
#G6 INTEGERS 23 (2023)

INFINITE HEX IS A DRAW

Joel David Hamkins
O’Hara Professor of Logic,

University of Notre Dame, Notre Dame, Indiana
and

Associate Faculty Member, Professor of Logic,
Faculty of Philosophy, University of Oxford, United Kingdom

jdhamkins@nd.edu, http://jdh.hamkins.org

Davide Leonessi
Program in Mathematics, The Graduate Center, The City University of New York

New York, New York
dleonessi@gc.cuny.edu, http://leonessi.org

Received: 1/17/22, Revised: 12/6/22, Accepted: 9/10/23, Published: 11/6/23

Abstract

We introduce the game of infinite Hex, extending the familiar finite game to natural
play on the infinite hexagonal lattice. Whereas the finite game is a win for the first
player, we prove in contrast that infinite Hex is a draw—both players have drawing
strategies. Meanwhile, the transfinite game-value phenomenon, now abundantly
exhibited in infinite chess and infinite draughts, regrettably does not arise in infinite
Hex; only finite game values occur. Indeed, every game-valued position in infinite
Hex is intrinsically local, meaning that winning play depends only on a fixed finite
region of the board. This latter fact is proved under very general hypotheses,
establishing the conclusion for all simple stone-placing games.

1. Introduction

Fig 1. The authors
play a game of Hex

The game of Hex, popular amongst mathematicians, is played

between two players, Red and Blue, who alternately place colored

stones on a finite hexagonal grid, a rhombus, until one of them

wins by connecting their sides of the board with stones of their

color. Blue has won the small game shown in Figure 1, for
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example, played just now by the authors, by connecting the two blue sides. The

game of Hex offers enjoyably subtle strategic play—we highly recommend it—

but it also has a very satisfactory mathematical analysis, involving applications

of topology and graph theory in combinatorial game theory.1 The central facts can

be summarized as follows.

Theorem 1 (Finite Hex Theorem).

1. Every coloring of the finite rhombus Hex board with two colors exhibits a win

for exactly one player.

2. The game therefore admits a winning strategy for one of the players, and

indeed it is the first player who has a winning strategy.

For background, let us briefly sketch proofs for these well-known results. The

main claim of statement (1) holds not only for the standard n× n rhombus-shaped

Fig 2. Hex and K5

Hex board, but more generally for any connected

assemblage of hexagons whose boundary is divided into

four contiguous segments in the pattern red, blue, red,

blue, with each boundary segment overlapping on exactly

one hexagonal tile with the next, just as with the four

corners of the rhombus board. Any path connecting

the two red segments will topologically separate the two

blue segments from one another in light of the Jordan

curve theorem, and so at most one player can win a

given play of the game, establishing the uniqueness claim.

Schachner [22] argues alternatively that if both players

had a winning path in a game of Hex, then we could exhibit the complete graph K5

on five vertices as a planar graph, as illustrated in Figure 2, but this is impossible.

Meanwhile, for the existence claim of Theorem 1 statement (1), the claim

that every coloring of the board exhibits a win for one of the players, Gale [8]

argues by embarking on a direct path from the south following edges of the

hexagons and remaining always on the boundary between a red hexagon on

the left and a blue hexagon at the right, as in Figure 3 (we may imagine

augmenting the main board with additional colored stones of the hexagons just

outside each of the four borders, using the color of that border). This path

is uniquely determined, since as it enters any vertex it has a red hexagon on

the left and blue at the right, and so it must turn left or right depending

1The game of Hex was invented in 1942 by polymath Piet Hein [16] under the name Polygon,
becoming a popular board game in Denmark. The game was rediscovered by Nobel laureate John
Nash while a student at Princeton in 1948; he described it as a “matter of connecting topology
and game theory” [2, §3]. Thus from the Princeton mathematics department common room, the
game of Nash rose to popularity in the mathematical community, eventually published as the
mainstream board game Hex in 1952.
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on the color of the new hexagon encountered at that junction. The resulting

path must ultimately terminate at the nodes labeled e, w, or n, and in each

Fig 3. Gale’s tour

case one gets a winning path for one of the players by

following the accompanying adjacent tiles on one side of

the path or the other.2 Gale [8] shows the theorem to be

equivalent in a sense to the Brouwer Fixed Point Theorem,

which in turn is shown equivalent to the Jordan Curve

Theorem by [19] and [1].

The initial claim of Theorem 1 statement (2) now

follows as an immediate consequence of (1) by the

fundamental theorem of finite games, which asserts that

every finite game of perfect information admits a winning

strategy for exactly one of the players (proved by Ernst

Zermelo in 1913; see [17]; see also [12, Section 7.7] for

an elementary account). Namely, statement (1) shows

that every outcome of the game leads to a win for exactly one of the players in

a uniformly bounded finite number of moves, and so this is a finite game covered

by the fundamental theorem. Consequently, one of the players will have a winning

strategy.

Finally, a strategy-stealing argument due to Nash [20] shows that the second

player cannot have a winning strategy, and so it must be the first player who does

so. Namely, if there would have been any advantage in doing so, player 1 can pretend

to be player 2 by inventing an imaginary first move for player 2, responding just as

a given strategy for player 2 would respond, but swapping the colors and reflecting

the board on the center vertical, a transformation that exactly swaps the winning

configurations of the two players. (If the actual player 2 should ever actually play

the initial imaginary move, then player 1 should simply invent another imaginary

move for player 2 at that stage, and play accordingly.) In this way, player 1 can

play as though he or she is player 2, and this would be a winning strategy for

player 1, if the strategy had been winning for player 2, which is a contradiction,

since not both players can have winning strategies. Therefore, player 2 cannot

actually have a winning strategy, and so it must be the first player who has the

winning strategy. This argument generalizes to any shape of board, provided it is

symmetric in a way that supports the strategy-stealing argument. The argument

relies on the monotonicity property of Hex—having extra stones on the board is

never disadvantageous for a player—since in the argument we described a play by

which player 1 wins despite having given an imaginary extra stone to player 2, which

can only be advantageous to player 2.

This completes our sketch of the proof of Theorem 1. Notice that because Blue

2For both uniqueness and existence, these arguments use the fact that the red and blue
boundary segments overlap on exactly one hex tile with the adjacent segment. Namely, if the
boundary segments did not have a tile in common, then one can exhibit drawn positions, where
each player gets half the board, but there is no winner; and if they had overlapped by two cells,
then there are positions in which both players have won.
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won the game in Figure 1, it was an upset win—we leave it to the reader to find

the flaw in the strategy of Red, who chalks the loss up to overconfidence in light of

Theorem 1 when playing first on such a small board.

2. Infinite Hex

We shall place our main focus in this article on the game of infinite Hex, played on

the infinite hexagonal lattice. Starting from an empty board, players Red and Blue

alternately place their colored stones on the board, claiming hexagonal tiles.

Figure 4: A partial play of infinite Hex

Play proceeds for infinitely many moves, after which a winner may be determined.

2.1. The Winning Condition

But what is the winning condition exactly—how shall we determine who has won a

play of infinite Hex? Since there are no boundary edges of the infinite board to be

joined, it may not be clear initially exactly what condition entitles a player to be

Fig 5. A win for Red

declared the winner. What is clear, however, is that

we want to declare that Red wins, if there is a path

of red hexagons stretching somehow from the lower

left “at infinity” to the upper right “at infinity.” The

winning condition is defined similarly for Blue, but

from the lower right to the upper left.

And indeed, this informal idea leads directly

to a perfectly precise winning criterion, what we

shall call the standard winning condition, defined

as follows. Namely, Red wins a play of infinite

Hex if there is a bi-infinite connected chain of red



INTEGERS: 22 (2022) 5

hexagons, a Z-chain of adjacent red hexagons, which on its positive end converges

to (∞,∞) and on its negative end converges to (−∞,−∞). That is, for any choice

of center in the hexagonal plane, if one draws vertical and horizontal axis lines at

that point, then the positive part of the Z-chain eventually enters quadrant I and

stays within it, and the negative part of the Z-chain eventually enters quadrant III

and stays within it. The winning condition is defined similarly for Blue, but using

quadrants II and IV. If there is a Z-chain fulfilling this winning condition, then

there must be one that is non-self-crossing, consisting entirely of distinct adjacent

tiles of that color, since any tile would be revisited at most finitely often and we

can in each case simply omit the intermediate finite steps.

An equivalent formulation of the standard winning condition avoids the need

to speak of a center point. Namely, Red wins a play of infinite Hex, if there is a

connected Z-chain of adjacent red hexagons such that (i) for every vertical line in

the plane, the red chain touches it at most finitely many times, with the positive

part ending strictly on the right side and negative part on the left; and (ii) for

Fig 6. Finite Hex
as infinite Hex

any horizontal line, the Z-chain touches it at most finitely many

times, ultimately passing from below, on the negative end of the

Z-chain, to above, on the positive end. Succinctly, Red wins

if there is a Z-chain of adjacent red hexagons, which crosses

every vertical line ultimately from left to right (that is, except

for at most finitely many recrossings), and every horizontal

line ultimately from below to above. Blue wins similarly in the

other diagonal direction.

Any instance of finite Hex on an n×n rhombus board can be

seen as an instance of infinite Hex simply by filling in the four

quadrants, as indicated in the position of Figure 6. Winning

on the finite board is the same as winning from this position

on the infinite board and conversely.

2.2. Positions with No Winner

Having thus specified the winning condition precisely, let us mention several different

kinds of troublesome positions that perhaps help to motivate it, which also pose

certain challenges for what might be considered promising alternative winning

conditions. These examples also show that the infinite Hex analogue of Theorem 1

statement (1) does not generally hold.

Fig 7. Bullseye

Consider first a position posing an immediate

difficulty for the infinitary analogue of Theorem 1,

namely, a nested family of red and blue hexagons,

as shown in the bullseye position of Figure 7.

For such a game play, since all its monochromatic

connected components are finite, it would seem that

neither Red nor Blue has succeeded in connecting
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their ends of the board at infinity, and so we would not want to say that either

player has won (and this would remain true no matter how the empty white tiles

were completed). And since such a coloring of the plane admits no unbounded

Z-chains of either color, neither player fulfills the standard winning condition.

Fig 8. Spiral paths, no winner

Consider next the double-spiral coloring

shown in Figure 8. Intuitively, for this

pattern neither Red nor Blue seems to have

connected their sides of the board at infinity,

and so we would seem to want not to award

this as a win for either player (and this would

remain true no matter how the white tiles

were completed). Furthermore, in light of

the fundamental symmetry of the position,

we certainly would not want to award this as

a win for one player rather than the other.

This is a case, therefore, for which the standard winning condition seems to get the

right result; neither Red nor Blue here meets the standard winning condition—the

only available infinite paths for Red and Blue spiral unboundedly in every direction,

crossing every horizontal and vertical line infinitely many times.

Fig 9. Stripes

Another difficult case is posed simply by a system

of red/blue horizontal stripes, as in Figure 9, and

a similar situation would arise alternatively with

(somewhat wiggly) vertical stripes. We should not

want to count these as winning for either player, we

argue, since the inherent translational symmetry of

the position would seem to require us also to count

them as winning simultaneously for the other player.

But it seems desirable that a winning condition should lead always to at most one

winner. For this reason, we are inclined to classify these cases as draws, with no

winner, rather than as an outcome with two winners, although there may be a

certain irrelevance in that distinction. Meanwhile, the standard winning condition

does indeed count this game result as a draw.

Fig 10. Bounded paths

Here in Figure 10 is a more serious kind

of case, having to do with the homogeneity

of the hexagonal tiles. Specifically, in this

position we have an infinite red path resembling

a piecewise linear approximation to the graph of

the function y = arctanx, proceeding infinitely

from the left, and then arcing upward and

exiting at right, with horizontal asymptotes

at each end. Similarly, a blue path proceeds
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infinitely from the left, arcing downward and then exiting at right. Notice that

the red path proceeds from quadrant III ultimately into quadrant I for the axes

using the point A as origin; and the blue path similarly moves from quadrant II

to quadrant IV for the axes determined by origin point B. Neither of these paths,

however, fulfills the standard winning condition, because they are both bounded in

the vertical direction, and consequently not winning with respect to all alternative

choices of center point, a requirement of the condition. In our view, neither of

these paths should entitle its player to win, precisely because in each case the

existence of such a curve is compatible with the existence of a similar such curve

for the opponent, and we do not want to allow that both players might win a given

play. While these curves are not themselves winning, nevertheless they do serve

as defensive obstacle configurations preventing the opponent from winning. This

kind of situation therefore motivates the standard winning condition by requiring

each player to make the crossing of every horizontal and vertical line, not just those

associated with a fixed center point.

One could counterpropose, of course, that a winning condition might be defined

with respect to a given center point, fixed once and for all at the beginning of the

game. That is, Red wins a play of the game according to the fixed-origin winning

condition, if there is a non-self-crossing red Z-chain moving from quadrant III to

quadrant I with respect to the axes system determined by the fixed origin point;

and similarly for Blue moving from quadrant IV to quadrant II. The argument of

Theorem 2 will show that for any fixed origin point, it is impossible that both

players win a given play with respect to that point, i.e., the fixed-origin winning

condition does not allow both players to win.

The position of Figure 10 would not necessarily pose a problem for the fixed-origin

winning rule—Red would win if the origin was point A, and Blue would win if the

origin was point B. But precisely because these outcomes differ, the fixed-origin

winning condition violates the inherent homogeneity of tiles on an empty Hex board.

Namely, there is something to the idea that at the start of play on an empty board,

all tiles look alike—the board after all admits translational symmetries moving any

hex to any other hex, while preserving the directions at infinity. It would therefore

seem desirable for a winning condition to respect this homogeneity of the hex tiles;

it should be translation invariant. But the fixed-origin winning condition does not

respect homogeneity and is not translation invariant, as Figure 10 shows, since Red

wins with origin A and Blue wins with origin B.

A somewhat weaker winning criterion would be the some-origin winning

condition, by which a player wins a play of the game if they win according to

the fixed-origin condition for some choice of origin. This winning condition suffers

from the fact that both players can win, as just shown in Figure 10.

Here in Figure 11 is a more confounding case, since it shows a winding red path

that in some sense does seem to move from lower left at infinity to upper right
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at infinity. This path, however, does not fulfill the standard winning condition,

because it visits every horizontal line infinitely often. Nevertheless, in our view

Fig 11. A losing red path

the standard winning condition has got the right

result here, in light of the fact that the path keeps

revisiting the main horizontal line as it proceeds,

never quite definitively departing from the purple

center lines, or indeed from any horizontal line. It

therefore does not fully succeed in departing “to

infinity” on either end of its journey, but rather

keeps revisiting the center, and we are content to

count it as not winning. We do admit, however,

that alternative rules might want to allow such

a path as this as winning; but ultimately we prefer the natural simplicity of the

standard winning condition we have stated.

Fig 12. Infinite double comb

Another example would be the double

comb of Figure 12, consisting of a bi-infinite

horizontal red line, with infinitely many

infinite vertical red tines coming off of it.

For any center point, Red will win with

this shape on any rhombus large enough to

encompass enough of the connecting center

line. But the position does not fulfill the

standard winning condition, since if a Z-

chain of red stones touches the center red

line only finitely often, then it must depart

on each end onto specific vertical tines, which would make it horizontally bounded.

2.3. At Most One Winner in Infinite Hex

The examples we have provided in Section 2.2 show senses in which the existence

claim of Theorem 1 statement (1)—the claim that there is always at least one

winner—does not hold for infinite Hex. Nevertheless, we are able to prove the

infinitary analogue of the uniqueness part of the claim, that there is always at most

one winner.

Theorem 2. In every play of infinite Hex, at most one player wins. Indeed, for

any coloring of the infinite hexagonal plane, at most one player fulfills the standard

winning condition.

Proof. Suppose toward contradiction that there is a coloring of the infinite Hex

playing board in which both players Red and Blue have won. Fix winning

Z-chains for each player, and fix any desired center point with corresponding

vertical and horizontal axes. Each player’s winning Z-chain has touched those axes
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only finitely many times. Consider a large rhombus centered at the fixed origin

point, encompassing within its interior all of those finitely many touching points,

including the relevant finite sub-chains connecting them. Since the red Z-chain

that crosses the horizontal axis ultimately from below to above crosses the vertical

axis ultimately from left to right, it follows that Red has connected the opposite

red sides of this rhombus—that is, Red has won this instance of finite Hex; and

similarly with Blue. So the coloring on this rhombus-shaped subboard shows both

players having won on the finite rhombus, contradicting Theorem 1, statement (1).

So it was not possible after all for them both to have won the infinite game.

2.4. Winning on Finite Boards

What is the precise relationship between a play of infinite Hex winning on the

infinite board versus winning on arbitrarily large or sufficiently large finite Hex

boards? The proof of Theorem 2 reveals a connection.

Corollary 3. If a player has won a game of infinite Hex, then for every choice

of center, the player has also won finite Hex with this play for all sufficiently large

rhombus boards centered at that point.

Proof. Since the choice of center in the proof of Theorem 2 was arbitrary, the proof

of that theorem shows exactly this.

In light of this, let us briefly consider an alternative weaker winning condition.

Namely, we define that a play of the game is a finite-boards win for a player, if for any

choice of center, the player has won on all sufficiently large rhombus boards having

that center. Corollary 3 shows that every win in infinite Hex is also a finite-boards

win, but Theorem 4 will show that the converse is not true, so the finite-boards win

is a strictly weaker winning condition.

It follows easily from Corollary 3 that if a player has achieved a finite-boards

win in a play of infinite Hex, then this prevents the opponent from having won the

infinite play, because if the opponent had won (according to the standard winning

condition), then by Corollary 3 the opponent will have also achieved a finite-boards

win, and so the given player could not also have achieved this.

The finite-boards winning condition offers a few robust features, which might

make it attractive as an alternative criterion. First, the arguments we have given

show that for any given coloring of the infinite Hex board with red and blue, not

both players can achieve a finite-boards win—for any play there is at most one

finite-boards winner. Moreover, the finite-boards winning condition is translation

invariant, and consequently respects the homogeneity of the tiles on an empty board.

Nevertheless we shall have good reason to prefer our standard winning condition,

in light of the discussion following Theorem 4.

Notice that Figure 11 is not a finite-boards win for Red. To see this, consider

a center point above the main red path of Figure 11, and observe that for very
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large rhombuses centered on that point, Red will fail to win on every other size of

rhombus, as they grow larger, since when the upper right edge of the rhombus lines

up just on the empty line of cells between the red zig-zags, Red will not complete

the path. So it will not be true for that position that Red has won on all sufficiently

large rhombuses with that center.

Is the converse of Corollary 3 true? In other words, are the two winning

conditions identical? The answer is negative.

Theorem 4. There is a play of infinite Hex that is winning with respect to the finite-

boards winning condition, but not with respect to the standard winning condition.

Fig 13. Zen garden position

Proof. Consider the play of infinite Hex

resulting in alternating stripes of red and

blue in the Zen garden manner of Figure 13.

For any choice of center, we can make the

rhombus big enough so as to encompass the

jagged part of the stripes, and in this way,

we claim, Red will win, because the red line

entering the rhombus just below its center

line at left will traverse the rhombus, climb the jagged step, and exit just above the

center line of the rhombus at right. So this will be a winning path for that rhombus.

For any choice of center, all sufficiently large rhombuses centered at that point will

show a win for Red in just this way. But meanwhile, the position overall is not a

win for Red in infinite Hex, because no one Z-chain is enough to fulfill the standard

winning condition, as each of them is bounded vertically.

The position shown in Figure 12 also serves to prove this theorem.

Our view of the play shown in Figure 13 is that although Red wins on all

sufficiently large boards at any given center, the particular winning paths vary

with the choice of center. No one of the red paths should be considered sufficient to

justify a win in the infinite game, because each one of them, taken independently,

is compatible as in Figure 11 with the existence of a similar but contrary such blue

path; and we do not want to allow two winners for the same play. Ultimately, in

our view, each of the red paths of Figure 13 serves a defensive role, sufficient to

prevent a Blue win, but insufficient on its own for a Red win.

2.5. Transfinite Play

In ordinary finite Hex, players naturally proceed with the game if necessary until

every hex tile is occupied by a stone. Meanwhile, with infinite Hex, there are

infinite plays of the game, plays for which infinitely many stones have been placed,

yet huge regions of the board remain nevertheless untouched—the game may remain

completely unsettled. For example, perhaps Red plays a half-chain reaching from

the origin out to infinity in quadrant I, while Blue plays a similar half-chain in

quadrant II, leaving the rest of the board completely empty even after infinitely
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many stones are placed. In such a case, it would seem natural simply to allow the

players to continue playing—let the game continue into transfinite ordinal time.

That is, if the moves at all finite stages have been completed and there remain

empty hex tiles, then the players may continue placing stones at infinite ordinal

stages ω, ω + 1, ω + 2, and so on. At some countable ordinal stage of play, the

board will become completely filled and the game will be over.

In standard play, the game of infinite Hex is concluded as a win, loss, or draw

after ω many moves, whether or not the board is filled with stones. With transfinite

play, in contrast, game play proceeds if necessary into transfinite ordinal time. In

this latter case, one must specify as a matter for the rules whose turn it is at the

limit ordinal stages of play—who gets to play at stage ω? At ω · 2? By default

we might specify that Red always plays first and also first at every limit stage; but

other rules are also sensible. Perhaps one might want to allow Blue to play at limit

stages in compensation for Red’s advantage of the initial first move. Or perhaps

one might say that Red plays first and at all compound limits, while Blue plays at

simple limits. But in fact our title result (Theorem 6) shows that when play begins

on an empty board, then both players have drawing strategies, regardless of who

plays first and who plays at limit stages.

2.6. Complexity of the Standard Winning Condition

What is the complexity of the standard winning condition in infinite Hex? It seems

natural to try to place the game into the complexity hierarchies of descriptive set

theory. We had been unsure of the answer exactly and inquired about this on

MathOverflow.

Question 5 ([13]). What is the descriptive-set-theoretic complexity of the game of

infinite Hex?

Specifically, what is the complexity of the set of partial colorings of the infinite

Hex board fulfilling the standard winning condition for Red? There is a clear upper

bound of analytic complexity Σ1
1, of course, because a given coloring exhibits a Red

win if and only if there is a connected Z-chain of red stones fulfilling the convergence

requirements of the standard winning condition. This is an existential quantifier to

assert the existence of the red Z-chain, and to assert that a given chain achieves the

winning convergence property is arithmetic, making the complexity of the winning

condition Σ1
1 altogether.

One might have hoped to prove that this is optimal by showing that the winning

condition is complete for Σ1
1. Since the ill-foundedness of countable trees is known

to be Σ1
1 complete, it would suffice to embed trees into the Hex positions in such a

way that they are winning if and only if they are ill-founded. But unfortunately, this

idea doesn’t pan out—there just isn’t enough room in the plane to embed the trees

successfully. The main difficulty is that one must embed trees that are infinitely
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branching, and the infinitely branching nodes will be modeled with a long Hex line

having infinitely many offshoots; but one must ensure that the branching line itself

is not a winning chain, and so it must in effect return infinitely often to a given

horizontal or vertical, and this means that there won’t be room to handle the higher

branching nodes of the various offshoots—it just doesn’t fit.

Is infinite Hex a Borel game? We conjecture that it is. To show this, it would

suffice to provide a real existential reason also for failures of winning. For example,

perhaps Red fails to win if and only if there is a certain kind of obstacle in the blue

and uncolored stones. This would show that the failure to win is also Σ1
1, making

the winning condition ∆1
1 and hence Borel.

In our view, the complexity of the game is a vital consideration—especially

the distinction between Σ1
1 and Borel—since this has fundamental strategic

consequences in the game-theoretic analysis. If the winning condition is Borel,

after all, then the game proceeding from a given position will be determined (either

one of the players will have a winning strategy or both have drawing strategies)

as a consequence of Borel determinacy, which is provable in Zermelo-Fraenkel set

theory ZFC. But if the winning condition is truly Σ1
1, in contrast, then it wouldn’t

be as clear that all such games are determined, since that level of determinacy is

not provable in ZFC (although it is provable from large cardinals). Can we prove

that all positions in infinite Hex are determined, having either a winning strategy

for one of the players or drawing strategies for both players?

Is infinite Hex an arithmetic game? We had speculated that it may be, and

for this reason we are now pleased to see that Ilkka Törmä [23] has just recently

announced a proof on MathOverflow of exacty that: the standard winning condition

of infinite Hex is arithmetic, with complexity at most Σ0
7. This seems to settle

question 5 and the other questions we have asked in this section.

3. Infinite Hex Is a Draw

We now come to the title result, namely, infinite Hex is a draw.

Theorem 6. Infinite Hex is a draw—neither player has a winning strategy; both

players have drawing strategies.

Proof. The strategy-stealing argument of Nash in Theorem 1 works equally well in

infinite Hex, and so we know that the second player cannot have a winning strategy

in infinite Hex. To prove the theorem, therefore, it will suffice for us to show that

the second player has a drawing strategy. Let us assume that Red plays first and

Blue second. We shall describe a certain mirror-symmetric copying strategy for

Blue, which we shall argue is a draw-or-better strategy for Blue.
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Fig 14. Mirrored pairing of tiles

At the outset of the game, Blue

should fix an arbitrary horizontal line

on the board, as shown in green in

Figure 14, and consider the induced

pairing of hexagonal tiles above and

below that line defined by reflection-

and-half-tile-shift with respect to it,

with the two tiles marked a0 matching,

and similarly with a1, b0, and so on.

That is, every hexagon below the line

is paired with its reflected copy above,

shifted half a tile to the right, in the

pattern indicated in the figure.

The strategy we have in mind for Blue is simply to play always in the counterpart

tile of any move by Red according to this pairing of the tiles. If Red plays in a tile

below the center green horizontal, then Blue will play in the corresponding partner

Fig 15. Red crosses Blue’s horizontal

tile above it, and vice versa. This

pairing of tiles is almost but not quite

a geometric reflection—the half shift

means that the correspondence does

not always preserve adjacency of tiles,

and indeed the mirroring process can

cause tears in connected paths—notice

that red tiles a2 and a3 in Figure 15 are

adjacent, but they are copied by Blue

to blue tiles a2 and a3, which are not

adjacent. So it isn’t quite true that

connected red chains are necessarily

copied to connected blue chains by this

mirroring strategy, and that is not how our argument proceeds. Rather, we shall

make a subtler topological observation, relying on a particular consequence of the

counterpart arrangement for the manner in which Red might traverse the center line.

Namely, when Blue follows the mirroring strategy, the only way for Red to place

two contiguous stones traversing the green center line is in a downward-to-the-right

sloping direction, as shown in Figure 15. This simple geometric fact will have an

important topological consequence later in the main argument.

To prove the theorem, we claim that the mirroring strategy is a draw-or-better

strategy for Blue. To see this, suppose we have a play of the game in which

Red has won, whilst Blue has followed the symmetric mirroring strategy we have

described. Descending from infinity at the above right, the winning red Z-chain

must eventually traverse the green boundary at some point. We may assume without

loss of generality that this red Z-chain is non-self-crossing. Consider the place where
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the positive branch of the winning red Z-chain crosses the green boundary for the

first time, coming from infinity at the above right, say at the point indicated in

Figure 16.

Fig 16. Red traversing the boundary

The key observation is that because

Blue has been following the mirroring

strategy, the entire play above the

green center line is reflected (and

slightly shifted) below, with the colors

swapped. In particular, the red path

arriving from infinity at upper right

will be reflected to a blue path arriving

from infinity at lower right. Because of

the particular nature and geometry of

the crossing, it follows, we claim, that

the rest of the red Z-chain after the

traverse of the green boundary will be

trapped in the right half plane—it will

be trapped in the region to the right of

the blue path in the lower half plane and the region to the right of the red path in the

upper half plane (since we assumed that the chain is not self-crossing). Therefore,

the entire red Z-chain will be bounded to a right half plane, and so it cannot be part

of a winning red Z-chain, which would be required to depart to infinity at lower

left.

In summary, no coloring of tiles on the board that respects the Blue mirroring

strategy can exhibit a winning red path, and so this mirroring strategy will ensure

a draw-or-better for Blue, as we claimed.

The argument works whether one uses ordinary infinite play of length ω or allows

transfinite play beyond ω, regardless of who has the right to play first at limits—if

Red plays first at a limit, then Blue can play the mirroring move; if Blue plays

first at a limit, then Blue can invent an imaginary Red move to copy. In this way,

the mirroring strategy for Blue can be played just as well for transfinite play, and

the proof of Theorem 6 shows that there can be no position compatible with that

strategy that has a winning red Z-chain. The proof also works for the fixed-origin

weak winning condition, since Blue could simply pick the green center line to contain

that origin point. Indeed, the mirroring strategy for Blue results in a play for which

Red does not win with respect to any origin at all, since if the upper right red path

is in quadrant I with respect to that origin, then the lower blue path will force the

other side of the red chain into quadrant IV.

Let us also observe that the Blue mirroring strategy does not necessarily force a

draw, but rather a draw-or-better for Blue. In the game play shown in Figure 17, for

example, Blue has followed the mirroring strategy, and the result is a win for Blue,
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Fig 17. A Blue mirroring win

not a draw. It would admittedly be fairly

silly for Red to play this way, however, once

the crossing point stones are placed, and we

mention this example merely to show that

the mirroring strategy by itself does not force

a draw, but draw-or-better. Meanwhile, the

fact that Blue has a drawing strategy shows

by the strategy-stealing argument that Red

also has a drawing strategy, and so with

optimal play for both players, infinite Hex

is a draw.

As a historical remark, we can see that the mirroring strategy generalizes the

winning strategy for finite Hex on asymmetric boards—see [9, §8]—Theorem 6 can

also be proved via a contradiction which reduces a Red winning Z-chain to a winning

finite chain for the disadvantaged player in asymmetric Hex.

4. The Finite Advantage Conjecture

We should like next to consider how robust is the drawing-strategy phenomenon

that we have identified in Theorem 6. If the first player gets the advantage of an

extra stone on the first move, are the scales tipped in their favor? Or is the game

still a draw? What if the first player is given the advantage of finitely many extra

stones? Is infinite Hex still a draw, if one should start from an arbitrary finite

position? We conjecture indeed that there is no such finite advantage.

Conjecture 7 (Finite advantage conjecture). Infinite Hex remains a draw when

starting from a board position with finitely many stones already placed.

4.1. Winning on Trapezoids

Fig 18. Trapezoid board

The conjecture is open in the general case,

but we shall prove that it holds under

the assumption that Red can win certain

configurations of finite Hex, although we are

unsure whether this additional assumption

is true. We shall also prove the conjecture

holds for a certain strengthening of the

winning condition.

To begin, consider a large isosceles

trapezoid Hex board, as shown in Figure 18.

Red aims to connect the two parallel sides of the trapezoid and Blue to connect

the two orthogonal sides. The trapezoid is obtained by truncating the right-angle

corner of an isosceles right triangle, and is determined by two lengths, the length

of the shorter red side and the length of the blue segments.



INTEGERS: 22 (2022) 16

Theorem 8. If Blue has a first-player winning strategy for arbitrarily large

trapezoids as above, then there is no finite advantage in infinite Hex. That is,

on an infinite Hex board with finitely many stones already placed, both players have

drawing strategies.

Proof. By “arbitrarily large,” what we mean is that Blue, playing first, can win

instances of finite Hex played on such trapezoids with the truncated length as

large as desired, and the orthogonal sides sufficiently long that Blue has a winning

strategy on that finite board. In other words, we assume that for any desired

length of the shorter red side of the trapezoid, we can find such a trapezoid that

is also sufficiently thick, with the other red side perhaps very far away, such that

Blue moving first has a winning strategy to join the blue sides on that trapezoid.

(Clearly Red will win if the trapezoid is too thin, with the red sides too close—we

care only about sufficiently thick trapezoids that Blue might win.)

Fig 19. Blue aims to block Red by
winning on trapezoids

It will suffice by symmetry to prove that

Blue has a drawing strategy in infinite Hex

proceeding from a position in which finitely

many stones have already been placed.

Recall that, in order to win a play of

the game, Red must build a Z-chain of

adjacent red stones, such that for any choice

of center, the positive part of the Z-chain

eventually enters quadrant I as determined

by every such origin point.

Fix a center, and we shall mount a

blocking strategy for Blue by dividing the

upper right quadrant above the finite existing play into infinitely many disjoint

winning-for-Blue trapezoids, as indicated in Figure 19. Given such an arrangement

of trapezoids, the main line of play for Blue is to select the first available empty

trapezoid as the currently “active” one and make an initial winning move on it. Blue

will then continue to play on this active trapezoid (even if Red plays elsewhere),

using the winning strategy so as to ensure a Blue connection of the two sides. When

this active trapezoid is won, Blue deactivates it and proceeds to activate another,

larger empty trapezoid and play so as to win on that one, and so on in this same

manner. At any stage of play, Blue is building a winning connection in the currently

active trapezoid, ignoring Red moves outside of that trapezoid, and then afterward

proceeding to activate another larger trapezoid. Ultimately, in this way Blue will

build infinitely many obstacle paths, connecting the two sides of infinitely many

of the trapezoids. These blue obstacles will prevent Red from winning the infinite

game, because any red Z-chain going to infinity would have to zig-zag in and out of

quadrant I in order to get around them. Thus, this is a drawing strategy for Blue

in the infinite Hex game.
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The argument succeeds also with respect to transfinite play, since Blue will have

built infinitely many obstacle paths already by stage ω, and so further Red moves

even in transfinite time would be of no help as the blue obstacles must still be

circumvented. Moreover, the theorem also holds with respect to the fixed-origin

winning condition, since Blue can set up the trapezoids for any desired center point.

A slight variation of the argument works with respect to the some-origin winning

condition, since Blue can make the trapezoids increasingly wide, as hinted at in

Figure 19, and in this manner, they would eventually form obstacles for any given

center point, not just the center originally chosen.

Corollary 9. If Blue has a first-player winning strategy for arbitrarily large

trapezoids, then for any position in infinite Hex leaving either some upper right

quadrant or lower left quadrant empty, Blue will have a draw-or-better strategy.

Proof. This is what the argument of Theorem 8 shows, since all that was needed was

some point whose upper right quadrant was free, in order to place the trapezoids. A

similar argument would work in the case that a lower left quadrant was available.

Fig 20. Can Blue connect the sides?

It is natural to inquire about an

infinitary version of the trapezoid

assumption, namely, whether Blue can

connect the two sides on every truncated

quadrant, as shown in Figure 20, no matter

how large the red truncation in the lower

left corner. Blue aims to connect the two

sides, while Red aims to prevent this, by

connecting the corner truncation boundary

to infinity. This truncated quadrant game

exhibits several attractive game-theoretic features, such as the fact that this is an

open game, in the sense discussed further in Section 5, because any Blue win will

occur, if at all, by a finite stage of play. In particular, the truncated quadrant

games are subject to the theory of ordinal game values. Moreover, this asymmetric

game does not allow draws through transfinite play—Blue wins if the Gale tour,

constructed as in the proof of Theorem 1, is finite, while Red wins when the Gale

tour is infinite.

Corollary 10. If Blue has a first-player winning strategy on every truncated

quadrant, then there is no finite advantage in infinite Hex—both players have

drawing strategies from any finite position. Indeed, a player has a drawing strategy

in any position having an empty opposing-player-relevant quadrant.

Proof. Let us assume that we have a position with an empty quadrant I for some

choice of origin, which is a quadrant relevant for a Red win—the other cases are
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similar. We assume that Blue can win on any truncated quadrant. To force a draw,

we shall first direct Blue to play so as to win on that quadrant, inventing imaginary

moves for Red when Red does not reply in that quadrant. After building a blue

connection of the sides of this truncated quadrant, which will occur after finitely

many moves, there will therefore remain a larger truncated quadrant still empty,

and we may then direct Blue next to win on that truncated quadrant. And so on.

In this way, Blue will build infinitely many disjoint connections of the blue sides,

and these will form obstacles to a Red win on the infinite Hex board. So this is an

infinite Hex drawing strategy for Blue on any board with an empty quadrant I. A

symmetric argument works in the other cases, where there is an empty quadrant

relevant for the opponent.

Notice that if Blue wins on a truncated quadrant, then Blue also wins on

all truncated quadrants with a smaller truncation, and so there is no need in

Corollary 10 to refer to arbitrarily large as opposed to all truncated quadrants.

The assumption that Blue wins on all truncated quadrants may appear at first to

be weaker than the trapezoid assumption of Theorem 8 and Corollary 9, since if Blue

can win on a trapezoid, then Blue can win on the corresponding truncated quadrant.

Nevertheless, it turns out that these two hypotheses are actually equivalent. In this

sense, Corollaries 9 and 10 amount to the same fact.

Theorem 11. Blue has a first-player winning strategy on all truncated quadrants

if and only if Blue has first-player winning strategies on arbitrarily large trapezoids.

The proof of the forward implication will rely on Theorem 18, and so we shall

defer the proof of Theorem 11 until Section 5. Meanwhile, although the two

assertions mentioned in Theorem 11 are equivalent, we do not know whether they

are true!

Question 12. Does Blue have a first-player winning strategy on all truncated

quadrants?

The question remains open.

4.2. Alternative Strong Win Condition

Fig 21. A strong Red win

Let us now prove a version of the finite advantage

conjecture without the trapezoid or truncated

quadrant assumptions, but instead with respect

to a strengthened winning condition, illustrated in

Figure 21. Specifically, we define that a play of infinite

Hex is a strong win for Red, if there is a Z-chain of

adjacent red hexagons, such that for any positive-slope

line in the plane and any point on that line, (i) there



INTEGERS: 22 (2022) 19

is a steeper line through that point, such that the red path touches that steeper

line only finitely many times and ultimately crosses from left to right; and (ii) there

is a shallower-slope line through that point such that the red path touches it only

finitely many times and ultimately crosses it from below to above. Similarly for

Blue, with the corresponding change in direction.

If a player wins according to this criterion, then they have also won according

to the standard winning condition, which requires them merely to eventually enter

the appropriate quadrants determined by any choice of center origin point. So any

strong win is also a standard win. But the strong win condition is stronger, since it

requires the winning path not merely to enter the quadrant, but to enter a linearly

focused “quadrant” where the axes form a cone of strictly less than 90◦.

Fig 22. Triangular board

Let us begin by recalling that the finite Hex

theorem (Theorem 1) applies generally to any

symmetric finite Hex board, a board that looks the

same with respect to either player. On any finite

board, exactly one player will win, and on such a

symmetric board, the strategy-stealing argument of

Theorem 1 shows that it must be the first player

who has a winning strategy. In particular, the

first player has a winning strategy in any finite

equilateral triangular board with boundary coloring

as in Figure 22, as well as on any analogously symmetric isosceles triangular board.

Theorem 13. There is no finite advantage in infinite Hex, when using the strong

win condition for winning. That is, for any given finite position in infinite Hex, both

players have drawing strategies for play proceeding from that position with respect

to the strong win condition for winning.

In other words, both players have strategies to prevent the other player from

Fig 23. Triangle spanning a linear cone

achieving a strong win, even when

finitely many stones have already

been placed.

Proof. It will suffice for us to

argue that Blue has such a drawing

strategy, for then a symmetric

argument applies for Red. Suppose

that we have an infinite Hex board

position with finitely many stones

already placed. For each possible

center point and each possible pair

of lines with positive rational slope

through that point, one nearly
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vertical and one nearly horizontal, we shall place a certain empty isosceles triangle

onto the Hex board, with a horizontal bottom edge having its midpoint lying

below the nearly horizontal line and upper vertex above the nearly vertical line,

as illustrated in Figure 23. Blue will adopt the strategy of playing on such triangles

so as to connect the right-half of the bottom side with the left side of the triangle,

thereby forming an obstacle that Red will have to get around in order to achieve a

strong win.

Since there are only countably many center points and pairs of lines with positive

rational slope, we can place disjoint such triangles for every such choice of center

and lines. With the triangles placed, Blue will now play by selecting one of them

as “active,” making a first move according to the winning strategy for the triangle,

and continuing to play in that triangle until the blue sides are connected (inventing

imaginary Red moves, if necessary, when Red plays outside). Having won on that

triangle, Blue will activate a next (empty) triangle, and proceed to win on that one,

and so on.

Since every choice of center point has infinitely many pairs of lines with rational

slope, approaching as close as desired to 90◦, there will be infinitely many triangles

paired with any given center point. And so Blue will be able to arrange his choices

of which triangles to activate in such a way that after infinitely many moves, he will

have activated infinitely many triangles for each center point, with the cone angle

of the lines approaching 90◦. After infinite play, therefore, Blue will have placed

infinitely many obstacles blocking any particular choice of center and axis lines, and

this will prevent a strong win for Red. This is therefore a drawing strategy for Blue

with respect to the strong win condition.

Notice that this strategy works also with transfinite play. Indeed, Blue will build

all the blue obstacles during the first ω many moves, and so this strategy has already

prevented a strong win for Red, even if Red should make further moves at transfinite

stages beyond ω.

Fig 24. Line advantage

Fig 25. Quadrants
advantage

The strategy also works for Blue to prevent a some-

origin strong win for Red, in the sense that Blue has

ensured that there is not a single point at which Red has

achieved the strong win condition for lines at that point.

Let us conclude this section with two questions we don’t

know how to answer.

Question 14. Can Red win infinite Hex when starting

with the advantage of an infinite horizontal red line as in

Figure 24? Or with an infinite red line with negative slope,

which does not prevent a Blue win? Or with a horizontal

and ‘vertical’ line together?

Question 15. Can Red win infinite Hex when starting

with the advantage of two red quadrants as in Figure 25?
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5. Game Values in Infinite Hex

The theory of transfinite game values has been explored in infinite chess [5][6][7],

infinite draughts [18][14], infinite Go [11] and several other infinite games. We refer

the reader to that literature for the basic theory of ordinal game values, but we

can quickly review the central ideas. An infinite game is open for a player, if every

winning play for that player is settled as a definite win for that player by some

finite stage of play—that is, after this finite stage, the player cannot avoid winning

no matter how (legal) play continues. Infinite chess, for example, is an open game,

because the checkmate, when it occurs, does so at a finite stage of play. In any

such open game, the ordinal game value for that player of a position is defined by

recursion: a position has value 0 for the open player, if the game is already won, in

the sense that no subsequent legal moves could prevent a win; if a position is the

open player’s turn, and a move can be made to a position with value α, minimal

amongst those with a value, then the value of the original position is α+1; if it is the

opponent’s turn and all plays by the opponent lead to a valued position, then the

value of the position is the supremum of those values. The fundamental observation

of game values is that if a game position has a game value, then the open player

can win by playing the value-reducing strategy—play so as to reduce value; since

there is no infinite strictly decreasing sequence of ordinals, eventually the value will

become 0 and the game is won. Similarly, in any open game, if a position has no

game value, then the closed player can avoid defeat by playing the value-avoiding

strategy.

We find it interesting to note that the game value recursion can be defined for

any game, not just open games, and a game position will have a value for a player

if and only if the player can force a win in finitely many moves (not necessarily

uniformly bounded finite). In particular, if a position in any game has a defined

game value, then the value-reducing strategy will be an optimal winning strategy for

that player from that position. When a position has no defined value, meanwhile,

then the value-avoiding strategy will ensure that the opposing player can avoid all

positions that are definite losses at a finite stage of play. In open games, this is

the same as avoiding defeat altogether, and so the game value analysis provides a

complete strategic account of open games.

Much of the previous literature we mentioned had taken on the goal of exhibiting

positions in those games whose game values were various large countable ordinals—

as large as could be found. In infinite chess, for example, Evans and Hamkins

[6] presented a position with game value ω3 and conjectured that every countable

ordinal arises as the game value of a position in infinite chess. The situation was

slightly improved in [7] with a position having game value ω4. Meanwhile, [6] proves

that every countable ordinal arises as the game value of a position in infinite 3D

chess, and our recent work [18, 14] proves the corresponding result in the case of
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infinite draughts. In exciting new work, Matthew Bolan [3] has announced that

every countable ordinal arises as the game value of a position in infinite chess, thus

establishing the conjecture of Evans and Hamkins [6].

In this section, we should like to consider the question of which game values arise

as the value of positions in infinite Hex.

Question 16. Which ordinal game values arise for positions in infinite Hex?

Fig 26. Game value 5 for Red

The first main difficulty for this question and

the theory of game values in infinite Hex is that

unlike infinite chess and infinite draughts, infinite

Hex is not in general an open game. The winning

condition of infinite Hex, starting from an empty

board, is inherently infinitary—one does not win

after only finitely many moves. Thus, game

values do not tell the whole story, although in

positions for which they are defined the value-

reducing strategy will still be a winning strategy.

For a position in infinite Hex to have a defined

game value for Red, say, then by the value-

reducing strategy, Red would be able to force

a win in finitely many moves. So the position

would have to already contain infinitely many stones, and indeed it would have

to contain a mostly completed winning Z-chain, missing only finitely many

intermediate connecting stones. Red aims to connect the two ends of the chain

together and thereby win. The position in Figure 26, for example, has game value

5, since Red can aim to complete the five bridges, which will take 5 moves, and

there is nothing Blue can do to prevent it. One can similarly create positions in

infinite Hex with any desired finite game value.

5.1. Infinite Hex is Intrinsically Local

What we aim to prove about infinite Hex is that only finite game values occur.

In this sense, the truly transfinite game value phenomenon, which has been so

abundantly exhibited for infinite chess, infinite draughts, and infinite Go, simply

does not occur in infinite Hex.

Theorem 17. Only finite game values occur for positions in infinite Hex.

We shall indeed establish a much stronger result about such positions. Namely,

we claim that every position of infinite Hex for which a player can force a win

in finitely many moves (not necessarily uniformly bounded)—these are precisely

the positions with an ordinal game value, including transfinite game values—is

intrinsically local, meaning that there is a finite part of the board such that the

winning player can win by playing only in that region and paying attention only
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to moves of the opponent in that region. It follows that the game value of that

position is in fact finite, bounded by (half) the size of that finite region.

Theorem 18. If a position in infinite Hex has a game value, then it is intrinsically

local.

Theorem 17 follows as an immediate consequence of Theorem 18, because if a

player can win by playing on and responding to plays on a fixed finite subboard,

then the game value is bounded by half the size of that subboard, since the game

will be over and won (with correct play) when the subboard is filled.

Proof of Theorem 18. Suppose that we are given an infinite Hex position with a

defined game value α for Red. We shall prove by induction on α that this position

is intrinsically local. If the game value α is zero, then the game is already won for

Red, of course, and we can take the finite subboard to be empty. So we may assume

the game value α is not zero.

Fig 27. Blue plays
outside D0

If it is Red’s turn to play, then Red can play to a

position with strictly lower game value, and by induction

that position is intrinsically local. By augmenting that

finite subboard with the Hex tile of the initial move, we

have thus found a finite subboard fulfilling the intrinsically

local condition for the original position.

The remaining case occurs when the game value is

nonzero and it is Blue’s turn to play. Every play by Blue

leads to some position with game value at most α. Let

Red imagine temporarily that perhaps Blue might place

a stone on some (arbitrary) empty Hex tile w. Using the

value-reducing strategy, Red would be able to respond to

this move with a play on some Hex tile v, resulting in a position with strictly lower

game value than α, and hence intrinsically local. So there is some finite region

D0 supporting the intrinsically local winning play after Blue w and Red v, as in

Figure 27. We may assume w, v ∈ D0. If in the actual game, Blue should happen to

play on tile w, as Red had imagined, then indeed Red could win by playing only on

D0, and so this finite subboard would have exhibited the desired intrinsic locality

condition.

But of course, in the actual game, perhaps Blue doesn’t play on tile w—there

might be infinitely many other tiles on which Blue could play. If Blue were to

play outside D0, however, then Red can actually ignore that move, and proceed as

though Blue had played on w, placing a red stone on tile v and then proceeding

to play on and respond to moves only in D0, inventing imaginary moves in D0

whenever Blue plays outside, as illustrated in Figure 27.

A more troublesome case occurs, however, if in the actual game Blue should

begin by placing a stone in D0, but not on tile w. For each tile wi in
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D0 in the original position (taking w = w0), if Blue were to place a blue

stone at wi, then by the value-reducing strategy, there is a Red reply on some

tile vi, leading to a position with game value strictly less than α, which by

induction is therefore intrinsically local. What this means is that for each

such wi there is some finite subboard Di supporting intrinsically local winning

Fig 28. Blue plays in wi

play by Red after Blue wi and Red vi. By simply

adding these points, if necessary, We may assume

without loss of generality that wi, vi ∈ Di.

Let D =
⋃

wi∈D0
Di, which is a finite union of

finite sets, hence finite. We claim that this set shows

that the original position is intrinsically local. If in

the actual game, Blue plays outside D0, then Red

can win as we described by pretending that he had

played on tile w0 and responding only within D0,

which is part of D. If alternatively, Blue plays on

some tile wi in D0, then Red can respond on tile vi
and play afterward only in Di, which is also part of

D, as illustrated in Figure 28. So D witnesses that

the position was an intrinsically local win for Red.

As an application of Theorem 18, let us now

provide the promised proof of Theorem 11, asserting

that Blue can win all truncated quadrants if and only if he can win arbitrarily large

finite trapezoids.

Proof of Theorem 11. We explained in the proof of Theorem 8 that by “arbitrarily

large” trapezoids, we mean that the short Red side can be made as long as possible,

with the other sides being chosen large enough so that Blue has a first-player winning

strategy. And it is clear as we mentioned earlier that if Blue can win on arbitrarily

large trapezoids in this sense, then Blue can win on all truncated quadrants, simply

by placing a trapezoid within the truncated quadrant and playing only within it.

Fig 29. Truncated quadrant as
infinite Hex position

It remains to prove the other direction, that

if Blue can win on all truncated quadrants, then

Blue can win on arbitrarily large trapezoids.

Suppose that Blue has a first-player winning

strategy on a given truncated quadrant. Let us

interpret this truncated quadrant game as an

equivalent instance of infinite Hex, simply by

filling in the rest of the infinite Hex board with

stones as indicated in Figure 29. The point of

this translation is that any win by Blue in the

truncated quadrant game will be a win for Blue in the corresponding infinite Hex

game and vice versa—so the games are equivalent. Since we have assumed that

Blue can win the truncated quadrant game, which is an open game, this is therefore
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a position in infinite Hex that Blue can win in finitely many moves. Therefore, by

Theorem 18, the game is intrinsically local, and so there is a finite subboard of this

position such that Blue can win by playing on and responding to moves on only

that finite subboard. This finite subboard will be included in a trapezoid contained

within the truncated quadrant, with a short red side length at least as long as the

truncated segment of the truncated quadrant. In short, if Blue wins on a truncated

quadrant, then he wins on a large enough finite portion of it, which we can take

without loss of generality to be a trapezoid. So if Blue can win on all truncated

quadrants, then Blue can win on arbitrarily large trapezoids, as desired.

Notice that the non-constructiveness of the proof of Theorem 18 is mirrored by

the fact that game values of infinite Hex positions are not in general computable,

nor computably enumerable. Clearly there is no computable procedure to compute

in finite time whether a given position (presented as an oracle) is intrinsically local,

since any such computation would have inspected at most finitely much of the

board, and no finite part of a board position is sufficient to determine whether it is

intrinsically local.

5.2. A Generalization to Simple Stone-Placing Games

We should like now to generalize the intrinsic locality phenomenon we have

established for infinite Hex to a somewhat more general game-theoretic context,

proving it for what we call the simple stone-placing games, a class of games

including infinite Hex and other games, with the key features that stone placements

are irreversible—once the stone is placed it never moves again—and extra stone

placements are never disadvantageous.

Specifically, a simple stone-placing game is one played on a (possibly infinite)

game board upon which the players, taking turns, place their colored stones, with

each player striving to create a winning configuration with their stones from a

specified set of sufficient winning configurations for that player. Thus, a simple

stone-placing game is specified by a set X of possible board locations and the

respective sets of sufficient winning configurations R,B ⊆ P(X). Player Red is

striving to place red stones at every location of some winning red set R ∈ R and

player Blue is striving to occupy a winning blue set B ∈ B. It is fine for a player to

have extra stones of their color outside the winning configuration. In order that not

both players win at a given position, we insist that there are no disjoint winning

sets R ∈ R and B ∈ B. The game might allow draws, if some partitions of the

board X = XR tXB into red and blue sets have the property that no subset of XR

is in R and no subset of XB is in B.3 Notice that a simple stone-placing game is

open for a player if the winning configurations for that player can be specified by

a set of finite winning configurations, for then the player will win, if at all, after

finitely many moves.

3Finite simple stone-placing games can be seen as isotone set coloring games, as defined in [21],
with the requirement of nondisjointness of winning conditions.
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In standard play, a simple stone-placing game proceeds for ω many moves or

until the board is full, although the framework allows for transfinite play, provided

that the turn order is specified for limit ordinals.

Infinite Hex is a simple stone-placing game, since the winning Red configurations

are specified by the standard infinite Hex winning condition and similarly for Blue—

Theorem 2, which states that at most one player wins for any coloring of the infinite

board, proves exactly that infinite Hex satisfies the nondisjointness of winning

conditions required by the definition of simple stone-placing games. We mention

two further examples of stone-placing games that generalize Hex. In the Shannon

switching game, the players choose edges of a given graph with two distinguished

nodes so that player Short aims to join such nodes, while player Cut strives to

prevent that—Hex can be seen as a Shannon game on a particular graph. The

game of Y is played on a triangular board as the one seen before in Figure 22, but

without the boundary coloring, so that each player aims to construct a Y-like chain

connecting all three sides of the board—also in this case it is clear that the winning

sets cannot be pairwise disjoint, and it is not hard to find a position of Y which is

game-theoretically equivalent to the initial position of Hex.

Meanwhile, let us mention that several other games that are or can be played by

placing colored stones on a board, such as Go, Gomoku, tic-tac-toe, Othello, are not

simple stone-placing games according to our definition. In both Gomoku (five-in-

a-row) and tic-tac-toe—which are known as positional games, as both players aim

to occupy exactly the same winning configurations—it is the first player to create

the winning pattern that wins the game, whether or not the other player could also

have created such a winning configuration with further play, and therefore these

games do not fulfill the nondisjointness requirement in our definition. Similarly, the

games of Go and Othello are not simple stone-placing games, because in the game

of Go, stones are sometimes removed from the board during play (when they are

captured) and in Othello, stones can sometimes change color. The connection game

of Twixt admits a natural infinitary variant, and although this seems not to be a

simple stone-placing game, nevertheless it appears that a version of Theorem 18

will go through to exhibit intrinsic locality for infinite Twixt.

The main point we should like to make about simple stone-placing games is that

both Theorems 17 and 18 generalize to this context.

Theorem 19. If a position in a simple stone-placing game has a game value, then

it is intrinsically local, and consequently, the game value must be finite.

Proof. In the proof of Theorem 18 we refer to the winning condition of Red only

in terms of the finite subboard realizing Red’s intrinsically local play. In that

proof, the ability of Red to win by playing only within the subboard D, even

when Blue initially plays outside of D0, relies on the impossibility for Blue to make

threats disjoint from D, because if Red succeeds there Blue has lost—this property is

present also in simple stone-placing games thanks to the nondisjointness of winning

conditions. Thus, we can replicate the previous argument mutatis mutandis to
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prove this theorem. The second part of this theorem follows just as Theorem 17

was a consequence of Theorem 18.

6. A Multiple-Stone Playing Variation of Infinite Hex

Timothy Gowers [10] suggests a variation of infinite Hex in which one player—let’s

say Red—is allowed to place two stones on each turn, whilst Blue places only one.

This version of the game has a hint of the Angel and Devil game.

Question 20 (Gowers). If Red can place two stones on each turn, whilst Blue

places only one, is infinite Hex still a draw?

The answer to this question is strongly negative, as shown later in Theorem 22,

and we proceed towards that result in stages.

Joshua Zelinsky observed that seven-for-one play is a clear win for Red, since

every Blue play can be immediately surrounded and isolated by Red, using at most

six stones, with one stone left over for making progress on a winning path. Harrison

Brown [4] improved this to the case of three-for-one as follows:

Theorem 21 (Brown). In the infinite Hex variation in which Red places three

stones on each turn, while Blue places only one, Red has a winning strategy.

Fig 30. Red’s winning 3-for-1
strategy

Proof. At the outset of the game, let Red fix a

particular diagonal stretching from infinity at lower

left to infinity at upper right, as indicated in green in

Figure 30, as well as a particular tile to be considered

as origin. Red will aim to win by playing on tiles

adjacent to this diagonal only. We describe Red’s

strategy by assigning to each tile adjacent to the

diagonal the two tiles adjacent to it on the opposite

side of the diagonal—with the notation of Figure 30,

to tile B we assign the tiles C and D, while to tile C we assign the tiles A and B.

Fig 31. Partial 3-for-1 play

If Blue should ever place a stone on a tile adjacent

to the green diagonal, then Red can reply with

two stones on the tiles assigned to such tile,

building a protected detour around the blue stone.

With the third stone, Red will play at the unfilled

tile adjacent to the diagonal which is closest to the

origin, as illustrated in Figure 31. If Red finds

that one or both of the tiles assigned to a move

are already filled, then he can simply play the

extra stones elsewhere adjacent to the diagonal.
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In this way, Blue will not be able to cross the diagonal with two adjacent stones,

and so the blue stones can never form a true obstacle across the diagonal. So Red

will eventually complete a winning chain along the diagonal.

Fig 32. Red wins 3-for-1 play

The argument succeeds in the case that normal

play is two-for-one, as long as infinitely often Red

is allowed to play three stones. This would work

even if Blue were the one to decide when Red was

allowed to place three stones, provided that he in

fact allowed this infinitely often. The argument

even accommodates infinitely many blue stones in

the initial configuration, as in Figure 32.

Notice that Red can adapt the strategy

described above to win the two-for-one variant of the game on finite boards such

as the trapezoids considered in Theorem 8—when Red only needs to build a finite

winning chain, there is no need for a third stone at each turn.

Fig 33. Biased initial position

We will now refine the

argument above to prove the

two-for-one case, building on

an idea kindly proposed by the

anonymous referee.

In particular, we will

describe a strategy that allows

Red to construct a winning Z-

chain in exactly ω turns when

starting from a board heavily

biased in favor of Blue, as the

one shown in Figure 33—it

will follow that Red can win

two-for-one infinite Hex starting from the empty board, even without playing first.

Theorem 22. In the infinite Hex variation in which Red places two stones on each

turn, while Blue places only one, Red has a winning strategy. Indeed, Red can win

even when most of the board is given over to Blue as shown in Figure 33, where the

narrow center channel can be as long as desired and the angle of the two cones on

each end can be as tight as desired. Furthermore, Red can win on such boards with

two-for-one play, but infinitely often electing to play only one-for-one.

Proof. Red’s winning strategy in this two-for-one variation of the game will be a

simple modification of the strategy used in the three-for-one case of Theorem 21.

Namely, as before Red will pick an initial goal diagonal as indicated in green in

Figure 33, aiming to construct a winning path along it, with the difference here

being that in order to get away with only two moves each round instead of three,

Red will be willing at times to allow small deviations in the goal path. These
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deviations, which will occur only infrequently and be spaced far apart, will save a

move when they occur and thereby enable Red to make progress on building the

winning path.

Fig 34. Play in the center channel

Red aims of course to build a connected

Z-chain of Red stones following the green

diagonal path, thereby constructing a

winning play. The main part of the strategy

calls for Red as before to respond to attacks

on the target diagonal path with two-for-

one adjacent Red stones directly across the

path. For example, whenever Blue plays in

the center channel region, Red will respond

with adjacent two-for-one play as shown

in Figure 34. This manner of play in the

channel will prevent Blue from ever bridging that narrow divide.

Fig 35. Red replies with two stones

Similarly, during normal play Red will also

respond to attacks on the target diagonal

out in the open conical region with adjacent

two-for-one play, as shown in Figure 35.

This manner of play will prevent Blue from

ever cutting across the target diagonal.

Furthermore, if Blue should ever happen

to place a stone not directly adjacent

to the current target diagonal, then Red

will breathe a sigh of relief, taking the

opportunity to ignore the move and instead

place Red stones so as to make progress on the desired winning diagonal path,

completing it outward from the center. Such moves by Blue give Red a free

opportunity for progress.

Fig 36. Path-bending response, saving a
Red stone

But of course, Red cannot count on such

Blue moves occurring, and yet still Red

wants to ensure that the winning path will

be completed by time ω. It is for this reason

that Red adopts the path-bending revision

strategy we shall now describe. Namely,

whenever Blue attacks the current target

path at an extreme point far out enough in

the open conical region, meaning that the

blue stone is placed adjacent to the target

path out in the open conical region, further

out along it than any stone previously placed and far enough that the revised path



INTEGERS: 22 (2022) 30

will remain within the conical region, then Red will opt to respond with only one

stone immediately adjacent to it, while also bending the target path around that

stone as indicated in Figure 36. With the other stone, meanwhile, Red will make

progress on the winning path by completing it outward from the center—this is

exactly the advantage that Red needs to win by time ω. Notice that the center part

of the target path is progressively stabilized with each subsequent bending, since

the bends occur only increasingly far out on the path.

Let us argue now that this is a winning strategy for Red, who will complete the

winning Z-chain by time ω. We have already noted that Blue will be unable ever

to bridge the narrow channel gap or to cut across the target diagonal path. What

remains is for us to show that in any infinite play, Red will have infinitely many

opportunities to make progress on constructing the winning path from the center

outward. The reason for this is that after any finite play, there are only finitely

many Blue moves available that will require immediate two-for-one response at

that location. These are the blue moves attacking the current target path, but not

at an extreme point that would invoke the path-bending response. Once all those

locations are filled, any Blue move will either not attack the target path at all or

will attack it at an extreme location that allows for the path-bending response. In

both of these situations, Red is able to make free progress on the winning path, and

so there will be infinitely many opportunities to do so. We conclude that Red will

eventually complete a winning Z-chain in a standard play of order type ω.

Notice that the argument would work equally well if Red opted to play only

one-for-one with every other path-bending move and similarly opt for a one-move

response whenever Blue makes a nonattacking off-path move. Since such moves

must occur infinitely often in any infinite play, this shows that infinitely often Red

can respond with only one stone, proving the final claim of the theorem.

Thus, the answer to Question 20 is negative. The argument does not seem to

succeed in the variation of infinite Hex in which Red plays two stones only on

infinitely many turns chosen by Blue, or even on turns predetermined by adding

some rule, starting from an empty board. The strategy described above requires

Red to place two stones when Blue makes certain critical moves, such as those in

the central channel or close enough to the center on the target green path.

In general, we can consider m-for-n variations of infinite Hex in which Red and

Blue place, respectively, m and n stones at each turn, starting from an empty board.

The surrounding strategy allows Red to force a win in the (6n+1)-for-n case—this

can be refined into an half-surrounding strategy to achieve a win in the (4n+1)-

for-n variation. Notice that the dynamics of the game changes significantly when

both players place more than one stone per turn, so that the mirroring strategy

of Theorem 6 cannot be used to show whether the two-for-two variation of infinite

Hex is still a draw. However, we conjecture that n-for-n infinite Hex is a draw also

for n > 1.
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7. Open Questions

We conclude by briefly collecting together here several questions we have about

finite and infinite Hex that remain open.

1. Is infinite Hex a draw when starting from a board with finitely many stones

already placed? (Conjecture 7)

2. Can Blue win Hex played on arbitrarily large trapezoids? (see Theorem 8)

3. Equivalently, can Blue win infinite Hex played on all truncated quadrants?

(Question 12)

4. Can Red win infinite Hex when starting with the advantage of an infinite

horizontal red line? And with an infinite red line with negative slope? And

with a horizontal and ‘vertical’ line together? (Question 14)

5. Can Red win infinite Hex when starting with the advantage of two red

quadrants? (Question 15)

6. Can Red win infinite Hex in standard play time ω if infinitely often, on turns

chosen by Blue (or determined by some rule), Red is allowed to place two

stones? (see Theorem 22)

7. For what values of m is the m-for-n variant of infinite Hex a draw? In

particular, is the n-for-n variant a draw? (see Theorem 22)

8. If Red wins a play of infinite Hex, must there be a winning red Z-chain that is

geodesic, that is, a winning chain that also constitutes a minimal-length red

connection between any two hex tiles appearing in it?

9. What is the game value of finite Hex played on a n×n rhombus? What bounds

can be established? In light of the fact that strong players often nearly fill the

finite Hex board, is the game value asymptotically n2/2?
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