 = m3 = m and assume let x = 6 = 4(m2 − (m2 − 1)) + 2

is the next number chosen. By Proposition 5 (2), we have

m1 = min{m,m2 + m− (m2 − 1) + 1} = min{m,m + 2} = m.

Also,

m3 = min{m,m + m2 − (m2 − 1)} = min{m,m + 1} = m.

Thus, choosing x = 6 results in the position M = [m, 0,m], which is a P-position

by Proposition 10.

Next, we examine positions with m2 = 1.

Proposition 11. Let M = [m1, 1,m3] ∈ SC(4). If max{m1,m3} is odd and

|m1 −m3| = 1, then M is a P-position.

Proof. Let M = [m1, 1,m3] ∈ SC(4). Assume max{m1,m3} is odd and |m1−m3| =
1. Thus M = [2n, 1, 2n + 1] or M = [2n + 1, 1, 2n] for some n ≥ 0. We proceed by

induction on n. For the base case, it is quick to confirm that the positions [0, 1, 1]

and [1, 1, 0] are both P-positions.

For the inductive step, assume that [2n, 1, 2n + 1] and [2n + 1, 1, 2n] are P-

positions for 0 ≤ n ≤ m − 1. First consider the position M = [2m, 1, 2m + 1]. In

this case we have

M1 = {5, 9, . . . , 4(2m) + 1}

and

M3 = {7, 11, . . . , 4(2m + 1) + 3}.

Assume that the next player is Player 1 and they choose x = 4(2m− k) + 1 ∈ M1

for some 0 ≤ k ≤ 2m − 1. By Proposition 5 (i), we have m1 = 2m − k − 1 and

m3 = min{2m+ 1, 2m+ 1−k, 3(2m)− 3k− 1}. It is quick to check that in all three

of these cases we have m3 ≥ m1 and hence m3 ≥ 2m− k.

Now, if 2m− k − 1 is odd, then k ≤ 2m− 2 so Player 2 can choose y = 4(2m−
k− 1) + 3, resulting in the position [2m− k− 1, 1, 2m− k− 2] which is a P-position

by the induction hypothesis. On the other hand, if 2m− k− 1 is even, then Player

2 can choose y = 4(2m− k + 1) + 3, resulting in the position [2m− k− 1, 1, 2m− k]

which is also a P-position by the induction hypothesis. We conclude that if Player

1 chooses an element of M1, then Player 2 can respond with a choice that returns

a P-position back to Player 1.
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A similar argument will show that if Player 1 chooses an element of M3, then

Player 2 can again respond with a choice that returns a P-position back to Player

2. We conclude that M = [2m, 1, 2m + 1] is a P-position.

Using a similar approach, we can show that M = [2m + 1, 1, 2m] is also a P-

position. This completes the induction.

Corollary 3. If M = [m1, 1,m3] and |m1 −m3| > 1, then M is an N -position.

Proof. Let M = [m1, 1,m3] and assume m1 −m3 ≥ 2. Assume the next player is

Player 1. If m3 is odd, then Player 1 can choose x = 4m3 + 1 ∈M1, resulting in the

position [m3−1, 1,m3] which is a P-position by Proposition 11. On the other hand,

if m3 is even, then Player 1 can choose x = 4(m3 + 2) + 1 ∈ M1, resulting in the

position [m3 + 1, 1,m3] which is also a P-position by Proposition 11. We conclude

that M is an N -position in the case m1 −m3 ≥ 2.

A similar argument holds in the situation m3 −m1 ≥ 2.

Corollary 4. If M = [2k,m2, 2k + 1] or M = [2k + 1,m2, 2k] for some k ≥ 0 and

for some m2 ≥ 2, then M is an N -position.

Proof. Assume M = [2k,m2, 2k + 1]. Choosing x = 10 = 4(m2 − (m2 − 2)) + 2,

Proposition 5 (ii) yields

m1 = min{2k,m2 + (2k + 1)− (m2 − 2) + 1} = min{2k, 2k + 4} = 2k.

Further,

m3 = min{2k + 1, 2k + m2 − (m2 − 2)} = min{2k + 1, 2k + 2} = 2k + 1.

Thus, M = [2k, 1, 2k + 1] which is a P-position by Proposition 11. A similar

argument holds for the case M = [2k + 1,m2, 2k].

The next logical step is to examine positions M ∈ SC(4) such that m2 = 2.

Indeed, such an investigation reveals that the P-positions in this family are [2k +

1, 2, 2k + 2] and [2k + 2, 2, 2k + 1] for k ≥ 0 with the single exception being [2, 2, 1].

We discover that [2, 2, 1] is actually an N -position, since choosing the number 7

results in the position M = [2, 2, 0] which can be quickly shown to be a P-position.

The above description of P-positions in SC(4) with m2 = 2 can be proved using

induction in a manner similar to Propositions 10 and 11, with the single exception

[2, 2, 1] handled separately. We leave this proof to the reader.

Our examination of positions in SC(4) with m2 ≥ 4 has revealed that describing

the P-positions becomes more complicated and involves an increasing number of

exceptions as m2 increases. Perhaps there is an effective method for characterizing

the P-positions in SC(4) for all values of m2, but so far, such a method has eluded

us.



INTEGERS: 23 (2023) 17

Acknowledgement. The majority of this investigation was completed as part of

the first author’s senior capstone research.

References

[1] V. Barucci, D.E. Dobbs, and M. Fontana, Maximality Properties in Numerical Semigroups
and Applications to One - Dimensional Analytically Irreducible Local Domains, Memoirs of
the Amer. Math. Soc., vol. 598, 1997.

[2] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for Your Mathematical Plays, Academic
Press, London, 1985.

[3] R. Eaton, K. Herzinger, I. Pierce, and J. Thompson, Numerical semigroups and the game of
Sylver coinage, Amer. Math. Monthly 127, no. 8 (2020), 706-715.
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