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Abstract

One of the most famous open problems in combinatorics is the Zarankiewicz prob-
lem, which asks for the maximum number of ones in an n × n matrix that has
no s × t submatrix of all ones. The Kővari-Sós-Turán theorem provides an upper
bound of O(s

1
t n2−

1
t ) for this problem for fixed t ≥ 2, which is known to be sharp

in some cases. The Zarankiewicz problem is a subproblem of the more general
problem of determining the maximum number of ones ex(n,M) in an n × n 0-1
matrix that avoids the forbidden 0-1 matrix M . In this paper, we define a notion
of containment and avoidance for subsets of R2. Then we introduce a new, con-
tinuous and super-additive extremal function for subsets P ⊆ R2 called opx(n, P ),
which is the supremum of µ2(S) over all open P -free subsets S ⊆ [0, n]2, where
µ2(S) denotes the Lebesgue measure of S in R2. We show that opx(n, P ) fully en-
compasses ex(n,M) up to a constant factor. More specifically, we define a natural
correspondence between finite subsets P ⊆ R2 and 0-1 matrices MP , and we prove
that opx(n, P ) = Θ(ex(n,MP )) for all finite subsets P ⊆ R2, where the constants in
the bounds depend only on the distances between the points in P . We also discuss
bounded infinite subsets P for which opx(n, P ) grows faster than ex(n,M) for all
fixed 0-1 matrices M . Furthermore, we obtain a strengthening of the Kővari-Sós-
Turán theorem that applies to infinite subsets of R2.

1. Introduction

We say that a 0-1 matrix A contains a 0-1 matrix B if some submatrix of A can

be turned into B by changing some number of ones to zeroes. Otherwise A avoids

B, i.e. A is B-free. For any 0-1 matrix M and n ∈ Z+, define ex(n,M) to be the

maximum number of ones in an M -free n × n 0-1 matrix. This extremal function

has been investigated since at least seventy years ago, when Zarankiewicz posed the

problem of finding ex(n,M) for matrices M of all ones [43]. The famous Kővari-

Sós-Turán theorem gives a partial solution to this problem.
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In addition to the longstanding open Zarankiewicz problem, research on ex(n,M)

has also focused on other well-known classes of 0-1 matrices like permutation matri-

ces. In particular, Marcus and Tardos [36] showed that every permutation matrix

M has ex(n,M) = O(n), and used this fact to prove the Stanley-Wilf conjecture

using results from [18] and [32]. Füredi used the extremal function ex(n,M) to

obtain the sharpest known upper bound of O(n log n) on the maximum number of

unit distances in a convex n-gon [15], while Mitchell applied ex(n,M) to bound the

complexity of an algorithm for path minimization in a rectlinear grid with obstacles

[37].

In this paper, we present a new extremal function for subsets of R2, which fully

encompasses ex(n,M) up to a constant factor. We show that all past results about

ex(n,M) can be translated into results about this new extremal function. In par-

ticular, any sharp bounds on ex(n,M) for a given 0-1 matrix M imply the same

sharp bounds on opx(n, P ) up to a constant factor for a set of points P ⊆ R2 that

corresponds to M . Moreover for any finite set of points P , we show that there is

a matrix M for which opx(n, P ) = Θ(ex(n,M)). We also consider infinite sets of

points, like a single line segment, or two horizontal line segments with left endpoints

in the same column and right endpoints in the same column, and more generally

vertical stacks of any number of horizontal line segments. We show that these for-

bidden stacks of horizontal line segments have extremal functions that behave like

the Turán numbers of complete bipartite graphs, and we obtain a strengthening

of the Kővari-Sós-Turán theorem for these forbidden unions of segments, using the

measure-theoretic form of Jensen’s inequality and Fubini’s theorem.

Before describing these results in more detail, we define the new extremal func-

tion. Suppose that P and S are both subsets of R2. Let XP be the set of all

x-coordinates of points in P , and let YP be the set of all y-coordinates of points in

P . Similarly, let XS be the set of all x-coordinates of points in S, and let YS be

the set of all y-coordinates of points in S. We say that S contains P if there exist

functions fX : XP → XS and fY : YP → YS such that all statements below are

true:

1. fX(x0)− fX(x1) ≥ x0 − x1 for all x0, x1 ∈ XP with x0 > x1.

2. fY (y0)− fY (y1) ≥ y0 − y1 for all y0, y1 ∈ YP with y0 > y1.

3. For all (x, y) ∈ P , we have (fX(x), fY (y)) ∈ S.

If S does not contain P , then S avoids P , i.e. S is P -free. For any Lebesgue-

measurable subset S ⊆ Rd, let µd(S) denote the d-dimensional Lebesgue measure

of S. For any subset P ⊆ R2 and n ∈ R+, define opx(n, P ) as the supremum of

µ2(S) over all open P -free subsets S ⊆ [0, n]2.

For any subset P ⊆ R2, we say that its rows are its maximal subsets with the same

y-coordinates and its columns are its maximal subsets with the same x-coordinates.
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Given any finite subset P ⊆ R2, define MP to be the 0-1 matrix with the same

number of rows and columns as P , so that the rows of the matrix MP correspond

to the rows of the subset P in the same order from top to bottom, the columns of

MP correspond to the columns of P in the same order from left to right, and MP

has a one in each entry corresponding to an element of P and a zero in each other

entry. We prove that opx(n, P ) = Θ(ex(n,MP )) for all finite subsets P ⊆ R2.

Thus, opx(n, P ) fully encompasses the extremal function ex(n,M) up to a con-

stant factor, since any 0-1 matrix can be turned into a corresponding finite subset

of R2, with points replacing the ones. However, opx(n, P ) also includes problems

that have no analogue in 0-1 matrices, as there exist bounded subsets P ⊆ R2 such

that ex(n,M) = o(opx(n, P )) for all 0-1 matrices M . In particular we show that

opx(n, P ) = Θ(n2) for every open subset P ⊆ R2.

We also prove a strengthening of the Kővari-Sós-Turán theorem. We show that

for every fixed integer t ≥ 2, if Ps,t,c consists of t horizontal segments of length s

with all left endpoints in the same column and all consecutive segments a distance

of c apart, then opx(n, Ps,t,c) = O(s
1
t n2−

1
t ), where the constants in the bound

depend on t and c. Note that Ps,t,c looks like an equal sign (=) when t = 2 and

an equivalence symbol (≡) when t = 3. In the case that t = 2, our upper bound is

sharp up to a constant factor that depends on c using the result of Füredi [17] that

ex(n, Js,2) = Θ(s
1
2n

3
2 ).

Section 2 focuses on general properties of opx(n, P ). In Section 2.1, we prove

some basic properties of opx(n, P ) which are analogous to properties of ex(n,M). In

Section 2.2 we prove that opx(n, P ) is continuous and super-additive for all P ⊆ R2.

In Section 2.3, we prove for subsets P with a rightmost column that opx(n, P ) only

increases by at most cn when we add a horizontal segment of length c to P with

its left endpoint on a point in the rightmost column of P . We also prove an upper

bound on the increase in opx(n, P ) for finite subsets P ⊆ R2 when they are dilated.

Section 3 focuses on connections between opx(n, P ) and ex(n,M). In Section

3.1, we prove that opx(n, P ) = Θ(ex(n,MP )) for all subsets P ⊆ R2. The proof

splits into a lower bound, where for each finite subset P ⊆ R2 we construct an

open subset S ⊆ [0, n]2 to show that opx(n, P ) = Ω(ex(n,MP )). Then we prove

that opx(n, P ) = O(ex(n,MP )), using a transformation from open subsets of R2

to 0-1 matrices. In Section 3.2, we discuss some corollaries of the main result of

Section 3.1. In particular, we show that for every finite subset P ⊆ R2 there exists

a constant ε > 0 such that opx(n, P ) = O(n2−ε).

Section 4 focuses on bounded infinite subsets P . In Section 4.1, we show that

there are bounded infinite subsets P ⊆ R2 for which opx(n, P ) = Θ(n2). In par-

ticular, we show that opx(n, P ) = Θ(n2) for every open subset P ⊆ R2, where the

constants in our bounds depend on P . We show this by proving an even stronger

result, that opx(n,QP ) = Θ(n2) where QP is the set of points with rational coor-

dinates in P ⊆ R2.
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In Section 4.2, we prove the strengthening of the Kővari-Sós-Turán theorem for

vertically stacked unions of horizontal segments. In Section 4.3, we show that if

P is a disjoint union of a finite number of horizontal segments with no two points

having the same x-coordinate and no two segments having the same y-coordinate,

then opx(n, P ) = O(n).

In Section 5, we extend the definition of opx(n, P ) to Rd and we generalize most

of our results including the strengthening of the Kővari-Sós-Turán theorem to any

number of dimensions. We use the generalized version of the strengthening of the

Kővari-Sós-Turán theorem to derive sharp bounds on Turán numbers of forbidden

subsets of R3, including forbidden sets of points that look like two plus signs (+)

with one directly above the other.

In Section 6, we discuss future directions for research including open problems.

2. Properties of opx(n, P )

In this section, we prove basic facts about opx(n, P ). We start with several ob-

servations that have quick proofs. Then we show that opx(n, P ) is super-additive

and continuous. We also investigate the effect of simple modifications to P on the

value of the extremal function opx(n, P ). For subsets P with a rightmost column,

we prove a sharp upper bound of cn on the increase in opx(n, P ) when we add a

horizontal segment of length c to P with its left endpoint on some point in the

rightmost column of P . We also bound the increase in opx(n, P ) for finite subsets

P ⊆ R2 when we dilate P .

2.1. Basic Observations about opx(n, P )

It is well-known that if M ′ is obtained from the 0-1 matrix M by 90◦ rotation, or

horizontal or vertical reflection, then we have ex(n,M ′) = ex(n,M). If M ′ = R(M)

where R is the transformation that we apply to M to get M ′, and if A is an n× n
0-1 matrix that avoids M , then R(A) avoids M ′ and R(A) is still an n × n 0-1

matrix when R is a 90◦ rotation, horizontal reflection, or vertical reflection. Thus,

we have ex(n,M) ≤ ex(n,M ′). Similarly, we obtain ex(n,M) ≥ ex(n,M ′) since

M = R−1(M ′), so ex(n,M) = ex(n,M ′). Below we observe an analogous fact for

opx(n, P ).

Lemma 2.1. If P ′ ⊆ R2 is obtained from P ⊆ R2 by 90◦ rotation, or horizontal or

vertical reflection, then we have opx(n, P ′) = opx(n, P ).

Proof. Suppose that P ′ = R(P ) where R is the transformation that we apply to

P to get P ′, and suppose that S ⊆ [0, n]2 is a P -free open subset. Then R(S)

avoids P ′ and R(S) is still an open subset. Moreover R(S) can be translated into
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a subset of [0, n]2. Thus, we have opx(n, P ) ≤ opx(n, P ′). Similarly, we obtain

opx(n, P ) ≥ opx(n, P ′), so opx(n, P ) = opx(n, P ′).

Next we make another simple observation about opx(n, P ) which does not have

an exact analogue for ex(n,M).

Lemma 2.2. Suppose that P ′ is obtained by translating P . Then opx(n, P ) =

opx(n, P ′).

Proof. By definition of containment for subsets of R2, any subset that contains P

will contain P ′, and any subset that contain P ′ will contain P . Thus, opx(n, P ) =

opx(n, P ′).

It is clear that ex(n,M) ≤ ex(n,N) for any 0-1 matrix N that contains M , since

any n × n 0-1 matrix that avoids M will also avoid N . We start by observing an

analogous fact for opx(n, P ).

Lemma 2.3. If P and Q are subsets of R2 for which Q contains P , then opx(n, P ) ≤
opx(n,Q).

Proof. Any open subset of [0, n]2 that avoids P will also avoid Q.

Another immediate fact is that opx(n, P ) is non-decreasing in n.

Lemma 2.4. For all 0 < m ≤ n, we have opx(m,P ) ≤ opx(n, P ).

Proof. Any open subset of [0,m]2 that avoids P is also a subset of [0, n]2.

2.2. Super-Additivity and Continuity of opx(n, P )

In fact, it is possible to prove a much stronger result than Lemma 2.4. It is well-

known that ex(n,M) is super-additive, i.e., ex(m + n,M) ≥ ex(m,M) + ex(n,M)

for all m,n ∈ Z+ [38]. We prove that opx(n, P ) is super-additive for all P ⊆ R2.

Lemma 2.5. For all P ⊆ R2, the function opx(n, P ) is super-additive.

Proof. If P is unbounded, then the result is immediate since opx(n, P ) = n2 for all

n > 0, so suppose that P is bounded. If P has a single point, then opx(n, P ) = 0,

so suppose that P has multiple points. Without loss of generality, suppose that P

has multiple rows.

Let sP be the supremum of the y-coordinates of the rows of P , and let iP be the

infimum of the y-coordinates of the rows of P , which both must exist because P is

bounded. Without loss of generality, suppose for all ε > 0 that there exist rows u

and r of P with sP − u < ε and r − iP < ε such that there is some point p in row

u that is not to the left of some point p′ in row r. Note that if this supposition

was false, then there would exist ε > 0 such that for all rows u and r of P with
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sP − u < ε and r − iP < ε, every point p in row u is to the left of every point p′ in

row r. Thus, if the supposition was false, then for all ε > 0 there would exist rows

u and r of P with sP − u < ε and r − iP < ε such that there is some point p in

row u that is not to the right of some point p′ in row r. The only logical difference

between this and the supposition is the word right replacing the word left, so we

can assume without loss of generality that for all ε > 0 there exist rows u and r of

P with sP − u < ε and r − iP < ε such that there is some point p in row u that is

not to the left of some point p′ in row r.

Let St ⊆ [0, n]2 for t ∈ N be a sequence of P -free open subsets with the property

that limt→∞ µ2(St) = opx(n, P ). Let Rt ⊆ [0,m]2 for t ∈ N be a sequence of P -free

open subsets with the property that limt→∞ µ2(Rt) = opx(m,P ). For each t ∈ N,

let Qt be the point set obtained from placing a copy of St in the top left corner

of [0,m + n]2 and placing a copy of Rt in the bottom right corner of [0,m + n]2.

Clearly Qt is open since it is a union of open sets. Since St is an open subset of

[0, n]2, it contains no points on the boundary of [0, n]2. Similarly, since Rt is an

open subset of [0,m]2, it contains no points on the boundary of [0,m]2. Thus, the

copy of St in Qt is fully above and fully to the left of the copy of Rt in Qt.

Note that Qt avoids P . Indeed, suppose for a contradiction that Qt contained P .

The copy of P in Qt cannot be fully contained in the copy of St in Qt or the copy

of Rt in Qt, since they both avoid P , so parts of the copy of P must be in both St
and Rt. In particular, there exists ε > 0 such that any rows u in the copy of P in

Qt with sP − u < ε must be contained in St, and any rows r in the copy of P in Qt
with r − iP < ε must be contained in Rt. Thus, any points in P in a row u with

sP − u < ε must be to the left of any points in P in a row r with r − iP < ε. This

contradicts the fact that for all ε > 0, there exist rows u and r of P with sP −u < ε

and r − iP < ε such that there is some point p in row u that is not to the left of

some point p′ in row r. Thus, Qt avoids P . So opx(m+ n, P ) ≥ limt→∞ µ2(Qt) =

limt→∞ µ2(Rt) + limt→∞ µ2(St) = opx(m,P ) + opx(n, P ).

Next we show that opx(n, P ) is continuous in n for n > 0. In order to prove this,

we start with a simple lemma.

Lemma 2.6. For all n > 0 and all δ with 0 < δ < n, we have opx(n, P ) ≤
opx(n+ δ, P ) < opx(n, P ) + 3nδ.

Proof. The first inequality is immediate by Lemma 2.4. For the second inequality,

observe that any open P -free subset S ⊆ [0, n+δ]2 can be transformed into an open

P -free subset S′ ⊆ [0, n]2 by letting S′ be the intersection of the open square (0, n)2

with S. Then µ2(S′) ≥ µ2(S)− 2δn− δ2, so

µ2(S) ≤ opx(n, P ) + 2nδ + δ2 < opx(n, P ) + 3nδ,

which implies that opx(n+ δ, P ) < opx(n, P ) + 3nδ.
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Proposition 2.7. The function opx(n, P ) is continuous in n for n > 0.

Proof. Fix n0 > 0 and ε with 0 < ε < n0. By Lemma 2.6, for δ = min
(
n0

3 ,
ε

3n0

)
and n < n0 + δ we have opx(n, P ) ≤ opx(n0 + δ, P ) < opx(n0, P ) + ε. Moreover if

n > n0 − δ, then we have

opx(n, P ) ≥ opx(n0 − δ, P ) > opx(n0, P )− 3(n0 − δ)δ > opx(n0, P )− ε.

Thus, we have shown that for all n0 > 0 and for all ε > 0 there exists δ > 0 for

which | opx(n, P )− opx(n0, P )| < ε for all n such that |n− n0| < δ.

2.3. Operations for opx(n, P )

Füredi and Hajnal [18] proved that if M is a 0-1 matrix with a one in the rightmost

column in row r, and M ′ is obtained from M by adding a new column on the right

with a single one in row r, then ex(n,M ′) ≤ ex(n,M) +n. We prove a similar type

of result for opx(n, P ). Before we prove this result, we prove a lemma that we will

use a few times throughout the paper.

Lemma 2.8. Let P be a closed horizontal line segment of length c, and suppose

that S ⊆ [0, n]2 is open and P -free. For each y ∈ [0, n], let Sy denote the set of

points (a, b) ∈ S such that b = y. Then µ1(Sy) ≤ c for all y ∈ [0, n].

Proof. Suppose for a contradiction that there exists y ∈ [0, n] such that µ1(Sy) > c.

Since S is open, we have 0 < y < n and Sy is a countable disjoint union of open

intervals I1, I2, . . . . Then µ1(Sy) =
∑
j≥1 |Ij |. Thus, for all ε > 0, there exists Nε

such that
∑Nε
j=1 |Ij | > µ1(Sy)− ε.

Since we are supposing that µ1(Sy) > c, we must have µ1(Sy) = c + q for some

q > 0. Let ε = q
2 . Let Nε be sufficiently large so that

∑Nε
j=1 |Ij | > µ1(Sy) − ε.

In each open interval Ij for j = 1, . . . , Nε, we take a closed interval Cj of length

max
(
0, |Ij | − ε

2j

)
. Then

Nε∑
j=1

|Cj | =
Nε∑
j=1

max

(
0, |Ij | −

ε

Nε

)
> (µ1(Sy)− ε)− ε = µ1(Sy)− q = c.

Thus, the disjoint union of the Cj for j = 1, . . . , Nε must contain P , so S contains

P , which gives a contradiction. Thus, µ1(Sy) ≤ c for all y ∈ [0, n].

Now we are ready to strengthen the result of Füredi and Hajnal from [18].

Lemma 2.9. If P ⊆ R2 has a rightmost column, and P ′ is obtained from P by

adding a horizontal segment of length c to P with its left endpoint on a point in the

rightmost column of P , then opx(n, P ′) ≤ opx(n, P ) + cn.
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Proof. Let S′t ⊆ [0, n]2 for t ∈ N be a sequence of P ′-free open subsets with the

property that limt→∞ µ2(S′t) = opx(n, P ′). For each point p in row r of S′t, let

Z(t, p) be the set of points in row r of S′t to the right of p. For each t, let St
be obtained from S′t by removing from each row r of S′t any points p such that

µ1(Z(t, p)) ≤ c. In other words, St only includes the points p from S′t for which

µ1(Z(t, p)) > c. Then St must avoid P , or else S′t would contain P ′ by Lemma 2.8.

In the following paragraphs, we show that St is open. To see this, fix any p ∈ St
from some row r and column g of S′t. By definition of St, µ1(Z(t, p)) > c, so

µ1(Z(t, p)) = c + q for some q > 0. Since S′t is open, we can write Z(t, p) as a

countable union of disjoint row-r intervals Ij for j ≥ 1 (which are open in the

restriction to row r) such that
∑
j |Ij | = c + q. In each interval Ij , we choose a

closed interval Cj ⊆ Ij such that
∑
j |Cj | ≥ c + q

2 . Note that we can do this, e.g.,

by choosing |Cj | = max(0, |Ij | − q
2j+1 ) for each j ≥ 1.

Since S′t is open, around every point p′ ∈ S′t there is an open ball B(p′, νp′) ⊆
S′t of radius νp′ centered at p′ for some νp′ > 0. For each closed interval Cj ,

∪p′∈CjB(p′, νp′) is an open cover of Cj . Since Cj is closed and bounded, it is

compact, so the open cover ∪p′∈CjB(p′, νp′) has a finite subcover ∪π∈KB(π, νπ) for

some finite subset K ⊆ Cj . Since Cj is covered by a finite union of open balls

∪π∈KB(π, νπ), there exists hj such that B(p′, hj) ⊆ S′t for all p′ ∈ Cj .
Since

∑
j |Cj | ≥ c+ q

2 , there exists a minimum N such that
∑N
j=1 |Cj | > c+ q

4 .

Therefore, let H = min({hj : 1 ≤ j ≤ N}). Then for every point p′ ∈ Cj for each

j = 1, . . . , N , we have B(p′, H) ⊆ S′t.
Since there is an open ball B(p, νp) ⊆ S′t, all points τ in the same column g

as p in S′t with dist(τ, p) ≤ νp
2 must satisfy τ ∈ S′t. Moreover since the open ball

B(p′, H) is a subset of S′t for every point p′ ∈ Cj for each j between 1 and N

inclusive, all points τ in column g in S′t with dist(τ, p) ≤ min(
νp
2 ,

H
2 ) must be in St.

This is because if τ is in row r′ and column g of S′t with |r− r′| ≤ min(
νp
2 ,

H
2 ), then

µ1(Z(t, τ)) ≥
∑N
j=1 |Cj | > c+ q

4 .

Let R = min(
νp
2 ,

H
2 ,

q
4 ). Then the open ball B(p,R) is a subset of S′t. The points

in the intersection of g with B(p,R) must be in St, as explained in the previous

paragraph. Thus, all points in B(p,R) to the left of column g must also be in St,

by definition of St. All points τ in the intersection of g with B(p,R) must be in

some row r′ with |r − r′| < R and satisfy µ1(Z(t, τ)) > c + q
4 . Thus, all points

τ ′ in B(p,R) to the right of column g in row r′ must satisfy µ1(Z(t, τ ′)) > c by

definition of R. So all points in B(p,R) to the right of column g must also be in St,

by definition of St. We showed that B(p,R) ⊆ St, so St is open.

Let A = S′t − St, and let Ay denote the set of elements of A in row y. By

Fubini’s theorem and the definition of St, µ2(A) =
∫
y∈[0,n] µ1(Ay)dµ1(y) ≤ cn.

Thus, µ2(St) ≥ µ2(S′t)−cn, so limt→∞ µ2(St) ≥ opx(n, P ′)−cn, which implies that

opx(n, P ′) ≤ opx(n, P ) + cn.
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Combining Lemmas 2.3 and 2.9, we obtain the following corollary about adding

a new point to the right of a set of points in the plane.

Corollary 2.10. If P is a subset of R2 with a rightmost column, and P ′ is obtained

from P by adding a new point to P that is c to the right of a point p in the rightmost

column of P , then opx(n, P ′) ≤ opx(n, P ) + cn.

Proof. Let P ′′ be obtained from P by adding a horizontal segment of length c

to P with its left endpoint on point p in the rightmost column of P . Then P ′′

contains P ′, so opx(n, P ′) ≤ opx(n, P ′′) by Lemma 2.3. Thus, by Lemma 2.9 we

have opx(n, P ′) ≤ opx(n, P ′′) ≤ opx(n, P ) + cn.

Both of the last two results are sharp. For example, P could be a single point.

P ′ would be a horizontal segment of length c in Lemma 2.9 or a pair of points in

the same row at a distance of c in Corollary 2.10. We discuss horizontal segments

more in Section 4.

If M is a 0-1 matrix, let S(M,k) be the 0-1 matrix obtained from M by insert-

ing k rows of zeroes between every consecutive pair of rows of M and k columns

of zeroes between every consecutive pair of columns of M . Tardos proved that

ex(n, S(M,k)) = O(ex(n,M) + n) for all 0-1 matrices M [41], where the constant

in the bound depends on k. The proof provides the following stronger but more

restricted bound, which we use in our proof of the main result in Section 3.

Lemma 2.11 ([41]). For all finite subsets P ⊆ R2, we have ex(n, S(MP , k)) ≤
(k + 1)2 ex

(
d n
k+1e,MP

)
.

Proof. Suppose that A is an n×n 0-1 matrix with ex(n, S(MP , k)) ones that avoids

S(MP , k). Let A′ be the (k + 1)d n
k+1e × (k + 1)d n

k+1e 0-1 matrix obtained from A

by adding at most k rows of zeroes to the bottom of A and at most k columns of

zeroes to the right side of A. Note that A′ must still avoid S(MP , k), since A avoids

S(MP , k). For each 1 ≤ x ≤ k+ 1 and 1 ≤ y ≤ k+ 1, let Ax,y be the d n
k+1e×d

n
k+1e

0-1 matrix obtained from A′ by taking the submatrix of rows r for which (k + 1)

divides (r−x) and columns s for which (k+1) divides (s−y). For all x and y, Ax,y
must avoid MP or else A would contain S(MP , k). Thus, each 0-1 matrix Ax,y has

at most ex
(
d n
k+1e,MP

)
ones, so A has at most (k + 1)2 ex

(
d n
k+1e,MP

)
ones.

The next result is analogous to the last one, but for finite subsets of R2 instead

of 0-1 matrices. It shows that even if we add empty intervals of rows and columns

to a finite subset P , it only changes opx(n, P ) by at most a constant factor (which

depends on the size of the added intervals and the distances between the points in

P ). We use this result multiple times in the remainder of the paper.

Lemma 2.12. Suppose that P ⊆ R2 is a finite subset in which the distances between

all consecutive pairs of rows and columns are in [c, d]. Let P ′ be a dilation of P by
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a factor of q > 1, i.e., for every point (x, y) ∈ P , the point (qx, qy) ∈ P ′. Then

opx(n, P ′) ≤ (d qdc e+ 1)2 opx
(⌈

dnc e
d qdc e+1

⌉
c, P

)
.

Proof. Let St ⊆ [0, n]2 for t ∈ N be a sequence of P ′-free open subsets with the

property that limt→∞ µ2(St) = opx(n, P ′). We partition [0, dnc ec]
2 into c × c open

squares, deleting any points at the boundaries, and we use the c × c squares to

define a family of subsets. Note that any deleted points at the boundaries have a

total measure of 0. For each 1 ≤ u ≤ d qdc e+ 1 and 1 ≤ v ≤ d qdc e+ 1, let [St]u,v be

the subset of
[
0,
⌈
dnc e
d qdc e+1

⌉
c
]2

obtained from St through the following operations.

For each 1 ≤ u ≤ d qdc e + 1, let Ju be the set of all x for which d qdc e + 1 divides

dxc e − u excluding those x that are multiples of c. In [St]
′
u,v, include the points in

St with x-coordinates in Ju and y-coordinates in Jv (note that these points form

open c× c squares), and do not include any points with x-coordinates not in Ju or

y-coordinates not in Jv. We form [St]u,v from [St]
′
u,v by completely contracting any

rows or columns of c × c squares that were not included in [St]
′
u,v and translating

the resulting subset into the square
[
0,
⌈
dnc e
d qdc e+1

⌉
c
]2

.

For all u and v, [St]u,v is open since it is obtained by translating disconnected

components of the intersection of an open set with an open set. Moreover [St]u,v
must avoid P or else St would contain P ′, since P is finite and has no consecutive

columns or rows with distance less than c. Indeed, if there are two points in [St]u,v in

columns at distance x, where x ≥ c, then they correspond to two points in columns of

St at distance at least qd. This is because between two c×c squares of Ju on different

columns, there is a gap of width at least d qdc e · c ≥ qd. Thus, each subset [St]u,v has

µ2([St]u,v) ≤ opx
(⌈

dnc e
d qdc e+1

⌉
c, P

)
, so µ2(St) ≤

(
d qdc e+ 1

)2
opx

(⌈
dnc e
d qdc e+1

⌉
c, P

)
for

all t ∈ N. Thus,

opx(n, P ′) = lim
t→∞

µ2(St) ≤
(⌈

qd

c

⌉
+ 1

)2

opx

(⌈
dnc e

d qdc e+ 1

⌉
c, P

)
.

3. A Connection to ex(n,M)

In this section, we show that opx(n, P ) encompasses the extremal function ex(n,M)

up to a constant factor. We establish the theorem below by proving an upper bound

and a lower bound.

Theorem 3.1. For all finite subsets P ⊆ R2, we have opx(n, P ) = Θ(ex(n,MP )),

where the constants in the bound depend on the distances between the rows and

columns in P .
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Then we use this theorem to derive several corollaries about opx(n, P ) from

known results about ex(n,M).

3.1. Extremal Functions are Asymptotically Equivalent for Finite Point
Sets

In order to prove Theorem 3.1, we first provide a construction which implies that

opx(n, P ) = Ω(ex(n,MP )). Then we show that opx(n, P ) = O(ex(n,MP )) by

turning P -free subsets into 0-1 matrices and applying Lemma 2.11.

Theorem 3.2. For all finite subsets P ⊆ R2, we have opx(n, P ) = Ω(ex(n,MP )),

where the constant in the bound depends on the distances between the rows and

columns in P .

Proof. Let n be a positive integer, let d be the minimum distance between any two

consecutive rows of P , let d′ be the minimum distance between any two consecutive

columns of P , and define c′ = min(d, d′). Suppose that c is the maximum positive

real number that is at most min(c′, 1) for which n
c is an integer. Note that c ≥

min(c′,1)
2 , since n

x is an integer whenever x = n
2j for some j ∈ N. Let S be a subset of

[0, n]2 obtained by starting with any MP -free n
c ×

n
c 0-1 matrix A with the maximum

possible number of ones, and for each pair of integers 1 ≤ i, j ≤ n
c such that ai,j = 1,

adding the points in the open square (c(j− 1), cj)× (n− ci, n− c(i− 1)) to S. Note

that S is open, since it is a union of open sets.

Suppose for a contradiction that S contains P . Each point in the copy of P in

S must be in a distinct open square of S, since the open squares have sidelength

c, and c is at most both the minimum distance between any two consecutive rows

of P and minimum distance between any two consecutive columns of P . For any

points p, p′ in the copy of P in the same row, the open squares that contain p and

p′ must have the same set of y-coordinates. For any points p, p′ in the copy of P in

different rows, the open squares U and U ′ that contain p and p′ must have disjoint

sets of y-coordinates, since c is at most the minimum distance between any two

consecutive rows of P and both U and U ′ are open c× c squares. Similarly, for any

points p, p′ in the copy of P in the same column, the open squares that contain p

and p′ must have the same set of x-coordinates. For any points p, p′ in the copy of

P in different columns, the open squares U and U ′ that contain p and p′ must have

disjoint sets of x-coordinates, since c is at most the minimum distance between any

two consecutive columns of P and both U and U ′ are open c× c squares.

For each point in the copy of P in S with coordinates (x, y), we must have

an
c+1−d yc e,d

x
c e = 1. Note that for every pair of points p, p′ in the copy of P that

are in the open squares U,U ′, the ones in A corresponding to p and p′ must be

in the same row if U and U ′ have the same set of y-coordinates, so the ones in

A corresponding to p and p′ must be in the same row if p and p′ are in the same
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row. The ones in A corresponding to p and p′ must be in different rows if U and

U ′ have disjoint sets of y-coordinates, so the ones in A corresponding to p and p′

must be in different rows if p and p′ are in different rows. Similarly, the ones in A

corresponding to p and p′ must be in the same column if p and p′ are in the same

column. The ones in A corresponding to p and p′ must be in different columns if U

and U ′ have disjoint sets of x-coordinates, so the ones in A corresponding to p and

p′ must be in different columns if p and p′ are in different columns.

Thus, the ones in A form a copy of MP in A, a contradiction of A being MP -

free. Thus, S is P -free and µ2(S) = c2 ex
(
n
c ,MP

)
≥ c2 ex(n,MP ) = Ω(ex(n,MP )),

where the first inequality follows by super-additivity of ex(n,MP ).

Next we complete the proof of Theorem 3.1 to show that the construction in

Theorem 3.2 is sharp up to a constant factor.

Theorem 3.3. For all finite subsets P ⊆ R2, we have opx(n, P ) = O(ex(n,MP )),

where the constant in the bound depends on the distances between the rows and

columns in P .

Proof. Let n be a positive integer. If P only has a single point, then opx(n, P ) =

ex(n,MP ) = 0. Thus, we may suppose that P has multiple points, so MP has

multiple ones. It is a well-known fact that any 0-1 matrix M with multiple ones has

ex(n,M) ≥ n, so we can conclude that ex(n,MP ) ≥ n since P has multiple points.

By Lemmas 2.3 and 2.12, it suffices to prove this result for subsets P where

the distance between consecutive rows and consecutive columns is equal to 1. Let

St ⊆ [0, n]2 for t ∈ N be a sequence of P -free open sets with the property that

limt→∞ µ2(St) = opx(n, P ). Next, we will define an infinite family of unions of

open squares Zt,r ⊆ St for r ∈ Z+ and show that their Lebesgue measures converge

to µ2(St).

Specifically let Zt,r be obtained from St by drawing an r× r grid of squares each

of dimensions n
r ×

n
r on [0, n]2, and including the whole interior U of each square in

Zt,r if and only if U ⊆ St, and otherwise including no part of U in St. We do not

include any points in Zt,r from interiors U of squares for which U 6⊆ St. We also do

not include any points at the boundaries of the n
r ×

n
r squares in Zt,r.

For each point p ∈ St, let wp be the maximum positive real number of the form
n
x for any positive integer x such that the open ball B(p, wp) is a subset of St. Since

St is open, wp is defined for all p ∈ St. Inside each open ball B(p, wp), we can draw

an open square Tp of sidelength wp with axis-parallel sides centered at p. Note that

St = ∪p∈StTp.
Fix a positive integer r. We can classify the points in St that will not be included

in Zt,r into two sets Bt,r and Lt,r. If p = (x, y) ∈ St satisfies x = inr or y = j nr
for some integers i and j, then p is on the boundary of a n

r ×
n
r square, so p is not

included in Zt,r. Let Bt,r be the set of points in St that are on the boundary of a
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n
r ×

n
r square. If p ∈ St is not in Bt,r, then the only way that p will not be included

in Zt,r is if the open square U of sidelength n
r which contains p is not a subset of

St. If wp ≥ 2nr , then U ⊆ Tp ⊆ St. Thus, if U is not a subset of St, then we must

have wp < 2nr . Let Lt,r be the set of points p in St that are not in Bt,r and are

not in Zt,r. Note that St = Bt,r ∪ Lt,r ∪ Zt,r, and the sets Bt,r, Lt,r, and Zt,r are

disjoint. Thus,

µ2(St) = µ2(Bt,r∪Lt,r∪Zt,r) = µ2(Bt,r)+µ2(Lt,r)+µ2(Zt,r) = µ2(Lt,r)+µ2(Zt,r).

Since wp < 2nr for all p ∈ Lt,r, we have limr→∞ µ2(Lt,r) = 0. Therefore, we have

limr→∞ µ2(Zt,r) = µ2(St), so we have limt→∞ limr→∞ µ2(Zt,r) = opx(n, P ).

For each subset Zt,r, observe that we can define an r × r 0-1 matrix At,r for

which the (i, j)-entry equals 1 if and only if the square in row i and column j of

the grid is included in Zt,r. Our numbering of the squares in the grid goes from left

to right and top to bottom, like a matrix. Note that Zt,r avoids P , since St avoids

P and Zt,r ⊆ St. Thus, At,r avoids S
(
MP , d rne

)
, or else the ones in S

(
MP , d rne

)
would correspond to a union of interiors of squares in Zt,r that contain a copy of

P .

Let |At,r| denote the number of ones in At,r. For each t ≥ 0 and r ≥ n2, we have

µ2(Zt,r) =
(n
r

)2
|At,r|

≤
(n
r

)2
ex
(
r, S

(
MP ,

⌈ r
n

⌉))
≤
(n
r

)2 (⌈ r
n

⌉
+ 1
)2

ex

(⌈
r

d rne+ 1

⌉
,MP

)
= (1 + o(1)) ex

(⌈
r

d rne+ 1

⌉
,MP

)
≤ (1 + o(1)) ex(n,MP ),

where the first inequality follows from the preceding paragraph and the second

inequality follows from Lemma 2.11. Thus, opx(n, P ) = limt→∞ limr→∞ µ2(Zt,r) =

O(ex(n,MP )).

3.2. Corollaries of Results on ex(n,M)

Marcus and Tardos proved that ex(n,M) = O(n) for every permutation matrix M

[36], which was the missing piece to prove the Stanley-Wilf conjecture. Fox [9] later

sharpened the bound by proving that ex(n,M) = 2O(k)n for every k×k permutation

matrix M . This implies the corollary below.

Corollary 3.4. Let P ⊆ R2 with |P | = k for which all points in P have different

x-coordinates and different y-coordinates, and the distances between all consecutive
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rows and all consecutive columns are at most c. Then opx(n, P ) = 2O(k)n, where

the constant in the bound depends on c.

The Kővari-Sós-Turán theorem states that ex(n, Js,t) = O(n2−
1
t ), where Js,t

denotes the s× t matrix of all ones. As a result, for every 0-1 matrix M there exists

a constant ε > 0 such that ex(n,M) = O(n2−ε). This is because M is contained in

the all-ones matrix of the same dimensions, so we can let r be the width of M and

set ε = 1
r .

Corollary 3.5. For every subset P with s rows, t columns, and st points, we have

opx(n, P ) = O(n2−
1
t ).

We prove a stronger version of this result in Section 4 for infinite sets of points

that look like equal signs (=) when s = 2 and equivalence symbols (≡) when s = 3.

Corollary 3.6. For every finite subset P ⊆ R2 there exists a constant ε > 0 such

that opx(n, P ) = O(n2−ε).

We show that the last corollary is false for bounded infinite subsets in Section 4.

The Kővari-Sós-Turán theorem is known to be sharp for s ≥ 2 and t = 2, as well as

s ≥ 3 and t = 3. Thus, we obtain the following corollary about opx(n, P ).

Corollary 3.7. For every subset P ⊆ R2 with k ≥ 2 rows, 2 columns, and 2k

points, we have opx(n, P ) = Θ(n3/2). For every subset P ⊆ R2 with k ≥ 3 rows, 3

columns, and 3k points, we have opx(n, P ) = Θ(n5/3).

Keszegh [30] showed that any 0-1 matrix M that has no rows with multiple ones

satisfies ex(n,M) = O(n2α(n)
t

) for some constant t that depends on M , where α(n)

denotes the extremely slow-growing inverse Ackermann function. This implies a

corresponding result for finite subsets P ⊆ R2.

Corollary 3.8. If P is a finite subset of R2 that has no rows with multiple points,

then opx(n, P ) = O(n2α(n)
t

) for some constant t that depends on P .

Call a 0-1 matrix M linear if ex(n,M) = O(n) and nonlinear otherwise. Simi-

larly, we call a subset P ⊆ R2 linear if opx(n, P ) = O(n) and nonlinear otherwise.

Several papers on ex(n,M) have identified families of linear 0-1 matrices (e.g.,

permutation matrices, double permutation matrices, matrices corresponding to vis-

ibility graphs, and linear matrices with at most four ones in [13, 22, 24, 36, 41]),

and each of these linear 0-1 matrices corresponds to linear subsets of R2. Other

papers have identified families of nonlinear 0-1 matrices (e.g., block permutation

matrices, minimally nonlinear matrices, nonlinear matrices with applications to

path minimization algorithms, and nonlinear matrices with at most four ones in

[29, 30, 37, 39, 41]), and each of these nonlinear 0-1 matrices corresponds to non-

linear subsets of R2.
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4. Forbidden Bounded Infinite Subsets

On the topic of linear subsets, we start with one of the most natural infinite forbid-

den subsets to consider, a line segment Q.

Theorem 4.1. If Q is a closed horizontal line segment of length c, then opx(n,Q) =

cn.

Proof. The upper bound opx(n,Q) ≤ cn is an immediate consequence of Lemma 2.9

with P being a single point. On the other hand, the subset T = (0, c) × (0, n) is

open and Q-free with µ2(T ) = cn, so opx(n,Q) ≥ µ2(T ) = cn.

Note that by symmetry, the last result also applies to vertical line segments.

Also, the lower bound construction in the last result shows that Corollary 2.9 and

Corollary 2.10 are sharp when applied to a single point. Next we consider line

segments that are neither horizontal nor vertical.

Theorem 4.2. If P is a closed line segment between (0, 0) and (a, b) for some

a, b > 0, then opx(n, P ) = (a+ b)n− ab.

Proof. Suppose that S ⊆ [0, n]2 is open and P -free. Rotate S, [0, n]2, and P

clockwise around the origin all by the same angle θ, until P becomes a horizontal

segment R(P ) of length ` =
√
a2 + b2. For example, if P is the segment between

(0, 0) and (3, 4), then R(P ) is the segment between (0, 0) and (5, 0).

The result of rotating [0, n]2 clockwise around the origin by θ is denotedR′([0, n]2),

and the result of rotating S clockwise around the origin by θ is denoted R′(S). The

rows of R′(S) are a subset of the rows of R′([0, n]2), which has height (a+b)n
` . Sup-

pose that we also translate R′([0, n]2) and R′(S) to obtain R([0, n]2) and R(S) re-

spectively, so that all points in R([0, n]2) and R(S) lie between y = 0 and y = (a+b)n
` .

For each y ∈
[
0, (a+b)n`

]
, let R(S)y denote the set of points (u, v) ∈ R(S) with v = y,

and let R([0, n]2)y denote the set of points (u, v) ∈ R([0, n]2) with v = y. First, we

claim that R(S) must avoid R(P ).

Suppose for a contradiction that R(S) contains R(P ). Then there exists y such

that R(S)y contains R(P ). Let L be the set of x-coordinates in R(S)y, so there is an

injection f : [0, `]→ L such that f(u)− f(v) ≥ u− v for all u, v ∈ [0, `] with u > v.

Let Q = R−1(R(S)y) ⊆ S be the preimage under R of R(S)y. In particular let

(d, e) be the preimage under R of (f(0), y). Let XQ denote the set of x-coordinates

of the points in Q, and let YQ denote the set of y-coordinates of the points in Q.

Define gX : [0, a] → XQ and gY : [0, b] → YQ by gX(x) = d + a
`

(
f
(
`
ax
)
− f(0)

)
and gY (y) = e+ b

`

(
f
(
`
by
)
− f(0)

)
. For any x1, x2 ∈ [0, a] with x1 > x2, we have

gX(x1)− gX(x2) =
a

`

(
f

(
`

a
x1

)
− f

(
`

a
x2

))
≥ a

`

(
`

a
x1 −

`

a
x2

)
= x1 − x2.
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Similarly, gY (y1) − gY (y2) ≥ y1 − y2 for all y1, y2 ∈ [0, b] with y1 > y2. Moreover

for any point (at, bt) with t ∈ [0, 1], we can see that (gX(at), gY (bt)) ∈ Q. This

is because f(0) ∈ L, f(t`) ∈ L and R−1 maps (f(0), y) to (d, e), so R−1 maps

(f(t`), y) to(
d+

a

`
(f(t`)− f(0)), e+

b

`
(f(t`)− f(0))) = (gX(at), gY (bt)

)
.

Since (f(t`), y) ∈ R(S)y and Q = R−1(R(S)y), we must have (gX(at), gY (bt)) ∈ Q.

So Q contains P , implying S contains P , which is a contradiction. Thus, R(S) must

avoid R(P ).

Then µ1(R(S)y) ≤ ` for all y ∈
[
0, (a+b)n`

]
, or else R(S) would contain R(P ) by

Lemma 2.8 with c = `.

However, for all y such that (a+b)n
` − ab

` ≤ y ≤ (a+b)n
` , we have µ1(R(S)y) ≤

µ1(R([0, n]2)y) =
(

(a+b)n
` − y

)
`2

ab . Similarly, if y ≤ ab
` , then we have µ1(R(S)y) ≤

µ1(R([0, n]2)y) = y `
2

ab . Since R(S) is open, the function µ1(R(S)y) :
[
0, (a+b)n`

]
→

R is a measurable function by Fubini’s theorem, so it is Lebesgue integrable on[
0, (a+b)n`

]
. Thus,

µ2(S) = µ2(R(S))

=

∫
y∈[0, (a+b)n` ]

µ1(R(S)y)dµ1(y)

≤
(

(a+ b)n

`
− 2ab

`

)
`+

ab

`
`

= (a+ b)n− ab.

On the other hand, the subset T = {(0, a)× (0, n)} ∪ {(0, n)× (0, b)} is open and

P -free with µ2(T ) = an+ bn− ab, so opx(n, P ) ≥ µ2(T ) = (a+ b)n− ab.

We can use the last result to get a linear bound on opx(n, P ) for a much more

general family of subsets P .

Theorem 4.3. Suppose that f : [0, a] → R is increasing, with f(t)−f(s)
t−s ≤ b for

all s, t ∈ [0, a] with s < t. If P is the set of points {(t, f(t)) : t ∈ [0, a]}, then

opx(n, P ) = Θ(n).

Proof. Let Q be the set of points
{

(t, bt) ∈ R2 : t ∈ [0, a]
}

. Then Q contains P , as

evidenced by the maps gX : [0, a] → [0, a] and gY : f([0, a]) → [0, ba] defined by

gX(t) = t and gY (f(t)) = bt. So opx(n, P ) ≤ opx(n,Q) = O(n) by Lemma 2.3 and

Theorem 4.2. On the other hand, we have opx(n, P ) ≥ an since (0, a)×(0, n) avoids

P , so opx(n, P ) = Θ(n).
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4.1. Bounded Infinite P ⊆ R2 with opx(n, P ) = Θ(n2)

In the last few results, we saw infinite subsets P with opx(n, P ) = O(n). In Section

3 we showed that opx(n, P ) = Θ(ex(n,MP )) for all finite subsets P , and it follows

from the Kővari-Sós-Turán theorem that for every 0-1 matrix M there exists ε > 0

such that ex(n,M) = O(n2−ε), so for every finite subset P there exists ε > 0 such

that opx(n, P ) = O(n2−ε). In the next result, we show that there exist bounded

and countably infinite sets of points P for which opx(n, P ) = Ω(n2). For the next

proof, we use a well-known lower bound on ex(n, Jr,r).

Lemma 4.4. For all r ≥ 2, we have ex(n, Jr,r) = Ω(n2−
2
r+1 ), where the constant

in the bound does not depend on r.

This lower bound is quick to prove using probabilistic methods as in [3]. Suppose

that we choose a random n × n 0-1 matrix where each entry is 1 with probability

p. The expected number of copies of Jr,r is pr
2(n
r

)(
n
r

)
. We can delete a one from

each copy, so the expected number of ones in the altered 0-1 matrix is at least

pn2− pr2
(
n
r

)(
n
r

)
> pn2

2 when r ≥ 2 and p ≤ n−
2
r+1 . Thus, ex(n, Jr,r) ≥ 1

2n
2− 2

r+1 for

all r ≥ 2.

Theorem 4.5. If P ⊆ R2 is open, then opx(n, P ) = Θ(n2), where the constant in

the lower bound depends on P .

In order to prove this theorem, we will prove a stronger fact. Given an open

subset P ⊆ R2, let QP be the set of points in P with rational coordinates. In the

following proof, all logarithms are base 2.

Theorem 4.6. If P ⊆ R2 is open, then opx(n,QP ) = Θ(n2), where the constant

in the lower bound depends on P .

Proof. The upper bound is trivial. For the lower bound, it suffices to show that

there exists a subset Q ⊆ QP for which opx(n,Q) = Ω(n2), where the constant in

the bound depends on P . Let p be an arbitrary element of P . Since P is open, there

exists some s > 0 for which there is an open ball B(p, s) centered at p of radius

s with B(p, s) ⊆ P . Since s > 0, there exists some rational number 0 < c < 1

such that B(p, s) contains a closed square of sidelength c with vertices at rational

coordinates. Without loss of generality, we may assume that this square is [0, c]2.

LetQr =
{
ic
r : i = 1, 2, . . . , r

}2
for r ≥ 2, so that |Qr| = r2. IfHr = {1, 2, . . . , r}2

for r ≥ 2, then Lemma 2.12 implies opx(m,Hr) ≤
(
d rc e+ 1

)2
opx

(⌈
dmrc e
d rc e+1

⌉
c
r , Qr

)
.

By Theorem 3.1 and Lemma 4.4, opx(m,Hr) = Ω(m2− 2
r+1 ) for all r ≥ 2, where

the constant in the bound does not depend on r. Thus, opx
(⌈
dmrc e
d rc e+1

⌉
c
r , Qr

)
=
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Ω

(
m

2− 2
r+1

(d rc e+1)2

)
for all r ≥ 2. If m ≥ 4 is an integer and r = dlogme, we obtain

opx

(
m

logm
,Qr

)
≥ opx

(mc
r
,Qr

)
≥ opx

(⌈ dmrc e
d rc e+ 1

⌉
c

r
,Qr

)
= Ω

(
m2− 2

r+1(
d rc e+ 1

)2
)

= Ω

(
m2

(logm)2

)
.

Let n = m
logm for some integer m ≥ 4. Then opx(n,QP ) = Ω(n2).

4.2. Strengthening the Kővari-Sós-Turán Theorem

For each t ≥ 2, let Ps,t,c denote the set {(x, y) : x ∈ [0, s] and y ∈ {c, 2c, . . . , tc}}.
For example, Ps,2,c is a set of points that looks like an equal sign (=) and Ps,3,c is

a set of points that looks like an equivalence symbol (≡).

We start by determining opx(n, Ps,2,c) up to a constant factor that depends on c

before we prove a general upper bound on opx(n, Ps,t,c). The integrals in the next

two proofs are Lebesgue integrals. For the lower bound in the next proof, we use

the result of Füredi [17] that ex(n, Js,2) = Θ(s
1
2n

3
2 ).

Theorem 4.7. For all s > 0, we have opx(n, Ps,2,c) = Θ(s
1
2n

3
2 ).

Proof. The lower bound follows from Lemma 2.3, Theorem 3.1, and the result of

Füredi cited in the paragraph before this proof. For the upper bound, let S be an

open Ps,2,c-free subset of [0, n]2. Let S′ be the 3-dimensional set of points of the form

(x, y, z) for which (x, y) ∈ S and (x, z) ∈ S and y − z > c. First, we note that S′ is

open. To see why this is true, define T1 =
{

(x, y, z) ∈ R3 : (x, y) ∈ S and (x, z) ∈ S
}

and define T2 =
{

(x, y, z) ∈ R3 : y − z > c
}

. Clearly T2 is an open subset of R3.

Since S is open, for every point (x, y) ∈ S there exists r > 0 such that the open

ball of radius r centered at (x, y) is a subset of S, that is, B((x, y), r) ⊆ S.

For each (x, y, z) ∈ T1, we have both (x, y) ∈ S and (x, z) ∈ S, so there exist

ry, rz > 0 such that B((x, y), ry) ⊆ S and B((x, z), rz) ⊆ S. For every (x′, y′, z′) ∈
B((x, y, z),min(ry, rz)), we have (x′, y′) ∈ S and (x′, z′) ∈ S, so (x′, y′, z′) ∈ T1.

Thus, B((x, y, z),min(ry, rz)) ⊆ T1, so T1 is open. Hence S′ is also open, since

S′ = T1 ∩ T2.

The points (x, y, z) ∈ S′ must satisfy 0 < z < n − c and z + c < y < n, so

the projection of these points onto the y − z plane is the interior of a triangle of

area (n−c)2
2 . For each fixed y and z with y, z ∈ (0, n), let S′′y,z denote the set of
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points (a, b, d) ∈ S′ with b = y and d = z. Then µ1(S′′yz) ≤ s by Lemma 2.8 for all

y, z ∈ (0, n), or else S would contain Ps,2,c. Since S′ is open, by Fubini’s theorem the

function µ1(S′′yz) : [0, n]2 → R is a measurable function, so it is Lebesgue integrable

on [0, n]2. Thus, µ3(S′) =
∫
z∈(0,n)

∫
y∈(0,n) µ1(S′′yz)dµ1(y)dµ1(z) ≤ s(n−c)2

2 .

For all x ∈ [0, n], let S′x denote the set of points (a, b, d) ∈ S′ with a = x, let

Sx denote the set of points (a, b) ∈ S with a = x, and let mx = µ1(Sx). Since S

is an open set, by Fubini’s theorem the function mx : [0, n] → R is a measurable

function. Therefore max(mx−c,0)2
2 is also a measurable function. Thus, max(mx−c,0)2

2

is Lebesgue integrable on [0, n].

For all x with mx ≥ c, we must have µ2(S′x) ≥ (mx−c)2
2 . To see why this is true,

for each (x, y) ∈ Sx let Qx,y = {(x, r) : (x, r) ∈ S and r ≤ y}. Note that

{(y, z) : (x, y) ∈ S and (x, z) ∈ S and µ1(Qx,z) + c < µ1(Qx,y)}
⊆ {(y, z) : (x, y) ∈ S and (x, z) ∈ S and z + c < y} .

Then we have

µ2(S′x) =

∫
z∈(0,n−c)

∫
y∈(z+c,n)

1(x,z)∈S1(x,y)∈Sdµ1(y)dµ1(z)

≥
∫
z∈(0,n−c)

∫
y∈(z+c,n)

1(x,z)∈S1(x,y)∈S1µ1(Qx,z)+c<µ1(Qx,y)dµ1(y)dµ1(z).

Given any (x, y) ∈ S, note that µ1(Qx,y) ∈ (0,mx). Since S is open, we can write

Sx as a countable union of open intervals. Thus, there are only countably many

b ∈ (0,mx) for which there does not exist r such that µ1(Qx,r) = b. Since countable

sets have measure zero, the last integral is equal to∫
z′∈(0,mx−c)

∫
y′∈(z′+c,mx)

1dµ1(y′)dµ1(z′) =
(mx − c)2

2
.

This finishes the proof that µ2(S′x) ≥ (mx−c)2
2 . Thus, by Fubini’s theorem we have

µ3(S′) =

∫
x∈[0,n]

µ2(S′x)dµ1(x) ≥
∫
x∈[0,n]

max(mx − c, 0)2

2
dµ1(x).

Let f : R → R be defined by f(t) = max(t−c,0)2
2 , so f(mx) = max(mx−c,0)2

2 and f is

convex. Thus, we can rewrite the last inequality as µ3(S′) ≥
∫
x∈[0,n] f(mx)dµ1(x).

Combining this with the inequality at the end of the second paragraph, we have∫
x∈[0,n] f(mx)dµ1(x) ≤ s(n−c)2

2 . By Jensen’s inequality, we obtain nf
(
µ2(S)
n

)
≤

s(n−c)2
2 , so n

(
µ2(S)
n −c

)2

2 ≤ s(n−c)2
2 or else µ2(S)

n ≤ c. Thus, µ2(S) = O(s
1
2n

3
2 ).

In order to generalize the last theorem, we prove a lemma where we bound the

volume of a t-dimensional solid that will be used in the main proof.
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Lemma 4.8. The set X of points (y1, . . . , yt) for which 0 < yt < n− (t− 1)c and

yi+1 + c < yi < n − (i − 1)c for all i = 1, . . . , t − 1 has µt(X) = Θ(nt), where the

constants in the bound depend on t. In particular, µt(X) ≥ (nt − c)
t for n ≥ ct.

Proof. The set X is contained in the set of points (y1, . . . , yt) with 0 ≤ yi ≤ n for all

i, which has volume nt, so µt(X) ≤ nt. For the lower bound, suppose that n > ct

and define a set of points X ′ consisting of the points (y1, . . . , yt) such that yt+1−i ∈(
n
t (i− 1), nt i− c

)
for each i = 1, . . . , t. Then X ′ ⊆ X, and µt(X

′) =
(
n
t − c

)t
.

Thus, µt(X) ≥ µt(X ′) = Ω(nt).

While the last theorem covered subsets that look like the equal sign (=), the next

theorem covers subsets that look like equivalence symbols (≡) and more generally,

vertical stacks of any finite number of horizontal segments of the same length with

endpoints in the same left and right columns.

Theorem 4.9. For all s > 0 and fixed t ≥ 2, we have opx(n, Ps,t,c) = O(s
1
t n2−

1
t ),

where the constants in the bound depend on t and c.

Proof. Let S be an open Ps,t,c-free subset of [0, n]2. Let S′ be the (t+1)-dimensional

set of points of the form (x, y1, y2, . . . yt) for which (x, yi) ∈ S for each i = 1, 2, . . . , t

and yi − yi+1 > c for each i = 1, . . . , t − 1. First, we note that S′ is open. To see

why this is true, as in Theorem 4.7 define

T1 =
{

(x, y1, y2, . . . yt) ∈ Rt+1 : (x, yi) ∈ S for all i = 1, 2, . . . , t
}
.

Define

T2 =
{

(x, y1, y2, . . . yt) ∈ Rt+1 : yi − yi+1 > c for all i = 1, 2, . . . , t− 1
}
.

Clearly T2 is an open subset of Rt+1. Since S is open, for every point (x, y) ∈
S there exists r > 0 such that the open ball of radius r centered at (x, y) is

a subset of S, i.e. B((x, y), r) ⊆ S. For each (x, y1, y2, . . . yt) ∈ T1, we have

(x, yi) ∈ S for all i = 1, 2, . . . , t, so there exist ri > 0 for each i = 1, 2, . . . , t

such that B((x, yi), ri) ⊆ S for all i = 1, 2, . . . , t. For every (x′, y′1, y
′
2, . . . y

′
t) ∈

B((x, y1, y2, . . . yt),min(r1, r2, . . . , rt)), we have (x′, y′i) ∈ S for all i = 1, 2, . . . , t,

which implies that (x′, y′1, y
′
2, . . . y

′
t) ∈ T1. Therefore, we have

B((x, y1, y2, . . . yt),min(r1, r2, . . . , rt)) ⊆ T1,

so T1 is open. Hence S′ is also open, since S′ = T1 ∩ T2.

The points (x, y1, y2, . . . yt) ∈ S′ must satisfy 0 < yt < n− (t−1)c and yi+1 +c <

yi < n − (i − 1)c for all i = 1, . . . , t − 1. Thus, the projection of these points onto

the last t coordinates is a t-dimensional solid of volume Θ(nt) by Lemma 4.8. For

each fixed y1, y2, . . . , yt with y1, y2, . . . , yt ∈ (0, n), let S′′y1,y2,...,yt denote the set of
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points (a, b1, b2, . . . , bt) ∈ S′ with bi = yi for each i. Then µ1(S′′y1,y2,...,yt) ≤ s by

Lemma 2.8 or else S would contain Ps,t,c. Since S′ is open, by Fubini’s theorem

the function µ1(S′′y1,y2,...,yt) : [0, n]t → R is a measurable function, so it is Lebesgue

integrable on [0, n]t. Thus,

µt+1(S′) =

∫
yt∈(0,n)

∫
yt−1∈(0,n)

· · ·
∫
y1∈(0,n)

µ1(S′′y1,y2,...,yt)dµ1(y1)dµ1(y2) . . . dµ1(yt)

= O(snt).

For all x ∈ [0, n], let S′x denote the set of points (a, b1, b2, . . . , bt) ∈ S′ with a = x,

let Sx denote the set of points (a, b) ∈ S with a = x, and let mx = µ1(Sx). As in

the last proof, since S is open, by Fubini’s theorem the function mx : [0, n] → R
is a measurable function. Therefore max(mx−ct,0)t

tt is also a measurable function.

Thus, max(mx−ct,0)t
tt is Lebesgue integrable over [0, n]. For all x, we now prove that

µt(S
′
x) ≥ max(mx−ct,0)t

tt . Suppose that mx ≥ ct. For each (x, y) ∈ Sx, as in Theorem

4.7 let Qx,y = {(x, r) : (x, r) ∈ S and r ≤ y}. Note that

{ (y1, . . . , yt) : (for all i ≤ t)((x, yi) ∈ S) and

(for all i ≤ t− 1)(µ1(Qx,yi+1
) + c < µ1(Qx,yi)) }

⊆ { (y1, . . . , yt) : (for all i ≤ t)((x, yi) ∈ S) and

(for all i ≤ t− 1)(yi+1 + c < yi) }.

Then we have

µt(S
′
x) =

∫
yt∈(0,n−(t−1)c)

∫
yt−1∈(yt+c,n−(t−2)c)

· · ·
∫
y1∈(y2+c,n)

t∏
i=1

1(x,yi)∈Sdµ1(y1)dµ1(y2) . . . dµ1(yt)

≥
∫
yt∈(0,n−(t−1)c)

∫
yt−1∈(yt+c,n−(t−2)c)

· · ·
∫
y1∈(y2+c,n)(

t∏
i=1

1(x,yi)∈S

)(
t−1∏
i=1

1µ1(Qx,yi+1
)+c<µ1(Qx,yi )

)
dµ1(y1)dµ1(y2) . . . dµ1(yt).

Given any (y1, . . . , yt) with (x, yi) ∈ S for each i ≤ t, note that we have

µ1(Qx,yi) ∈ (0,mx) for each i ≤ t. Since S is open, we can write Sx as a countable

union of open intervals. Thus, there are only countably many b ∈ (0,mx) for which

there does not exist r such that µ1(Qx,r) = b. Since countable sets have measure
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zero, the last integral is equal to∫
zt∈(0,mx−(t−1)c)

∫
zt−1∈(zt+c,mx−(t−2)c)

· · ·
∫
z1∈(z2+c,mx)

1dµ1(z1)dµ1(z2) . . . dµ1(zt)

≥ (mx − ct)t

tt
,

where the last inequality follows by Lemma 4.8. Thus, by Fubini’s theorem we

obtain

µt+1(S′) =

∫
x∈[0,n]

µt(S
′
x)dµ1(x) ≥

∫
x∈[0,n]

max((mx − ct, 0))t

tt
dµ1(x).

Let f : R → R be defined by f(z) = max(z−ct,0)t
tt , so f(mx) = max(mx−ct,0)t

tt

and f is convex. Thus, we can write the last inequality in the last paragraph as

µt+1(S′) ≥
∫
x∈[0,n] f(mx)dµ1(x). Combining this with the inequality at the end

of the second paragraph, we have
∫
x∈[0,n] f(mx)dµ1(x) = O(snt). By Jensen’s

inequality, we obtain nf
(
µ2(S)
n

)
= O(snt), so n

(
µ2(S)
n

t − c
)t

= O(snt) or else

µ2(S)
n ≤ ct. Thus, µ2(S) = O(s

1
t n2−

1
t ).

4.3. Disjoint Unions of Horizontal Segments

Our next result is for any disjoint union of a finite number of horizontal segments P

with no two points having the same x-coordinate and no two segments having the

same y-coordinate, for which we prove a linear upper bound on opx(n, P ). This is

in analogy to the linear upper bound on ex(n,M) when M is a double permutation

matrix [22].

Theorem 4.10. If P is a disjoint union of a finite number of horizontal segments

with no two points having the same x-coordinate and no two segments having the

same y-coordinate, then opx(n, P ) = O(n).

Proof. By Lemma 2.3, it suffices to prove that opx(n, P ) = O(n) with the following

restrictions on P . We assume that the consecutive rows of P are a distance of α

apart, each segment in P is closed and has length `, and there is a distance of α

between the vertical lines that contain the closest endpoints of consecutive segments

from left to right.

Suppose that S ⊆ [0, n]2 is an open P -free subset. We draw a grid on S with

a total of dnαe
2 squares each of dimensions α × α. The squares in this proof are

closed, so they intersect at the boundaries. Note that the rightmost column and

topmost row of squares in the grid may cover some area outside of [0, n]2 if n
α is not

an integer. We construct a 0-1 matrix B of dimensions dnαe×d
n
αe so that the α×α
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square Uij in the ith row and jth column of squares in the grid corresponds to the

(i, j) entry bij of B.

To construct B, we add entries row by row, left to right. Suppose that we are

on row i of B. If Uij contains no point of S, then we set bij = 0. If Uij is the first

square in the ith row of squares in the grid to contain any point of S, then we set

bij = 1. Finally if Uij contains a point of S but some other square in the ith row of

squares to the left of Uij contains a point of S, then let j′ be the greatest integer

less than j for which bij′ = 1 and let Q denote the restriction of S to the j − j′ + 1

squares between Uij′ and Uij inclusive. We set bij = 1 if and only if there exists a

row r of Q for which µ1(Qr) > `, where Qr denotes the 1-dimensional restriction of

Q to row r.

Let P ′ be the finite subset of R2 obtained from P by only including the left and

right endpoints of each segment, so the cardinality of P ′ is twice the number of

segments in P . Note that MP ′ is a double permutation matrix, so ex(n,MP ′) =

O(n) [22].

Recall that S(MP ′ , 1) is the 0-1 matrix obtained from MP ′ by inserting a single

row of zeroes between every consecutive pair of rows of MP ′ and a single column of

zeroes between every consecutive pair of columns of MP ′ . The main observation is

that B must avoid S(MP ′ , 1). To see why this is true, suppose for a contradiction

that B contains S(MP ′ , 1), and consider a copy of S(MP ′ , 1) in B. Suppose that

there are entries bij1 and bij2 in row i of B that contain ones in the copy of S(MP ′ , 1).

Then in the ith row of squares in the grid, if Q is the restriction of S to the squares

between Uij1 and Uij2 inclusive, we can find some row r such that µ1(Qr) > `. By

Lemma 2.8 with c = `, Q must contain a closed horizontal segment of length `. Note

that we can do the same process with any entries in the same row of B that contain

ones in the copy of S(MP ′ , 1). Thus, S contains a set H of horizontal segments

of length `, and H contains P . In particular, H has a vertical gap of at least α

between every pair of segments since every other row of S(MP ′ , 1) is empty and

each entry of B corresponds to an α×α square. Moreover, H has a horizontal gap

of at least α between every pair of segments since every other column of S(MP ′ , 1)

is empty. Since S contains H and H contains P , we conclude that S contains P ,

which is a contradiction.

Now we know that the number of ones in B is at most ex
(
dnαe, S(MP ′ , 1)

)
= O(n)

by Lemma 2.11 and [22], where the constant in the bound depends on α. For every

entry bij = 1 in B, we define chunks which cover the elements of S. If bij is not the

rightmost entry in row i with a 1, then let bik be the next entry in row i after bij
for which bik = 1. The chunk Cij consists of all squares in the ith row of the grid

between Uij and Uik, including Uij but not Uik. If bij is the rightmost entry in row

i of B with a 1, then the chunk Cij consists of all squares Uik for k ≥ j.
Consider any chunk Q = Cij of S. By definition, for every row r in Q, we

must have µ1(Qr) ≤ `. Without loss of generality, we may assume that r ∈ [0, α].
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Thus, by Fubini’s theorem µ2(Q) =
∫
r∈[0,α] µ1(Qr)dµ1(r) ≤ α`. Thus, µ2(S) ≤

α` ex
(
dnαe, S(MP ′ , 1)

)
= O(n).

5. Subsets of Rd

In this section, we generalize the extremal function opx(n, P ) and our results to

higher dimensional sets of points. We start by defining extremal functions of for-

bidden d-dimensional 0-1 matrices. We say that a d-dimensional 0-1 matrix A

contains a d-dimensional 0-1 matrix B if some submatrix of A is either equal to B

or can be turned into B by changing some ones to zeroes. Otherwise we say that

A avoids B, and that A is B-free. We define the d-dimensional extremal function

ex(n,M, d) as the maximum possible number of ones in a d-dimensional M -free 0-1

matrix with all dimensions equal to n. Note that the extremal function ex(n,M, d)

is the same as ex(n,M) when d = 2 and M is a 2-dimensional 0-1 matrix. The vast

majority of research on ex(n,M, d) has been for the case d = 2, but several papers

have focused on higher dimensions [33, 25, 23, 19, 44].

As with matrix extremal functions, we can generalize opx(n, P ) from R2 to Rd.
Suppose that P and S are both subsets of Rd. Let Ci(P ) be the set of all ith

coordinates of points in P . Similarly, let Ci(S) be the set of all ith coordinates of

points in S. We say that S contains P if there exist functions fi : Ci(P ) → Ci(S)

for each i = 1, . . . , d such that all statements below are true:

1. For each i = 1, . . . , d, we have fi(x)−fi(x′) ≥ x−x′ for all x, x′ ∈ Ci(P ) with

x > x′.

2. For all (x1, . . . , xd) ∈ P , we have (f1(x1), . . . , fd(xd)) ∈ S.

If S does not contain P , then S avoids P , i.e. S is P -free. For any subset

P ⊆ Rd and n ∈ R+, define opx(n, P, d) as the supremum of µd(S) over all open

P -free subsets S ⊆ [0, n]d.

We start with two simple observations about opx(n, P, d) which generalize some

earlier observations.

Lemma 5.1. If P and Q are subsets of Rd for which Q contains P , then we have

opx(n, P, d) ≤ opx(n,Q, d).

Lemma 5.2. For all m ≤ n, we have opx(m,P, d) ≤ opx(n, P, d).

As in the 2-dimensional case (Proposition 2.7), we have that opx(n, P, d) is con-

tinuous in n for n > 0.

Lemma 5.3. For all n > 0 and all ε with 0 < ε < n, we have opx(n, P, d) ≤
opx(n+ ε, P, d) < opx(n, P, d) + d(2n)d−1ε.
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Proposition 5.4. The function opx(n, P, d) is continuous in n for n > 0.

Given a subset P ⊆ Rd+1, let Pr(P ) denote the subset of points in Rd for which

(x1, . . . , xd) ∈ Pr(P ) if and only if there exists xd+1 such that (x1, . . . , xd, xd+1) ∈ P .

The next observation is analogous to a fact about projections of (d+1)-dimensional

0-1 matrices into d dimensions.

Lemma 5.5. For all P ⊆ Rd+1, we have opx(n, P, d+ 1) ≥ n opx(n,Pr(P ), d).

Proof. Let St ⊆ [0, n]d for t ∈ N be a sequence of Pr(P )-free open subsets for

which limt→∞ µd(St) = opx(n,Pr(P ), d). Note that since St is open for each t, we

have St ⊆ (0, n)d. For each t ∈ N, let Zt ⊆ (0, n)d+1 be the set such that for all

x1, . . . , xd+1 ∈ (0, n) we have (x1, . . . , xd, xd+1) ∈ Zt if and only if (x1, . . . , xd) ∈ St.
Then Zt is open, since it is the Cartesian product of open sets. Also Zt is P -free,

or else St would contain Pr(P ). Thus, opx(n, P, d + 1) ≥ limt→∞ µd+1(Zt) =

limt→∞ nµd(St) = n opx(n,Pr(P ), d).

It is easy to find examples for which the last result is sharp. For example, let P

be any subset of Rd+1 such that all elements of P have the same last coordinate.

Proposition 5.6. If all elements of P ⊆ Rd+1 have the same last coordinate, then

opx(n, P, d+ 1) = n opx(n,Pr(P ), d).

Proof. The lower bound opx(n, P, d+ 1) ≥ n opx(n,Pr(P ), d) follows from the last

lemma. For the upper bound, let S ⊆ [0, n]d+1 be open and P -free. For each

z ∈ [0, n], let Sz be the subset of Rd such that (x1, . . . , xd) ∈ Sz if and only if

(x1, . . . , xd, z) ∈ S.

Then µd(Sz) ≤ opx(n,Pr(P ), d) for all z ∈ [0, n], or else S would contain P . Since

S is open, the function µd(Sz) : [0, n]→ R is a measurable function by Fubini’s theo-

rem, so it is Lebesgue integrable on [0, n]. Thus, µd+1(S) =
∫
z∈[0,n] µd(Sz)dµ1(z) ≤

n opx(n,Pr(P ), d).

Using the last proposition, we can find many subsets P ⊆ Rd with opx(n, P, d) =

Θ(nd) for d > 2.

Corollary 5.7. If P ⊆ R2 is open, let P ′ ⊆ Rd for d > 2 be obtained from P

by letting (x, y, z1, . . . , zd−2) ∈ P ′ if and only if (x, y) ∈ P and (z1, . . . , zd−2) =

(0, . . . , 0). If QP ′ denotes the set of points in P ′ with rational coordinates, then

opx(n,QP ′ , d) = Θ(nd).

Proof. This follows from Theorem 4.6 by applying Proposition 5.6 a total of d− 2

times to QP .

By the last corollary and Lemma 5.1, we also obtain opx(n, P, d) = Θ(nd) for

any open subset P ⊆ Rd.
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Corollary 5.8. If P ⊆ Rd is open, then opx(n, P, d) = Θ(nd) and opx(n,QP , d) =

Θ(nd).

Given any finite subset P ⊆ Rd, define MP to be the d-dimensional 0-1 matrix for

which the length of the ith dimension of MP is the same as the number of distinct

values for the ith coordinate of the points in P for each i, the indices of the ith

dimension of MP correspond to the values of the ith coordinate of the points in P

in order, and MP has a one in each entry corresponding to a point of P and a zero

in each other entry.

The next lemma is proved analogously to Lemma 2.11. For d > 2, define

S(MP , k) analogously to the definition for d = 2.

Lemma 5.9. For all finite subsets P ⊆ Rd, we have ex(n, S(MP , k), d) ≤ (k +

1)d ex
(
d n
k+1e,MP , d

)
.

As with the last lemma, the proof of the next lemma is analogous to the 2-

dimensional case in Lemma 2.12.

Lemma 5.10. Suppose that P ⊆ Rd is a finite subset in which the differences

between all consecutive values for each coordinate are in [c1, c2]. Let P ′ be a dila-

tion of P by a factor of q > 1, that is, for every point (x1, . . . , xd) ∈ P , the point

(qx1, . . . , qxd) is in P ′. Then opx(n, P ′, d) ≤
(
d qc2c1 e+ 1

)d
opx

(⌈
d nc1 e
d qc2c1 e+1

⌉
c1, P, d

)
.

Using the last two lemmas, we obtain the next theorem with essentially the same

proof method as in Theorem 3.1. This lets us derive corollaries about opx(n, P, d)

from the literature on ex(n,M, d).

Theorem 5.11. For all finite subsets P ⊆ Rd, we must have opx(n, P, d) =

Θ(ex(n,MP , d)), where the constant in the bound depends on the differences be-

tween the consecutive values for each coordinate of P .

Klazar and Marcus proved that ex(n,M, d) = O(nd−1) for every d-dimensional

permutation matrix M [36]. This bound was later sharpened in [25] where it was

shown that ex(n,M, d) = 2O(k)nd−1 for every d-dimensional permutation matrix P

with k ones. This implies the corollary below.

Corollary 5.12. Let P ⊆ Rd with |P | = k for which no points in P have any

common coordinates, and the differences between the consecutive values for each

coordinate of P are all at most c. Then opx(n, P, d) = 2O(k)nd−1, where the constant

in the bound depends on c.

In the same paper [25], the authors proved a generalization of the Kővari-Sós-

Turán theorem for d-dimensional 0-1 matrices by showing that ex(n, Jk1,...,kd , d) =

O(nd−α(k1,...,kd)), where Jk1,...,kd is the d-dimensional matrix of all ones with di-

mensions k1 × · · · × kd and α(k1, . . . , kd) = max(k1,...,kd)
k1...kd

. As a result, for every
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d-dimensional 0-1 matrix M there exists a constant ε > 0 such that ex(n,M, d) =

O(nd−ε). This is because M is contained in the d-dimensional all-ones matrix of

the same dimensions.

Corollary 5.13. For any finite subset P ⊆ Rd with MP = Jk1,...,kd , we have

opx(n, P, d) = O(nd−α(k1,...,kd)).

Corollary 5.14. For any finite subset P ⊆ Rd, there exists a constant ε > 0 such

that opx(n, P, d) = O(nd−ε).

If M is a k × k permutation matrix for k ≥ 2, let Mi be the 3-dimensional 0-1

matrix of dimensions k × k × i for which entry (x1, x2, x3) of Mi is 1 if and only

if entry (x1, x2) of M is 1. In [19], the author proved a more general result which

implies that ex(n,M2, 3) = Θ(n
5
2 ) and ex(n,M3, 3) = Θ(n

8
3 ). This implies the next

corollary about opx(n, P, d).

Corollary 5.15. Let P be a set of k points in R2 with all coordinates distinct. Let

Pi be the set of ik points in R3 which contains (x, y, j) for each point (x, y) ∈ P
and each j = 1, 2, . . . , i. Then opx(n, P2, 3) = Θ(n

5
2 ) and opx(n, P3, 3) = Θ(n

8
3 ).

We will next prove a much stronger result than the last corollary. It is a general-

ization of the above-mentioned strengthening [19] of the Kővari-Sós-Turán theorem.

For any P ⊆ Rd and for each integer t ≥ 2 and real c > 0, let QP,t,c denote the set

of points {(x1, . . . , xd, y) : (x1, . . . , xd) ∈ P and y ∈ {c, 2c, . . . , tc}}. For example, if

P ⊆ R2 is a segment, then QP,2,c is a 3-dimensional set of points that looks like

an equal sign (=) and QP,3,c is a 3-dimensional set of points that looks like an

equivalence symbol (≡).

The following proof is like the proof of Theorem 4.9 in Section 4, but more general.

Part of the idea for this result is based on the main result of the above-mentioned

paper [19] for d-dimensional 0-1 matrices.

Theorem 5.16. For all P ⊆ Rd and fixed t ≥ 2, we have opx(n,QP,t,c, d + 1) =

O(opx(n, P, d)
1
t nd+1− dt + nd), where the constants in the bound depend on t and c.

Proof. Let S be an open QP,t,c-free subset of [0, n]d+1. Let S′ be the (t + d)-

dimensional set of points (x1, . . . , xd, y1, . . . yt) for which (x1, . . . , xd, yi) ∈ S for

each i = 1, 2, . . . , t and yi − yi+1 > c for each i = 1, . . . , t − 1. First, we note that

S′ is open. To see why this is true, define

T1 =
{

(x1, . . . , xd, y1, . . . yt) ∈ Rt+d : (x1, . . . , xd, yi) ∈ S for all i = 1, . . . , t
}
.

Define

T2 =
{

(x1, . . . , xd, y1, . . . yt) ∈ Rt+d : yi − yi+1 > c for all i = 1, 2, . . . , t− 1
}
.
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Clearly T2 is an open subset of Rt+d. Since S is open, for every point (x1, . . . , xd, y) ∈
S there exists r > 0 such that the open ball of radius r centered at (x1, . . . , xd, y)

is a subset of S, i.e. B((x1, . . . , xd, y), r) ⊆ S. For each (x1, . . . , xd, y1, . . . yt) ∈ T1,

we have (x1, . . . , xd, yi) ∈ S for all i = 1, 2, . . . , t, so there exist ri > 0 for each

i = 1, 2, . . . , t such that B((x1, . . . , xd, yi), ri) ⊆ S for all i = 1, 2, . . . , t. For every

(x′1, . . . , x
′
d, y
′
1, . . . y

′
t) ∈ B((x1, . . . , xd, y1, . . . yt),min(r1, r2, . . . , rt)), we have

d∑
j=1

(x′j − xj)2 +

t∑
i=1

(y′i − yi)2 < min(r21, r
2
2, . . . , r

2
t ),

so
∑d
j=1(x′j − xj)

2 + (y′i − yi)
2 < r2i for all i = 1, 2, . . . , t, which implies that

(x′1, . . . , x
′
d, y
′
i) ∈ S for all i = 1, 2, . . . , t, so (x′1, . . . , x

′
d, y
′
1, . . . y

′
t) ∈ T1. Thus,

B((x1, . . . , xd, y1, . . . yt),min(r1, r2, . . . , rt)) ⊆ T1, so T1 is open. Hence S′ is also

open, since S′ = T1 ∩ T2.

The points (x1, . . . , xd, y1, . . . yt) ∈ S′ must satisfy 0 < yt < n − (t − 1)c and

yi+1+c < yi < n−(i−1)c for all i = 1, . . . , t−1. Thus, the projection of these points

onto the last t coordinates is a t-dimensional solid of volume Θ(nt) by Lemma 4.8.

For each fixed y1, . . . , yt with y1, . . . , yt ∈ (0, n), let S′′y1,...,yt denote the set of points

(a1, . . . , ad, b1, . . . , bt) ∈ S′ with bi = yi for each i. Then µd(S
′′
y1,...,yt) ≤ opx(n, P, d)

or else S would contain QP,t. Since S′ is open, by Fubini’s theorem the function

µd(S
′′
y1,...,yt) : [0, n]t → R is a measurable function, so it is Lebesgue integrable on

[0, n]t. Thus,

µt+d(S
′) =

∫
(y1,...,yt)∈[0,n]t

µd(S
′′
y1,...,yt)dµt(y1, . . . , yt) = O(opx(n, P, d)nt). (1)

For all (x1, . . . , xd) ∈ [0, n]d, let S′x1,...,xd
denote the set (a1, . . . , ad, b1, . . . , bt) ∈

S′ with aj = xj for each 1 ≤ j ≤ d, let Sx1,...,xd denote the set (a1, . . . , ad, b) ∈ S
with aj = xj for each 1 ≤ j ≤ d, and let mx1,...,xd = µ1(Sx1,...,xd). For i < d, let

Sx1,...,xi denote the set of points (a1, . . . , ad, b) ∈ S with aj = xj for each 1 ≤ j ≤ i,
and let mx1,...,xi = µd+1−i(Sx1,...,xi).

For all x1, . . . , xd, we now prove that µt(S
′
x1,...,xd

) ≥ max(mx1,...,xd−ct,0)
t

tt . Sup-

pose that mx1,...,xd ≥ ct. For each (x1, . . . , xd, y) ∈ Sx1,...,xd , let Qx1,...,xd,y =

{(x1, . . . , xd, r) : (x1, . . . , xd, r) ∈ S and r ≤ y}. Note that

{ (y1, . . . , yt) : (x1, . . . , xd, yi) ∈ S for all i ≤ t and

µ1(Qx1,...,xd,yi+1
) + c < µ1(Qx1,...,xd,yi) for all i ≤ t− 1 }

⊆ { (y1, . . . , yt) : (x1, . . . , xd, yi) ∈ S for all i ≤ t and

yi+1 + c < yi for all i ≤ t− 1 }.
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Then we have

µt(S
′
x1,...,xd

) =

∫
yt∈(0,n−(t−1)c)

· · ·
∫
y1∈(y2+c,n)

t∏
i=1

1(x1,...,xd,yi)∈Sdµ1(y1)dµ1(y2) . . . dµ1(yt)

≥
∫
yt∈(0,n−(t−1)c)

· · ·
∫
y1∈(y2+c,n)(

t∏
i=1

1(x1,...,xd,yi)∈S

)(
t−1∏
i=1

1µ1(Qx1,...,xd,yi+1
)+c<µ1(Qx1,...,xd,yi )

)
dµ1(y1)dµ1(y2) . . . dµ1(yt).

Given any (y1, . . . , yt) with (x1, . . . , xd, yi) ∈ S for each i ≤ t, note that we must
have µ1(Qx1,...,xd,yi) ∈ (0,mx1,...,xd) for each i ≤ t. Since S is open, we can write
Sx1,...,xd as a countable union of open intervals. Thus, there are only countably
many b ∈ (0,mx1,...,xd) with no r such that µ1(Qx1,...,xd,r) = b. Therefore, we have
the last integral equal to∫
zt∈(0,mx1,...,xd−(t−1)c)

· · ·
∫
z1∈(z2+c,mx1,...,xd )

1dµ1(z1) . . . dµ1(zt) ≥
(mx1,...,xd − ct)t

tt
,

where the last inequality is by Lemma 4.8. Thus, by Fubini’s theorem we have

µt+d(S
′) =

∫
(x1,...,xd)∈[0,n]d

µt(S
′
x1,...,xd

)dµd(x1, . . . , xd)

≥
∫
(x1,...,xd)∈[0,n]d

max(mx1,...,xd − ct, 0)t

tt
dµd(x1, . . . , xd).

Let f : R → R be defined by f(z) = max(z−ct,0)t
tt , so we have f(mx1,...,xd) =

max(mx1,...,xd−ct,0)
t

tt and f is convex. We can rewrite the last inequality in the form

µt+d(S
′) ≥

∫
(x1,...,xd)∈[0,n]d

f(mx1,...,xd)dµd(x1, . . . , xd).

By applying the bound in (1), we obtain∫
(x1,...,xd)∈[0,n]d

f(mx1,...,xd)dµd(x1, . . . , xd) = O(opx(n, P, d)nt).

For each j ≤ d− 1, by Jensen’s inequality we have

nd−j
∫
(x1,...,xj)∈[0,n]j

f
(mx1,...,xj

nd−j

)
dµj(x1, . . . , xj)

≤ nd−j−1
∫
(x1,...,xj)∈[0,n]j

∫
xj+1∈[0,n]

f
(mx1,...,xj+1

nd−j−1

)
dµ1(xj+1)dµj(x1, . . . , xj).
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Furthermore, the right side of this inequality equals

nd−j−1
∫
(x1,...,xj+1)∈[0,n]j+1

f
(mx1,...,xj+1

nd−j−1

)
dµj+1(x1, . . . , xj+1).

So we have

nd−j
∫
(x1,...,xj)∈[0,n]j

f
(mx1,...,xj

nd−j

)
dµj(x1, . . . , xj) = O(opx(n, P, d)nt)

for all j = 1, . . . , d − 1 by the bound at the end of the last paragraph. Thus, by
Jensen’s inequality combined with the preceding inequality, we have

ndf

(
µd+1(S)

nd

)
≤ nd−1

∫
x1∈[0,n]

f
( mx1

nd−1

)
dµ1(x1) = O(opx(n, P, d)nt),

so nd
( µd+1(S)

nd

t − c
)t

= O(opx(n, P, d)nt) or else µd+1(S)
nd

≤ ct. Thus,

µd+1(S) = O(opx(n, P, d)
1
t nd+1− dt + nd).

As corollaries of Theorem 5.16, we derive sharp bounds on opx(n, P, 3) for some

bounded infinite subsets P ⊆ R3. We start with a corollary that can be applied to

many bounded infinite subsets P .

Corollary 5.17. If P ⊆ R2 is any set with multiple points such that opx(n, P ) =

O(n) and c > 0, then opx(n,QP,2,c, 3) = Θ(n
5
2 ). If P ⊆ R2 is any set that has

at least three points with different x-coordinates such that opx(n, P ) = O(n) and

c > 0, then opx(n,QP,3,c, 3) = Θ(n
8
3 ).

Proof. For the first part, suppose that P has multiple points. Without loss of

generality, suppose that these points have x-coordinates that differ by a. De-

fine H2 to be the subset of R2 such that (x, y) ∈ H2 if and only if there exists

z such that (x, z, y) ∈ QP,2,c. Then H2 contains {(0, 0), (a, 0), (0, c), (a, c)}, so

opx(n,QP,2,c, 3) = Ω(n
5
2 ) by Lemma 5.5, Lemma 2.3, and Lemma 3.7. The upper

bound opx(n,QP,2,c, 3) = O(n
5
2 ) is from Theorem 5.16 and the assumption that

opx(n, P ) = O(n).

For the second part, suppose that P has at least three points with different

x-coordinates. Without loss of generality, suppose that each pair of these points

have x-coordinates that differ by at least a. Define H3 to be the subset of R2

such that (x, y) ∈ H3 if and only if there exists z such that (x, z, y) ∈ QP,3,c.

Then H3 contains {(0, 0), (a, 0), (2a, 0), (0, c), (a, c), (2a, c), (0, 2c), (a, 2c), (2a, 2c)},
so opx(n,QP,3,c, 3) = Ω(n

8
3 ) by Lemma 5.5, Lemma 2.3, and Lemma 3.7. As with

QP,2,c, the upper bound opx(n,QP,3,c, 3) = O(n
8
3 ) is from Theorem 5.16 and the

assumption that opx(n, P ) = O(n).
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Now we apply Corollary 5.17 to some specific forbidden subsets. The first subset

is obtained from the one in Theorem 4.3.

Corollary 5.18. Suppose that f : [0, a] → R is increasing, with f(t)−f(s)
t−s ≤ b for

all s, t ∈ [0, a] with s < t. If P is the set of points {(t, f(t)) : t ∈ [0, a]} and c > 0,

then opx(n,QP,2,c, 3) = Θ(n
5
2 ) and opx(n,QP,3,c, 3) = Θ(n

8
3 ).

Proof. This follows from Corollary 5.17, since P contains at least 3 points with

different x-coordinates and opx(n, P, 2) = Θ(n) by Theorem 4.3.

Next we apply Corollary 5.17 to obtain sharp bounds on QP,2,c and QP,3,c when

P looks like a plus sign (+).

Corollary 5.19. If P is the set of points {(x, y) : |x|, |y| ≤ d and (x = 0 or y = 0)}
and c > 0, then we have opx(n,QP,2,c, 3) = Θ(n

5
2 ) and opx(n,QP,3,c, 3) = Θ(n

8
3 ).

Proof. This follows from Corollary 5.17, since P contains at least 3 points with

different x-coordinates and opx(n, P, 2) = Θ(n) by Lemma 2.9.

6. Discussion

We proved that the extremal function opx(n, P ) fully encompasses the Zarankiewicz

problem up to a constant factor, and more generally opx(n, P ) fully encompasses

the matrix extremal function ex(n,M) up to a constant factor. Any past results

on the Zarankiewicz problem or more generally on ex(n,M) imply corresponding

results for opx(n, P ). While the inputs for ex(n,M) are discrete (a positive integer

n and a 0-1 matrix M), the inputs for opx(n, P ) form a continuum (a real number

n and any subset P ⊆ R2).

We showed that opx(n, P ) = Θ(n2) for any open set P , where the constants in the

lower bound depend on P . We proved the stronger result that opx(n,QP ) = Θ(n2),

where QP is the set of points with rational coordinates that are contained in P ,

but these bounds are only sharp up to a constant factor. A more general problem

is to find sharper bounds on opx(n, P, d) for open subsets P ⊆ Rd. Although our

bounds for open subsets P are sharp up to a constant factor that depends on P ,

it is a natural problem to determine the exact value of opx(n, P ), particularly for

certain open sets like open squares or open balls.

On the other hand, we found other bounded infinite subsets with extremal func-

tions that behaved much like 0-1 matrix extremal functions. We showed that sets of

points E that look like equal signs (=) have opx(n,E) = Θ(n
3
2 ), regardless of how

long the horizontal segments are. On the other hand, sets of points A that look like

plus signs (+) have opx(n,A) = Θ(n) by Theorem 4.1 and Lemma 2.9. There are

other natural sets of points that we have not considered, such as sets of points in
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the shape of t or H. One could also consider infinite sets of points in the shape of

the boundary of a rectangle (�) and other more complex grid-like sets of points.

All of the forbidden infinite subsets of R2 in the previous paragraph are unions

of horizontal or vertical line segments, but some extend naturally to sets formed by

diagonal segments. For example, if P is the subset consisting of the segment with

endpoints at (0, 0) and (1, 0) and the segment with endpoints at (0, 1) and (1, 2),

what is opx(n, P )? In this case, note that P contains the subset which consists

of the four points Q = {(0, 0), (1, 0), (0, 1), (1, 2)}, and opx(n,Q) = Θ(n log n) by

Theorem 3.1 and [41], so opx(n, P ) = Ω(n log n).

Conjecture 6.1. If P is the subset of R2 consisting of the segment with end-

points at (0, 0) and (1, 0) and the segment with endpoints at (0, 1) and (1, 2), then

opx(n, P ) = Θ(n log n).

We also have a conjecture for any disjoint union of horizontal segments P with

no two points having the same x-coordinate, for which we conjecture a quasilinear

upper bound on opx(n, P ). This is in analogue with the quasilinear upper bound

on ex(n,M) when M is a 0-1 matrix with no pair of ones in the same column [30].

Conjecture 6.2. If P is a disjoint union of horizontal segments with no two points

having the same x-coordinate, then there exists a constant t such that opx(n, P ) =

O(n2α(n)
t

).

Similar questions could also be asked for sets of points that are formed by arcs

instead of only segments. We also wonder what is the supremum of opx(n, P ) over

all subsets P ⊆ [0, 1]2 for which all points in P have different x-coordinates and all

points in P have different y-coordinates.

In Section 2, we found operations that can be performed on sets of points P ⊆ R2

to obtain a new set of points P ′ such that opx(n, P ′) = Θ(opx(n, P )). For example,

if P has a rightmost column containing some point p, then you can add a horizontal

segment of length c to P with its left endpoint on p to obtain a new subset of R2,

and this only increases opx(n, P ) by at most cn. Also we showed that dilating finite

subsets P only changes opx(n, P ) by at most a constant multiplicative factor. For

a better understanding of opx(n, P ), it would be useful to find more operations.

For example, Keszegh proved in [30] that if J is a 0-1 matrix that has a one in the

bottom right corner and K is a 0-1 matrix that has a one in the top left corner,

and R is obtained from translating J and K so that the bottom right corner of

J overlaps the top left corner of K and filling the blank space with zeroes, then

ex(n,R) ≤ ex(n, J) + ex(n,K). Is an analogous operation possible for subsets of

R2?

Conjecture 6.3. Suppose that P ⊆ R2 contains the point (c, d) and all other

points in P have x-coordinate at most c and y-coordinate at most d. Suppose that

Q ⊆ R2 contains the point (c, d) and all other points in Q have x-coordinate at

least c and y-coordinate at least d. Then opx(n, P ∪Q) ≤ opx(n, P ) + opx(n,Q).
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6.1. When the Size of P Grows with n

All of the results in this paper focused on forbidden bounded sets of points. Several

papers have investigated ex(n,M) and corresponding extremal functions of forbid-

den sequences where the size of the forbidden 0-1 matrix M and the size of the

forbidden sequence are allowed to grow with respect to n [40, 42, 21, 26]. For exam-

ple, we showed in [21] that if Ms is any 2× s 0-1 matrix that has ones in both the

first and last columns, then ex(n,Ms) = Ω(n2−o(1)) if and only if s(n) = Ω(n1−o(1)),

answering a question from [42].

Analogously, it is natural to investigate opx(n, P ) where the size of the forbidden

subset P ⊆ R2 is allowed to grow with respect to n. Let Qs be any set of points with

minimum x-coordinate 0, maximum x-coordinate s, and all y-coordinates equal to

0 or 1. Then Ps,2 contains Qs with Ps,2 defined as in Theorem 4.7, so opx(n,Qs) ≤
opx(n, Ps,2).

Proposition 6.4. For all subsets Qs ⊆ R2 with minimum x-coordinate 0, maxi-

mum x-coordinate s, and all y-coordinates equal to 0 or 1, we have opx(n,Qs) =

Ω(n2−o(1)) if and only if s(n) = Ω(n1−o(1)).

Proof. If s = Ω(n1−o(1)), then the open set (0, s) × (0, n) avoids Qs, which shows

that opx(n,Qs) = Ω(n2−o(1)).

If s 6= Ω(n1−o(1)), then there is a constant α < 1 and an infinite sequence

x1 < x2 < . . . of positive reals such that limi→∞ xi =∞ and s(xi) < xαi for all i > 0.

If s(n) < nα for some α < 1, then we have opx(n,Qs) ≤ opx(n, Ps,2) = O(n
α
2 + 3

2 )

by Theorem 4.7. Note that α
2 + 3

2 < 2, since α < 1. Thus, if s 6= Ω(n1−o(1)), then

opx(n,Qs) 6= Ω(n2−o(1)). Thus, we have shown that opx(n,Qs) = Ω(n2−o(1)) if and

only if s(n) = Ω(n1−o(1)).

6.2. Saturation Functions for Subsets of R2

Another potential direction for future research is saturation functions. Saturation

problems have been studied for decades, with much of the focus on graphs [6, 8,

10, 34], posets [12, 31], and set systems [11, 28]. Recently a saturation function

was introduced for forbidden 0-1 matrices [2]. We say 0-1 matrix A is saturating

for 0-1 matrix M if A avoids M but any matrix obtained from A by changing a

zero to a one must contain M . Define sat(n,M) as the minimum number of ones

in an n × n 0-1 matrix that is saturating for M . Fulek and Keszegh proved that

sat(n,M) = O(1) or sat(n,M) = Θ(n) for all 0-1 matrices M [14]. The results in

[14] showed that sat(n,M) = Θ(n) for almost all k× k 0-1 matrices M , but infinite

families of 0-1 matrices M with sat(n,M) = O(1) were found in [1] and [20]. In the

same way that opx(n, P ) encompasses ex(n,M), it seems natural to investigate if

there is a saturation function for subsets of R2 that encompasses sat(n,M).
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Say that an open subset S ⊆ [0, n]2 is saturating for P ⊆ R2 in [0, n]2 if S avoids

P but any open subset S′ ⊆ [0, n]2 that is a proper superset of S must contain

P . So we can define osat(n, P ) as the infimum of µ2(S) over all open subsets

S ⊆ [0, n]2 that are saturating for P in [0, n]2. Note that osat(n, P ) is only defined

if there exists an open subset of [0, n]2 that is saturating for P in [0, n]2. Clearly

osat(n, P ) ≤ opx(n, P ) whenever osat(n, P ) is defined, and this is sharp. We can

see that this is sharp for the simplest example of nonempty P ⊆ R2.

Lemma 6.5. If P consists of a single point, then osat(n, P ) = opx(n, P ) = 0.

Proof. For all n > 0, the empty set is saturating for P in [0, n]2. Moreover, the

empty set is the largest open set not containing P .

Like the 0-1 matrix saturation function sat(n,M), we conjecture that the subset

saturation function osat(n, P ) is either O(1) or Θ(n) for all subsets P ⊆ R2 on

which osat(n, P ) is defined.

Conjecture 6.6. For any subset P ⊆ R2 such that osat(n, P ) is defined, either

osat(n, P ) = O(1) or osat(n, P ) = Θ(n), where the constants in the bounds depend

on P .

We conjecture that osat(n, P ) is defined for every finite subset P ⊆ R2, and that

there is a relationship between osat(n, P ) and sat(n,MP ) for finite subsets P that

is analogous to the relationship between opx(n, P ) and ex(n,MP ) in Theorem 3.1.

Conjecture 6.7. For every finite subset P ⊆ R2, the saturation function osat(n, P )

is defined and we have osat(n, P ) = Θ(sat(n,MP )).

A different saturation function for 0-1 matrices was investigated in [7], it would

also be natural to see if there is some saturation function for subsets of R2 that

encompasses the function in [7]. Another possible research direction is to investi-

gate other natural variants of the definitions for opx(n, P ) and osat(n, P ). In our

definition of opx(n, P ), we required the P -free subsets S ⊆ [0, n]2 to be open. This

allowed us to show that opx(n, P ) = Θ(ex(n,MP )), along with many other results.

It would be interesting to see how the results in this paper change if we require the

P -free subsets S to be closed instead. Alternatively we could require the sets S to

be Borel sets, or to be Lebesgue measurable sets in the definitions of opx(n, P ) and

osat(n, P ).

It would also make sense to investigate opx(n, P ) and osat(n, P ) over all open

P -free subsets S ⊆ [0,m]× [0, n]. This is in analogue with the 0-1 matrix extremal

function ex(n,M), which has a more general variant ex(m,n,M) that maximizes

the number of ones among all m × n M -free 0-1 matrices. Other regions besides

rectangles could also be considered for replacing [0, n]2, such as balls of radius n.
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