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Abstract

The classical game of Nim can be naturally extended and played on an arbitrary
hypergraph H ⊆ 2V \ {∅} whose vertices V = {1, . . . , n} correspond to piles of
stones. By one move, a player chooses an edge H of H and arbitrarily reduces all
piles i ∈ H. In 1901 Bouton solved the classical Nim for which H = {{1}, . . . , {n}}.
In 1910 Moore introduced and solved a more general game, k-Nim, for which H =
{H ⊆ V | |H| ≤ k}, where 1 ≤ k < n. In 1980, Jenkyns and Mayberry obtained
an explicit formula for the Sprague-Grundy function of Moore’s Nim for the case
k = n− 1. Recently it was shown that the same formula works for a large class of
hypergraphs. In this paper we study combinatorial properties of these hypergraphs
and obtain explicit formulas for the Sprague-Grundy functions of the conjunctive
and selective compounds of the corresponding hypergraph Nim games.

1. Introduction

In the classical game of Nim there are n piles of stones and two players move

alternately. A move consists of choosing a nonempty pile and taking some positive
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number of stones from it. The player who must but cannot move is the loser.

Bouton [10] analyzed this game and described the winning strategy for it.

In this paper we consider the following generalization of Nim. For a positive

integer n, let us denote by V = {1, ..., n} a set of n piles of stones. Let Z+ denote

the set of nonnegative integers. We use x ∈ ZV
+ to describe a position, where

coordinate xi denotes the number of stones of pile i ∈ V . Given a hypergraph

H ⊆ 2V , a move from a position x ∈ ZV
+ consists in choosing an edge H ∈ H and

strictly decreasing all values xi for i ∈ H. The game starts in an initial position

x ∈ ZV
+ and involves two players who alternate in making moves. Similar to Nim,

the player who must but cannot move is the loser. This happens when every edge

H ∈ H has an empty pile, xi = 0 for some i ∈ H. Such games were considered

in [6, 7, 9] and called hypergraph Nim. We denote by NimH an instance of this

family. We assume in this paper that V =
⋃

H∈HH and ∅ 6∈ H for all considered

hypergraphs H ⊆ 2V . In other words, every move strictly decreases some of the

piles, and passes are not allowed.

Hypergraph Nim games are impartial. In this paper we do not need to immerse

ourselves in the theory of impartial games. We recall only a few basic facts to

explain and motivate our research. We refer the reader to [1, 3, 18] for more details.

A position of an impartial game is called winning, or an N -position, if, starting

from it, the first player can win, no matter what the second player does. The

remaining positions are called losing, or P-positions. It is known that every move

from a P-position goes to an N -position, while from any N -position there always

exists a move to a P-position. The so-called Sprague-Grundy (SG) function GΓ of

an impartial game Γ is a refinement of the above P-N partition; see Section 3 for

the definition. Namely, GΓ(x) = 0 if and only if x is a P-position. The notion of the

SG function was introduced independently by Sprague and Grundy [13, 20, 21] and

it plays a fundamental role in solving disjunctive compounds of impartial games,

defined later in this section.

Finding a formula for the SG function of an impartial game remains a challenge.

Closed form descriptions are known only for some special cases. We recall below

some known results. The purpose of our research is to extend these results and to

describe classes of hypergraphs for which we can provide a closed formula for the

SG function of NimH.

The game NimH is a common generalization of several families of impartial games

from the literature. Given a subset S ⊆ V and a positive integer k ≤ |S|, let(
S

k

)
= {H ⊆ S | |H| = k}.

For instance, ifH =
(
V
1

)
then NimH is the classical Nim. The case of H =

⋃k
j=1

(
V
j

)
,

where k < n, was considered by Moore [17]. He characterized for these games the

set of P-positions, that is, those with SG value 0. Jenkyns and Mayberry [16]
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described also the set of positions in which the SG value is 1 and provided an

explicit formula for the SG function in case of k = n− 1. This result was extended

in [5]. In [6] the game NimH was considered in the case of H =
(
V
k

)
and the

corresponding SG function was determined when 2k ≥ n. Further examples, such

as matroid, 2-uniform (graph), symmetric, and hereditary hypergraph Nim games

were considered in [7, 8, 9, 12]. Surprisingly, for many of these examples the SG

function is described by the same formula, a special case of which was introduced by

Jenkyns and Mayberry [16]. In honor of their contribution we called that formula

JM in [9]. A hypergraph and the corresponding hypergraph Nim game are both

called JM if the JM-formula describes its SG function.

In this paper, we study compositions of JM games and their SG functions. There

are three basic types of compounds considered in the literature. Given two games

Γ1 and Γ2 with disjoint sets of positions X1 and X2, the compound game Γ has the

set of positions X = X1×X2, while the set of its moves can be introduced in three

different ways as follows.

Disjunctive compound Γ1 ⊕ Γ2: a player makes a move in exactly one of the two

games: either in Γ1 or in Γ2.

Conjunctive compound Γ1 ⊗ Γ2: a player makes a move in both games: one in

Γ1 and one in Γ2.

Selective compound Γ1 � Γ2: a player makes a move either in one of the two

games or in both.

All three operations ⊕, ⊗, and � are associative and commutative, and hence, all

three compounds are well-defined not only for two, but for any number of compound

games. The disjunctive compound was introduced by Sprague and Grundy [13, 20,

21]; the conjunctive and selective ones were added by Smith and Conway [19, 11]. In

[7] a concept of hypergraph compound of games, which generalizes all three above

concepts, was introduced.

In this paper, we introduce a special subfamily of JM games, called JM+ games,

that includes JM matroid and graph Nim games [8]. Our main results are the

following:

(i) We show that the family of JM+ games is closed under conjunctive compound.

(ii) We provide closed formulas for the SG functions of selective compounds of

JM+ games, which are analogous to the JM formula.

Let us note that the selective compound of JM+ games is not JM in general. Al-

though the above three compound operations always yield hypergraph Nim games,

yet, explicit formulas for their SG functions are known only in some special cases,

extended now by the results mentioned above.
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Let us add that the explicit formula for the SG function of a game may be

difficult to determine even in very simple looking cases. In [4, 5] the combined

compound Γ = Γ1 � (Γ2 ⊕ Γ3) was studied, where Γi are single pile Nim games

for i = 1, 2, 3. It is easy to see that this game is the hypergraph Nim on H =

{{1, 2}, {1, 3}, {1}, {2}, {3}}. It appears that the SG function GΓ(x) of this game

behaves in a chaotic way when x is small and becomes more regular only for large

x. Yet, no explicit formula for GΓ(x) is known.

The rest of the paper is organized as follows. In Section 2 we introduce JM

formulas and games, and define JM and JM+ hypergraphs. In Section 3 we provide

several examples illustrating these definitions. In Section 4 we prove several tech-

nical lemmas. In Section 5 we prove that the family of JM+ games is closed under

conjunctive compound. Although selective compound does not share this property,

in Section 6 we give an explicit formula for the SG function in this case. In Section 7

we study combinatorial properties of JM+ hypergraphs. In Section 8 we formulate

some open problems.

2. JM+ Hypergraphs and Main Results

To three integers m, y and h, let us associate the following quantities:

v(m, y) =

(
y + 1

2

)
+

((
m−

(
y + 1

2

)
− 1

)
mod (y + 1)

)
(1)

and

U(m, y, h) =

h if m ≤
(
y + 1

2

)
, (2a)

v(m, y) otherwise. (2b)

Given a hypergraph H ⊆ 2V , the height hH(x) of a position x ∈ ZV
+ is defined

as the maximum number of consecutive moves that the players can make in NimH
starting from x. Furthermore, for a position x ∈ ZV

+ of NimH we define

m(x) = min
i∈V

xi, (3a)

yH(x) = hH(x−m(x)e). (3b)

where e = (1, 1, ..., 1) is the n-vector of ones. A position x is called long if m(x) ≤(
yH(x)+1

2

)
and it is called short otherwise.

The expression U(x) = U(m(x), yH(x), hH(x)) for a position x ∈ ZV
+ is called

the JM formula. We call the hypergraph H JM if the JM formula represents the

SG function of NimH.

To introduce a subfamily JM+ of JM hypergraphs, we will add to JM the follow-

ing properties. For a hypergraphH ⊆ 2V , an edge H ∈ H is called a transversal edge
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if it intersects every edge of the hypergraph, that is, if H∩H ′ 6= ∅ for all H ′ ∈ H. A

hypergraph with no transversal edge is called transversal free. For a subset S ⊆ V

we denote byHS = {H ∈ H | H ⊆ S} the induced subhypergraph. A hypergraphH
is called minimal transversal free if it is transversal free, but any proper induced sub-

hypergraph of it has a transversal edge. For example, H = {{1, 2}, {2, 3}, {3, 4}}
contains a transversal edge {2, 3}, while G = {{1, 2}, {2, 3}, {3, 4}, {1, 4}} has no

transversal edge, and hence, it is transversal free. It is easy to see that G is mini-

mal transversal free. Let us call a hypergraph H minimum-decreasing if for every

position x ∈ ZV
+ of NimH there exists a move x → x′ such that m(x′) < m(x),

hH(x′) = hH(x)−1, and xi−x′i ≤ 1 for all i ∈ V . A sequence of edgesH0, H1, . . . ,Hq

in H is called a chain, if Hi+1 ∩ Hi 6= ∅, |Hi+1 \ Hi| = 1, and Hi ⊆ H0 ∪ Hq for

all i = 0, 1, . . . , q − 1. We say that a hypergraph H has the chain-property if for

any two distinct edges H,H ′ ∈ H there exists a chain H0, . . . ,Hq in H such that

H = H0 and H ′ = Hq.

We are now ready to define JM+ hypergraphs. A hypergraph is called JM+ if

it satisfies the following three properties:

(MTF) it is minimal transversal free,

(MD) it is minimum-decreasing, and

(C) it has the chain-property.

It was shown in [8] that every JM+ hypergraph is JM, and that property (MTF)

is necessary for a hypergraph to be JM. We show in Section 7 that no two of the

above three properties imply that the hypergraph is JM, and in particular, they do

not imply the third property. We also show that, unlike (MTF), property (C) is

not necessary for a hypergraph to be JM. It remains an open question if (MD) is

necessary.

Let us note that JM+ is a proper subfamily of JM, since, for instance, some

of the symmetric JM hypergraphs constructed in [9] do not belong to JM+. On

the other hand, JM+ contains all JM hypergraphs described in [8], including JM

matroids and JM graphs. It is a challenging open problem to find a combinatorial

characterization of JM hypergraphs.

Let us consider hypergraphs Hi ⊆ 2Vi , i = 1, . . . , p, where the sets Vi, i = 1, ..., p,

are pairwise disjoint, and define

H1 ⊗ · · · ⊗ Hp =

{
p⋃

i=1

Hi

∣∣∣∣∣Hi ∈ Hi, i = 1, ..., p

}
, (4)

H1 � · · ·�Hp =

{
p⋃

i=1

Hi

∣∣∣∣∣Hi ∈ Hi ∪ {∅}, i = 1, ..., p

}
\ {∅}. (5)
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We call (4) and (5) the conjunctive and selective compounds of the hypergraphs Hi,

i = 1, . . . , p. Furthermore, we call the corresponding two games, NimH1⊗···⊗Hp

and NimH1�···�Hp
, respectively, the conjunctive and selective compounds of the p

component games NimHi
. In cases when these p games (and hypergraphs) are JM+,

we obtain explicit formulas for the SG functions of the compound games (4) and

(5). Our main results are the next two theorems.

JM+ hypergraphs are closed under conjunctive compound. In fact, we prove the

following slightly more general statement.

Theorem 1. The conjunctive compound H1 ⊗ · · · ⊗ Hp is JM+ if p ≥ 2 and, for

all i = 1, . . . , p, either Hi is JM+ or Hi =
(

[2]
1

)
.

Although the selective compound H of JM+ hypergraphs is not JM in general,

in some cases we can describe the SG function of game NimH as follows. For a

position x = (x1, ...,xp) ∈ ZV1
+ × · · · × ZVp

+ of NimH, we define

M(x) = m(x1) + · · ·+m(xp),

Y (x) = yH1
(x1) + · · ·+ yHp

(xp),

hH(x) = hH1
(x1) + · · ·+ hHp

(xp).

(6)

Theorem 2. If p hypergraphs Hi ⊆ 2Vi , i = 1, ..., p, are JM+, then the SG function

of their selective compound H = H1 � · · ·�Hp is given by

GNimH
(x) = U(M(x), Y (x), hH(x)),

where M(x), Y (x), and hH(x) are defined by (6).

Note that this is the JM formula if (and only if) p = 1. Note also that for both

theorems it is an open question if JM+ can be replaced by JM.

3. Illustrative Examples

Recall that a function g : ZV
+ → Z+ is the SG function of NimH if and only if the

following two conditions hold [13, 20, 21]:

• g(x) 6= g(x′) for any move x→ x′;

• for every integer z such that 0 ≤ z < g(x) there exists a move x → x′ in

NimH such that g(x′) = z.

Let us recall the SG theorem stating that the SG function of the disjunctive

compound of impartial games is a function of the SG function values of components

(namely, the so-called Nim-sum of the SG values [10, 13, 20, 21]). Furthermore, in
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disjunctive compounds, each move to a lower SG value can be realized by moving

to a lower SG value in one of the components.

We will give two examples demonstrating that conjunctive and selective com-

pounds do not have such properties. Our first example shows that the SG values of

conjunctive and selective compounds are not uniquely defined by the SG values of

the components.

Example 1. Given V1 = {1, 2, 3, 4} and V2 = {5, 6, 7, 8}, define H1 ⊆ 2V1 and

H2 ⊆ 2V2 as follows:

H1 = {{1, 2}, {2, 3}, {3, 4}, {4, 1}} and

H2 = {{5, 6}, {6, 7}, {7, 8}, {8, 5}}.

Then consider positions a1 = (0, 4, 4, 0) and a2 = (0, 3, 3, 0) in NimH1
and NimH2

,

respectively. For these positions, we have

m(a1) = m(a2) = 0, yH1
(a1) = 4, and yH2

(a2) = 3.

Since both positions are long, we have

U(a1) = hH1
(a1) = 4 and U(a2) = hH2

(a2) = 3.

For the pair of positions b1 = (0, 4, 4, 0) and b2 = (4, 6, 6, 4), we have

m(b1) = 0,m(b2) = 4, yH1
(b1) = 4, and yH2

(b2) = 2.

Since b1 is long and b2 is short, we get

U(b1) = hH1(b1) = 4 and U(b2) = v(m(b2), yH2(b2)) = 3.

By Theorem 1, both hypergraphs are JM+, since they are conjunctive compounds

of two copies of
(

[2]
1

)
. Consequently, the SG values of ai and bi are the same for

both i = 1, 2.

Let us first consider the conjunctive compound H = H1 ⊗ H2. For position

a = (a1,a2), we have

m(a) = min{m(a1),m(a2)} = 0 and

yH(a) = min{yH1
(a1), yH2

(a2)} = 3.

Since a is long, U(a) = hH(a) = 3. For position b = (b1,b2), we have

m(b) = min{m(b1),m(b2)} = 0 and

yH(b) = min{yH1
(b1), yH2

(b2)} = 2.

Since b is also long, U(b) = hH(b) = 4. By Theorem 1 H is JM+, and thus,

U(a) 6= U(b) implies that the SG values of a and b are different.
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Let us next consider the selective compound H = H1 �H2. Then, by applying

Theorem 2 to H, we compute SG values of a = (a1,a2) and b = (b1,b2) as follows.

For position a, we have M(a) = m(a1) + m(a2) = 0 and YH(a) = yH1
(a1) +

yH2
(a2) = 7. Hence, the SG value G(a) is given by U(a) = hH(a) = 7. For position

b we have M(b) = m(b1) +m(b2) = 4 and Y (b) = yH1
(b1) + yH2

(b2) = 6. Hence,

G(b) = U(b) = hH(b) = 14. Thus, G(a) 6= G(b).

The next example shows that to move to a position with smaller SG value in a

selective compound, it may be necessary to increase the SG value in some of the

component games.

Example 2. Let us consider two copies of the hypergraph on 3 vertices consisting

of all proper subsets (Moore’s game on 3 vertices), the positions a1 = a2 = (4, 4, 5),

and the position a = (a1,a2) in the selective compound. We have

m(a1) = m(a2) = 4, yH1
(a1) = yH2

(a2) = 1,

and hence, U(a1) = U(a2) = v(4, 1) = 1. Since both games are JM, we have

G(a1) = G(a2) = 1.

In the selective compound, we have

M(a) = 8, Y (a) = 2, and U(a) = v(8, 2) = 4.

By Theorem 2, U is the SG function of the compound game, and hence, we must

have a move a→ b such that U(b) = 2. It is easy to argue that for such a position b

we must have Y (b) = 1 and M(b) ≡ 1 mod 2. The only move (up to the symmetry

between the two games) yielding these values is to b1 = (3, 3, 4) in one of the games

and to b2 = (4, 4, 4) in the other one. However the SG value G(b1) = U(b1) = 2 is

larger than G(a1) = 1.

4. Technical Lemmas

In this section, we present several lemmas which will be used to show our main

theorems.

For positions x,x′ ∈ ZV
+ we define

‖x′ − x‖+ =
∑
i∈V

x′
i
>xi

x′i − xi;

in particular, we have ‖x′ − x‖+ = 0 if x′ ≤ x, that is, x′i ≤ xi for all i ∈ V .

Lemma 1. For positions x,x′ ∈ ZV
+ we have

hH(x) ≥ hH(x′)− ‖x′ − x‖+.
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In particular, function hH is monotone with respect to the componentwise relation

≥.

Proof. By the definition of the height, if x ≥ x′ then hH(x) ≥ hH(x′). Also, if ej
is the jth unit vector for j ∈ V then we have hH(x− ej) ≥ hH(x)− 1.

For two integers a, b ∈ Z+ with a ≤ b we denote by [a, b] the set of integers

between a and b, that is, all i such that a ≤ i ≤ b. Similarly, for two positions

a,b ∈ ZV
+ with a ≤ b we denote by

[a,b] = {x ∈ ZV
+ | ai ≤ xi ≤ bi, i ∈ V }

the set of integer vectors between a and b.

Given a hypergraph H ⊆ 2V , a move x → x′ is called an H-move if x′i < xi for

i ∈ H and x′i = xi for i 6∈ H.

Lemma 2 (Contiguity Lemma). Given a position x ∈ ZV
+, an edge H ∈ H, and

two H-moves x → a, x → b such that a ≤ b, then each position c ∈ [a,b] can be

reached by an H-move from x, and we have

{hH(c) | c ∈ [a,b]} = [hH(a), hH(b)] .

Proof. Since both x → a and x → b are H-moves (with the same edge H ∈ H),

any position c ∈ [a,b] satisfies c < x and {i ∈ V | ci < xi} = H, proving

that x → c is an H-move. Moreover, by the monotonicity of hH in Lemma 1,

we have {hH(c) | c ∈ [a,b]} ⊆ [hH(a), hH(b)] . To show the converse inclusion, let

us define p =
∑

i∈V (bi − ai), and consider a sequence of positions x0,x1, . . . , xp,

such that x0 = b, xp = a, and for all j = 1, . . . , p xj is obtained from xj−1 by

decreasing one of its components by one unit. Then, again by Lemma 1, we have

hH(xj−1) ≥ hH(xj) ≥ hH(xj−1)− 1, which proves the converse inclusion.

Given a hypergraph H ⊆ 2V , a move x → x′ is called slow if xi − x′i ≤ 1 for all

i ∈ V . We denote by xs(H) the set of positions obtained from x by a slow H-move,

that is,

x
s(H)
i =

{
xi − 1 if i ∈ H,
xi otherwise.

Lemma 3. Consider a JM+ hypergraph H and a position x ∈ ZV
+ with hH(x) > 0.

Then, there exists an integer t such that

(L0) t = hH(x) if m(x) = 0 and m(x) ≤ t < hH(x) if m(x) > 0;

(L1) for all t < z < hH(x) there exists a move x→ x′ such that 0 ≤ m(x′) < m(x),

yH(x′) ≥ yH(x), and hH(x′) = z;
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(L2) for z = t < hH(x) there exists a move x→ x′ such that m(x′) = 0, yH(x′) ≥
yH(x), and hH(x′) = z;

(L3) for all m(x) ≤ z < t there exists a move x → x′ such that m(x′) = 0 and

hH(x′) = z.

Proof. Let us first consider a position x ∈ ZV
+ with m(x) > 0. By property (MD),

there exists a j ∈ H ∈ H such that hH(xs(H)) = hH(x) − 1 and xj = m(x). Set

a0 = xs(H) and define c0 by

c0i =


0 if i = j

xi − 1 if i ∈ H \ {j}
xi if i 6∈ H.

We claim that t = hH(c(0)) has the desired properties. Clearly, this choice satisfies

(L0).

For any x′ ∈ [c0,a0], there exists a move x → x′. Note that m(x′) < m(x). By

this, we have x′ −m(x′)e ≥ x−m(x)e, which implies that yH(x′) ≥ yH(x). Thus,

(L2) holds by taking x′ = c0, since m(c0) = 0. Moreover, since [hH(c0), hH(a0)] =

[t, hH(x)− 1], Lemma 2 implies (L1).

Let us show (L3). By property (MTF), HV \{1} has a transversal edge H ′. By

property (MD), for any two edges H and H ′, there exists a chain H0 (= H), H1, . . . ,

Hr (= H ′). Let us then define positions ak (k = 1, . . . , r) by

aki =


0 if i ∈ Hk−1 ∩Hk

xi − 1 if i ∈ Hk \Hk−1

xi if i 6∈ Hk,

and bk (k = 0, . . . , r) by

bki =

{
0 if i ∈ Hk

xi if i 6∈ Hk.

Consider the set of positions I = [b0, c0]∪
⋃r

k=1[bk,ak]. Note that from any position

x′ in I there is a move x→ x′ such that m(x′) = 0. Moreover, for any i = 1, . . . , r

we have ‖bi−1 − ai‖+ = 1, implying that hH(ai) ≥ hH(bi−1)− 1. By hH(br) = m

and Lemma 2, we have

{hH(x′) | x′ ∈ I} = [m(x), t],

which completes the case of m(x) > 0.

Let us finally consider a position x ∈ ZV
+ such that m(x) = 0. We claim that

t = hH(x) satisfies the desired property, that is, (L3), while (L0), (L1), and (L2)

are automatically satisfied for this t.
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Consider W = {i ∈ V | xi > 0} and the corresponding induced subhypergraph

HW . By the definition of the height, there exists an edge H ∈ HW such that

hH(xs(H)) = hH(x) − 1. By property (MTF), there exists an edge H ′ ∈ HW

that intersects all other edges of HW . By property (C), we have again a chain

H = H0, H1, . . . ,Hr = H ′. Similar to the above construction, we have a series of

Hk-moves k = 0, . . . , r such that the range of hH values includes all integers z such

that 0 ≤ z < hH(x).

Lemma 4. Assume that H ⊆ 2V satisfies properties (MTF) and (C). Then, for

every position x ∈ ZV
+ with m(x) > 0 and pair of integers (µ, η) 6= (m(x), yH(x))

such that 0 ≤ µ ≤ m(x) and m(x) − µ ≤ η ≤ yH(x), there exists a move x → x′

such that m(x′) = µ and yH(x′) = η.

Proof. Let us consider first the case when µ = m(x). Then, (L3) of Lemma 3,

applied to the truncated vector x−m(x)e, implies the claim.

Let us consider next the case when µ < m(x). Assume that xj = m(x). Let

H ∈ H be an edge with j ∈ H, and H ′ ∈ H be a transversal edge of HV \{j}. By

property (C), we have a chain H0 (= H), H1, . . . ,Hr (= H ′). Define positions ak

and bk, k = 0, . . . , r by

aki =


µ if i ∈ Hk−1 ∩Hk

xi − 1 if i ∈ Hk \Hk−1

xi if i 6∈ Hk

and bki =

{
µ if i ∈ Hk

xi if i 6∈ Hk,

assuming that H−1 = {j}. For k = 0, . . . , r, set Ik = [bk,ak] and I =
⋃r

k=0 Ik. We

claim that the set of positions I is a certificate of the lemma. Indeed, clearly for

any position x′ ∈ I we have m(x′) = µ. Hence, it is enough to show that

{yH(x′) | x′ ∈ I} ⊇ [m(x)− µ, yH(x)]. (7)

Note also that yH(x′) = hH(x′−µe) for any position x′ ∈ I. Hence, for k = 0, . . . , r,

Lemma 2 implies that

{yH(x′) | x′ ∈ Ik} = [yH(bk), yH(ak)].

Since yH(a0) ≥ yH(x), yH(br) = m(x) − µ, and yH(ak) ≥ yH(bk−1) − 1 for k =

1, . . . , r, we obtain (7), which completes the proof.

Lemma 5. Assume that H = H1 � · · · � Hp ⊆ 2V is a selective compound of

transversal free hypergraphs Hi, i = 1, . . . , p. Then, H itself is transversal free, and

for every position a ∈ ZV
+ and move a→ b the following relations hold:

(i) hH(a) > hH(b) ≥M(a) ≥M(b);

(ii) v(M(a), Y (a)) < M(a) if and only if M(a) >
(
Y (a)+1

2

)
;
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(iii) Y (b) ≥M(a)−M(b).

Proof. By the definition of the height, it strictly decreases with every move. More-

over, the m(ai) values share this property. To complete the proof of (i), assume that

a→ b is an H-move for some H ∈ H. By the definition of selective compound, we

have H ∩Vi ∈ Hi∪{∅} for all i = 1, . . . , p. Since all these hypergraphs are transver-

sal free, by our assumption, there exist edges Hi ∈ Hi such that Hi ∩H = ∅ for all

i = 1, . . . , p. Hence, even after the a → b move, we still can make at least m(ai)

slow Hi-moves from b. Since these moves for i = 1, ..., p are all moves in NimH,

the inequality hH(b) ≥ M(a) follows. The same argument shows also that we can

make at least m(ai)−m(bi) slow Hi-moves from b, without decreasing m(bi), for

all i = 1, ..., p, thus, proving (iii). Finally, (ii) follows by the definition (1).

Lemma 6. Assume that H = H1 � · · · � Hp ⊆ 2V is a selective compound of

transversal free hypergraphs Hi ⊆ 2Vi , i = 1, . . . , p. Then, for all positions x ∈ ZV
+

and moves x→ x′ of NimH we have

U(M(x), Y (x), hH(x)) 6= U(M(x′), Y (x′), hH(x′)).

Proof. To prove this statement, we consider four cases, depending on the types of

the positions x and x′. For simplicity, we use U(x) for U(M(x), Y (x), hH(x)).

If M(x) ≤
(
Y (x)+1

2

)
and M(x′) ≤

(
Y (x′)+1

2

)
then U(x) = hH(x) = hH(x) >

hH(x′) = hH(x′) = U(x′), since every move strictly decreases the height, by its

definition.

If M(x) ≤
(
Y (x)+1

2

)
and M(x′) >

(
Y (x′)+1

2

)
then we have U(x) = hH(x) >

M(x) ≥ M(x′) > v(M(x′), Y (x′)) = U(x′), proving the claim. Here the first two

inequalities are implied by (i) of Lemma 5, while the last inequality follows by (ii)

of this lemma.

If M(x) >
(
Y (x)+1

2

)
and M(x′) ≤

(
Y (x′)+1

2

)
then we have U(x′) = hH(x′) ≥

M(x), by (i) of Lemma 5, and M(x) > v(M(x), Y (x)) = U(x), by (ii) of this

lemma.

Finally, if M(x) >
(
Y (x)+1

2

)
and M(x′) >

(
Y (x′)+1

2

)
then, by (3b) and (i) of

Lemma 5, we have either M(x) = M(x′) and Y (x) > Y (x′), or M(x) > M(x′).

If we have Y (x) > Y (x′), then v(M(x), Y (x)) 6= v(M(x′), Y (x′)) follows by

(1). If Y (x) = Y (x′) then by definition (1) we could have v(M(x), Y (x)) =

v(M(x′), Y (x′)) if and only if M(x′) = M(x) − α(Y (x) + 1) for some positive

integer α, implying M(x′) ≤ M(x) − Y (x) − 1. From this, by Lemma 5 (iii), it

follows that Y (x′) ≥ Y (x) + 1 contradicting Y (x) = Y (x′). Hence, we must have

v(M(x), Y (x)) 6= v(M(x′), Y (x′)).
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5. Proof of Theorem 1

In this section we prove that the family of JM+ games is closed under conjunctive

compound. In fact, we show that the same holds for each of the three properties

(MTF), (MD), and (C).

Lemma 7. Assume that hypergraphs H1 ⊆ 2V1 and H2 ⊆ 2V2 satisfy property

(MTF) and V1 ∩ V2 = ∅. Then H = H1 ⊗H2 also satisfies (MTF).

Proof. Let us note first that for any edge H = H1∪H2 of H with Hi ∈ Hi, i = 1, 2,

there exist edges H ′i ∈ Hi, i = 1, 2, such that H ′i ∩Hi = ∅, since Hi are transversal

free for i = 1, 2. Thus, H ′ = H ′1 ∪ H ′2 ∈ H is disjoint from H implying that H is

transversal free.

Let us consider next a proper subset S ( V1 ∪ V2 such that HS 6= ∅, and define

Si = S ∩ Vi for i = 1, 2. Without loss of generality, we assume that S1 6= V1. Then,

by the minimal transversal freeness of H1, there exists an edge H1 ∈ H1
S1

that

intersects all other edges of H1
S1

. Let us then consider an arbitrary edge H2 ∈ H2
S2

.

Such an H2 exists since HS 6= ∅. Then the set H = H1 ∪H2 is a transversal edge

of HS .

Lemma 8. Assume that hypergraphs H1 ⊆ 2V1 and H2 ⊆ 2V2 satisfy property (MD)

and V1 ∩ V2 = ∅. Then H = H1 ⊗H2 also satisfies (MD).

Proof. Let us consider a position x = (x1,x2) ∈ ZV
+, where V = V1 ∪ V2, and note

that

hH(x) = min{hH1(x1), hH2(x2)}.

By our assumptions, for both i = 1, 2 we have edges Hi ∈ Hi and Hi-moves xi → yi

such that hHi(yi) = hHi(xi) − 1 and m(yi) < m(xi). Then with the edge H =

H1 ∪H2 ∈ H we can move from x to y = (y1,y2) and have hH(y) = hH(x)− 1 and

m(y) < m(x).

Lemma 9. Assume that hypergraphs H1 ⊆ 2V1 and H2 ⊆ 2V2 satisfy property (C)

and V1 ∩ V2 = ∅. Then H = H1 ⊗H2 also satisfies (C).

Proof. Let us consider two edges H,H ′ ∈ H and set Hi = H∩Vi, H ′i = H ′∩Vi, and

Si = Hi ∪H ′i, for i = 1, 2. By our assumption, there are two chains F0, F1, . . . , Fp

in H1
S1

and G0, G1, . . . , Gr in H2
S2

such that F0 = H1, Fp = H ′1, G0 = H2, and

Gr = H ′2. Let us then define the following chain in H:

F0 ∪G0, F1 ∪G0, . . . , Fp ∪G0, Fp ∪G1, . . . , Fp ∪Gr.

Then we have H = F0 ∪ G0, H ′ = Fp ∪ Gr, and all the above edges are contained

by H ∪H ′.

The following claim can easily be seen.
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Lemma 10. The conjunctive compound F = H⊗
(

[k]
1

)
for some positive integer k

satisfies property (C) if H satisfies it or H =
(

[`]
1

)
for some positive integer `.

Proof of Theorem 1. Since the operation ⊕ is associative and commutative, we can

restrict ourselves to the case p = 2. If both games are JM+ then the claim follows

by Lemmas 7, 8, and 9. It is also easy to see that the two pile Nim2 = Nim([2]
1 )

game satisfies both properties (MTF) and (MD). Thus, the statement follows by

Lemma 10.

6. Proof of Theorem 2

Let us note first that for p = 1 the statement of the theorem means that minimal

transversal free minimum decreasing hypergraphs that have the chain property are

JM. This was already proven in [8, Theorem 2]. Hence, we can assume in the

sequel that p ≥ 2, H = H1 � · · · � Hp ⊆ 2V , where Hi ⊆ 2Vi , i = 1, . . . , p, and

V = V1 ∪ · · · ∪ Vp.

To simplify notation we introduce U(x) = U(M(x), Y (x), hH(x)) for x ∈ ZV
+.

To prove the theorem we shall show that the function U(x) satisfies the sufficient

conditions for a function to be an SG function, namely that

(D) for all a ∈ ZV
+ and moves a→ b, we have U(a) 6= U(b);

(E) for all a ∈ ZV
+ and values 0 ≤ Z < U(a) there exists a move a→ b such that

U(b) = Z.

Property (D) follows by Lemma 6, since JM+ hypergraphs are transversal free.

To prove property (E), consider the next two cases:

(E1) for all a ∈ ZV
+ with M(a) ≤

(
Y (a)+1

2

)
and integers Z with M(a) ≤ Z < hH(a),

there exists a move a→ b such that M(b) ≤
(
Y (b)+1

2

)
and hH(b) = Z;

(E2) for all a ∈ ZV
+ and integers Z with 0 ≤ Z < min(M(a), v(M(a), Y (a)))), there

exists a move a→ b such that M(b) >
(
Y (b)+1

2

)
and v(M(b), Y (b)) = Z.

It is easy to see that properties (E1) and (E2) imply property (E) by (2a) and (2b).

To prove (E1) let us consider a position a = (a1, . . . ,ap) ∈ ZV
+ with M(a) ≤(

Y (a)+1
2

)
. By Lemma 3, there exist thresholds m(ai) ≤ ti ≤ hHi

(ai), i = 1, ..., p,

satisfying the claims of the lemma. Let us set T = t1 + · · ·+ tp.

For an integer Z with T ≤ Z < hH(a), let us choose integers zi such that

ti ≤ zi ≤ hHi(a
i) and Z = z1 + · · ·+ zp. Let us note that, by the above definitions,

we must have m(ai) = 0 whenever ti = zi = hHi(a
i). Let us define Q = {i ∈

[p] | zi < hHi(a
i)} and note that Q 6= ∅ and m(ai) > 0 for all i ∈ Q. Thus,
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by (L1) and (L2) of Lemma 3, for every i ∈ Q there exists a move ai → bi such

that m(bi) ≤ m(ai), yHi
(bi) ≥ yHi

(ai), and hHi
(bi) = zi. We define bi = ai for

i ∈ [p] \ Q, and set b = (b1, . . . ,bp). In this way we get that a → b is a move

in NimH, satisfying M(b) ≤ M(a), Y (b) ≥ Y (a), and hH(b) = Z. Thus, by our

assumptions, it follows that M(b) ≤M(a) ≤
(
Y (a)+1

2

)
≤
(
Y (b)+1

2

)
.

For an integer Z with M(a) ≤ Z < T , choose integers m(ai) ≤ zi ≤ ti such

that Z = z1 + · · · + zp, and define Q = {i ∈ [p] | zi < hHi(a
i)} as above. We have

Q 6= ∅, because Z < T . Furthermore, for i ∈ [p] \Q we have ti = hHi(a
i), implying

m(ai) = 0 by (L0) of Lemma 3. By (L2) and (L3) of Lemma 3, for every i ∈ Q there

exists a move ai → bi such that m(bi) = 0 and hHi
(bi) = zi. We define bi = ai

for i ∈ [p] \Q, and set b = (b1, . . . ,bp). Then a→ b is a move in NimH satisfying

M(b) = 0 and hH(b) = Z. Thus, it trivially follows that 0 = M(b) ≤
(
Y (b)+1

2

)
.

This completes the proof of property (E1).

To prove property (E2) we need a few more observations. Note that by (1), for

a fixed integer y ∈ Z+ we have

U(y) = {v(m, y) | m ∈ Z+} =

[(
y + 1

2

)
,

(
y + 1

2

)
+ y

]
,

and also that the sets U(y), y ∈ Z+ partition the set of nonnegative integers.

Consequently, for every integer z ∈ Z+ there exists a unique integer y ∈ Z+ such

that z ∈ U(y). We denote this unique integer as y = η(z). Note also that for every

integer z we have

z = v(z + 1, η(z)) and z + 1 >

(
η(z) + 1

2

)
. (8)

Consider a position a ∈ ZV
+ and a value 0 ≤ Z < min(M(a), v(M(a), Y (a))), as in

(E2), and choose a largest integer α ≥ 0 such that M = Z+1+α(̇η(Z)+1) ≤M(a)

and set Y = η(Z). Note that we have

0 ≤M(a)−M ≤ η(Z). (9)

We construct a position b ∈ ZV
+ such that a → b is a move in NimH, M(b) = M ,

and Y (b) = Y . By (8) and the fact that α ≥ 0, this construction verifies property

(E2), and completes our proof of the theorem.

To see the construction, note first that M ≤M(a) =
∑p

i=1m(ai) by our choices

above. Thus, there exist integer values µi, i = 1, . . . , p, such that

p∑
i=1

µi = M, and 0 ≤ µi ≤ m(ai) for all i = 1, . . . p.

Then observe that we have
p∑

i=1

(m(ai)− µi) = M(a)−M ≤ Y ≤ Y (a) =

p∑
i=1

yHi(a
i),
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by (9) and by our definitions (3a) and (3b). Thus, there exist integers ηi for i =

1, . . . , p such that

m(ai)− µi ≤ ηi ≤ yHi
(ai) for all i = 1, . . . , p,

and Y =
∑p

i=1 ηi. Define Q = {i ∈ [p] | (µi, ηi) 6= (m(ai), yHi(a
i))}. By (E2)

we have v(M,Y ) = Z < v(m(a), Y (a)) implying (M,Y ) 6= (m(a), Y (a)), and thus,

Q 6= ∅.
Now we can apply Lemma 4 for each of the JM+ games Hi, i ∈ Q, and derive

the existence of moves ai → bi in NimHi
such that m(bi) = µi and yHi

(bi) =

ηi. Defining bi = ai for i ∈ [p] \ Q and setting b = (b1, . . . ,bp) completes our

construction and the proof of the theorem.

7. Combinatorial Properties of JM+ Hypergraphs

In this section we show that no two of the three properties (MTF), (MD), and (C)

imply neither the third one, nor JM. For a hypergraph H ⊆ 2V we denote by minH
the family of inclusionwise minimal edges of H. For a subhypergraph F ⊆ H we

denote by V (F) =
⋃

F∈F F the set of vertices that it covers. Along with property

(MD) consider the following stronger combinatorial property (MD*).

(MD*) For every subhypergraph F ⊆ minH such that V (F) 6= V there exist

edges F ∈ F and H ∈ H such that H ∩ V (F) ⊆ F and H \ F 6= ∅.

It will be technically easier to verify (MD*), since (MD) involves “ for all x ∈ ZV
+”.

A move x→ x′ is called a height move if hH(x′) = hH(x)− 1.

Lemma 11. Property (MD*) implies (MD).

Proof. Consider a position x ∈ ZV
+ with m(x) > 0 and define F(x) ⊆ H to be

the subhypergraph of those edges H ∈ H for which there exists a x → x′ H-move

such that hH(x′) = hH(x) − 1. If V (F(x)) = V for all positions x ∈ ZV
+, then

property (MD) holds. Otherwise there exists a position x with m(x) > 0 such that

V (F(x)) ( V . Without loss of generality, we can assume that F ⊆ minH. Thus, by

property (MD*), we have edges F ∈ F(x) and H ∈ H such that H ∩ V (F(x)) ⊆ F
and H \V (F(x)) 6= ∅. Clearly, we can assume that H ∈ minH. Then there exists a

sequence of height moves that involves F by the definition of F(x). In this sequence

replace one F -move by an H-move. This way we get another height sequence, and

that contradicts the fact that H 6∈ F(x). This contradiction proves our claim.

Let us add that the inverse implication is not true. The following small ex-

ample shows this. Consider V = {1, 2, 3, 4, 5}, H1 = {1, 2}, H2 = {2, 3}, H3 =

{3, 4}, H4 = {1, 4, 5}, and H = {H1, H2, H3, H4}. For the subhypergraph F =
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{H1, H2, H3}, property (MD*) fails to hold. It is however not difficult to see that

H satisfies property (MD).

For a subset S ⊆ [n] we denote by
(

[n]
S

)
the hypergraph consisting of all edges

H ⊆ V such that |H| ∈ S. If S = {i}, then we simply write
(

[n]
i

)
. These hypergraphs

are called symmetric. We say that S ⊆ [n] has a gap, if there are integers 0 < i <

j < k ≤ n such that i, k ∈ S and j 6∈ S.

Remark 1. It is easy to see that symmetric hypergraphs satisfy property (MD*).

Furthermore, if S has a gap, then
(

[n]
S

)
does not satisfy property (C). We also recall

from [9] that symmetric JM hypergraphs have a simple arithmetic characterization.

Due to our results, properties (MTF), (MD), (C), and JM define 10 possible

regions, one of which is related to the JM+ hypergraphs; see Figure 1. We will

show that, among the remaining 9 regions, 7 are not empty; the status of the last

two is open.

JM+

(MD)

(MTF)

(C)

(JM)

(P1)

(P2)

(P3)

(P4)

(P5)

(P6)

(P7)

(P8)

(P9)

Figure 1: The 10 regions defined by properties (MTF), (MD), (C), and (JM).
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Theorem 3. The following seven (negative) statements hold:

(P1) Property (MTF) implies none of JM, (MD), and (C).

(P2) Property (MD) implies neither (MTF) nor (C).

(P3) Property (C) implies neither (MTF) nor (MD).

(P4) The conjunction of (MTF) and (MD) does not imply JM, and hence, it does

not imply (C).

(P5) The conjunction of (MD) and (C) does not imply JM, and hence, it does not

imply (MTF).

(P6) The conjunction of (MTF) and (C) does not imply JM, and hence, it does not

imply (MD).

(P7) The conjunction of JM and (MD) does not imply (C).

Proof. For (P1) we consider the “cube”, that is, the hypergraph with 8 vertices and

6 edges corresponding to the 2 dimensional faces of a 3-dimensional cube. It was

shown in [8, Section 7] that this hypergraph satisfies property (MTF), but none of

the others.

For (P2) we consider, for example,
(

[4]
{1,3}

)
. As we noted above, it satisfies (MD*),

and hence, (MD), but not (C). It does not satisfy (MTF) either, since if S is a subset

of size 2, then the induced subhypergraph does not have a transversal edge.

For (P3) we consider the following hypergraph on 10 vertices: define

T1 = {v1, v2, v3}, T2 = {v4, v5, v6}, T3 = {v7, v8, v9}, V = {v0, v1, . . . , v9}, and

H = {T1, T2, T3} ∪
{
H ⊆ V

∣∣∣∣ |H| = 4 and v0 6∈ H, or
|H| = 5 and v0 ∈ H

}
.

This hypergraph does not satisfy (MTF), since if we delete v0, the reduced hy-

pergraph still has no transversal edge. It does not satisfy property (MD) either,

because for position x = (1, 2, 2, 2, 2, 2, 2, 2, 2, 2) the only height moves are with sets

Ti, i = 1, 2, 3. Finally, it is easy to verify that it satisfies property (C).

For claims (P4), (P5), and (P7) it is enough to consider symmetric hypergraphs(
[2]
1

)
,
(

[5]
2

)
, and

(
[6]
{2,4}

)
, respectively.

Finally, for (P6) we consider a 10-vertex hypergraph similar to one considered

for (P3):

H={T1, T2, T3} ∪
{
H ⊆ V

∣∣∣∣ |H| = 4, v0 6∈ H, and H ∩ {v1, v4, v7} 6= ∅, or
|H| = 5

}
.
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To see property (MTF), note first that H has no transversal edge. Furthermore,

if S ⊆ V has |S| ≤ 5, then any two edges of HS intersect. If |S| ≥ 6, then any edge

H ∈ HS such that |H| = 5 and H ⊇ {v1, v4, v7} ∩ S is a transversal of HS .

For property (C), consider two edges H,H ′ ∈ H. If |H ∪H ′| ≤ 4, then clearly,

a chain from H to H ′ exists. On the other hand, if |H ∪H ′| ≥ 5, choose an edge

H ′′ ⊆ H ∪H ′ of size 5. Note that we can reach H ′ from H by a chain through H ′′.

Thus, H satisfies (C).

To show that H is not JM, consider the position x = (6, 7, . . . , 7). Note that

m(x) = 6, yH(x) = 3, and hH(x) = 21. Since
(
yH(x)+1

2

)
= m(x), we have U(x) =

hH(x) = 21. We will show that there exists no move from x → x′ such that

U(x′) = 20. Assume that such a move exists. Since m(x′) ≤ m(x) = 6, position

x′ is long with hH(x′) = 20. This implies that x → x′ is a height move. For this

position x, the only height moves are with Ti, i = 1, 2, 3. Consequently, yH(x′) < 3

and m(x′) = 6, implying that x′ is a short position. Thus, x′ is both short and

long, a contradiction.

8. Open Problems

For the next two negative statements we have no examples; in other words, we do

not know if the corresponding two regions in Figure 1 are empty:

(P8) The conjunction of JM and (C) does not imply (MD);

(P9) Property JM does not imply the disjunction of (MD) and (C).

We also do not know if JM+ could be replaced by JM in Theorems 1 or 2.
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ing Sprague–Grundy function and their hypergraph compound, Internat. J. Game Theory,
available online (2023), https://doi.org/10.1007/s00182-023-00850-7 ; the first version: Tetris
hypergraphs and combinations of impartial games (2017), http://arxiv.org/abs/1701.02819.

[8] E. Boros, V. Gurvich, N. B. Ho, K. Makino, and P. Mursič, Sprague-Grundy function of
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