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Abstract

In this paper, we show that there are infinitely many Sierpiński numbers and in-
finitely many Riesel numbers in Narayana’s Cow Sequence.

1. Introduction

In 1956, Riesel [16] proved that there are infinitely many odd integers k such

that k · 2n − 1 is composite for all positive integers n. Four years later, in 1960,

Sierpiński [17] proved that there are infinitely many odd integers ` such that `·2n+1

is composite for all positive integers n. Today, such integers k and ` are called Riesel

numbers and Sierpiński numbers, respectively. Since the original findings of Riesel

and Sierpiński, many papers have been published that investigate the existence of

Riesel numbers and/or Sierpiński numbers in various other integer sequences:

• binomial coefficients [1];

• polygonal numbers [3, 4];

• Lucas sequence [5].

• Carmichael numbers [6];

• perfect powers [10, 12, 14];

• Ruth-Aaron pairs [11];

• in the image of various polynomials [13];

• Fibonacci sequence [15];
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In this article, we show that there are infinitely many Riesel numbers and infinitely

many Sierpiński numbers in Narayana’s cow sequence. We call such numbers NC-

Riesel numbers and NC-Sierpiński numbers, respectively.

Narayana’s cow sequence is the ternary recurrent sequence satisfying N0 = 0,

N1 = N2 = 1 and Nt = Nt−1 + Nt−3 for all t ≥ 3. The first fifteen terms of the

sequence are

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129.

Recent interest in Narayana’s cow sequence has produced several papers that explore

the intersection of this sequence with other sequences [7, 8, 9].

2. Constructing Riesel and Sierpiński Numbers

The method commonly used to produce Riesel or Sierpiński numbers involves using

a covering system of the integers. A covering system of the integers is a collection of

congruences such that every integer satisfies at least one congruence in the collection.

For example, the collection

n ≡ 1 (mod 2)

n ≡ 0 (mod 3)

n ≡ 0 (mod 4) (1)

n ≡ 6 (mod 8)

n ≡ 2 (mod 12)

n ≡ 10 (mod 24)

is a covering system of the integers. To see this, one can check that every positive

integer, up to the lease common multiple of the moduli, satisfies at least one of the

congruences in the collection. For an integer m ≥ 2, let pm be a prime divisor of

2m − 1. When n ≡ r (mod m), notice that

k · 2n − 1 ≡ k · 2r − 1 (mod pm).

Thus, if n ≡ r (mod m) and k ≡ 2−r (mod pm), then k · 2n − 1 is divisible by pm.

With the covering system in (1), choosing k to satisfy

k ≡ 2 (mod 3)

k ≡ 1 (mod 7)

k ≡ 1 (mod 5)

k ≡ 4 (mod 17) (2)

k ≡ 10 (mod 13)

k ≡ 237 (mod 241)



INTEGERS: 24 (2024) 3

ensures that for any positive integer n, k · 2n − 1 is divisible by at least one of the

primes in the set {3, 5, 7, 13, 17, 241}. Hence, using the Chinese remainder theorem,

we can find infinitely many Riesel numbers by further choosing k ≡ 1 (mod 2) with

2k − 1 > 241. Consequently, any k ≡ 8086751 (mod 11184810) is a Riesel number.

A similar method shows that any ` ≡ 3098059 (mod 11184810) is a Sierpiński

number.

We note that the method described above relies on the moduli of (2) being pair-

wise relatively prime. The following theorem of Bang [2] ensures that any covering

system with distinct moduli will yield infinitely many Riesel numbers and infinitely

many Sierpiński numbers, provided 6 is not a modulus in the covering system.

Theorem 1 (Bang). For any integer m > 1 and m 6= 6, there exists a prime p

such that p divides 2m − 1 and p does not divide 2m̃ − 1 for any m̃ < m.

3. NC-Riesel and NC-Sierpiński Numbers

From our discussion in Section 2, any Nt in Narayana’s cow sequence satisfying

Nt ≡ 8086751 (mod 1184810) will be a NC-Riesel number. For integers a and

m ≥ 2, let I(a,m) = {j : Nj ≡ a (mod m)}. Then for any

t ∈ I(8086751, 1184810)

= I(1, 2) ∩ I(2, 3) ∩ I(1, 7) ∩ I(1, 5) ∩ I(4, 17) ∩ I(10, 13) ∩ I(237, 241),

Nt will be a NC-Riesel number.

It is useful to note that for m ≥ 2, Narayana’s cow sequence is periodic modulo

m. For example,

N0 = 0

N1 = 1

N2 = 1

N3 = 1

N4 = 2 ≡ 0 (mod 2) (3)

N5 = 3 ≡ 1 (mod 2)

N6 = 4 ≡ 0 (mod 2)

N7 = 6 ≡ 0 (mod 2)

N8 = 9 ≡ 1 (mod 2)

N9 = 13 ≡ 1 (mod 2),

and we see that Nt ≡ Nn−7 (mod 2) for every t ≥ 7. Thus, t ∈ I(1, 2) if and only

if t ≡ x (mod 7) for some x ∈ {1, 2, 3, 5}.
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Due to the periodic nature of Narayana’s cow sequence modulo m, we denote

the length of the period modulo m by P(m), and we modify our previous notation

so that

I(a,m) (mod P(p)) := {j (mod P(p)) : Nj ≡ a (mod m) with 0 ≤ j ≤ P(p)−1}.

Then

I(1, 2) (mod 7) = {1, 2, 3, 5}
I(2, 3) (mod 8) = {4}
I(1, 7) (mod 57) = {1, 2, 3, 23, 27, 44, 51, 52, 55}
I(1, 5) (mod 31) = {1, 2, 3, 7, 12, 18, 25, 26, 29}
I(4, 17) (mod 288) = {6, 36, 38, 79, 103, 114, 127, 146, 189, 247, 257,

260, 269, 273}
I(10, 13) (mod 168) = {14, 19, 41, 62, 73, 77, 108, 127, 157}

I(237, 241) (mod 9680) = {70, 766, 842, 1038, 1125, 1185, 1415, 1461, 1856,

2030, 2240, 2280, 2489, 2984, 2998, 3657, 4162,

4209, 4513, 4605, 4663, 4827, 4977, 5206, 5423,

6227, 6287, 6539, 6735, 7344, 7993, 8012, 8141,

8654, 8934, 9092, 9385, 9607}.

Considering the intersection of these sets yields the following theorem.

Theorem 2. If t ≡ x (mod 718391520) for some

x ∈ {3629412, 13386852, 73151172, 96325092, 101203812, 119499012,

175604292, 198778212, 212194692, 240247332, 268299972, 328064292,

337821732, 360995652, 384169572, 402464772, 425638692, 467107812,

476865252, 495160452, 564682212, 587856132, 592734852, 611030052,

629325252, 652499172, 703725732},

then Nt is a NC-Riesel number.

To obtain an analogous result for Sierpiński numbers, we look for a number in

Narayana’s cow sequence satisfying Nt ≡ 3098059 (mod 11184810). In other words,

we want to find

t ∈ I(8086751, 1184810)

= I(1, 2) ∩ I(1, 3) ∩ I(6, 7) ∩ I(4, 5) ∩ I(13, 17) ∩ I(3, 13) ∩ I(4, 241).
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There are 180 values 0 ≤ x < 718391520 in the intersection of the sets

I(1, 2) (mod 7) = {1, 2, 3, 5}
I(1, 3) (mod 8) = {1, 2, 3, 6, 9, 10}
I(6, 7) (mod 57) = {7, 9, 12, 29, 43, 53}
I(4, 5) (mod 31) = {6, 8, 10, 15, 16, 27}

I(13, 17) (mod 288) = {9, 28, 31, 48, 84, 86, 89, 124, 130, 149, 165, 168, 175,

176, 200, 212, 246}
I(3, 13) (mod 168) = {5, 18, 31, 40, 64, 82, 84, 95, 99, 106, 107, 110, 113, 114,

115, 132, 134, 159}
I(4, 241) (mod 9680) = {6, 224, 424, 555, 852, 905, 1313, 1513, 1762, 1989, 2283,

2528, 2660, 2755, 2929, 2963, 3114, 3242, 3373, 3769, 3859,

3928, 4026, 4057, 4293, 4577, 4741, 4840, 4861, 5031, 5158,

5259, 5401, 5966, 6484, 6572, 6700, 6786, 6991, 8558, 8684,

9041, 9360, 9549, 9634, 9665}.

The smallest is x = 1966553. Hence, for any t ≡ 1966553 (mod 718391520), Nt is

a NC-Sierpiński number. This leads us to the following theorem.

Theorem 3. There are infinitely many NC-Sierpiński numbers.

We noted at the end of Section 2 that any covering system with distinct moduli

will yield infinitely many Riesel numbers and infinitely many Sierpiński numbers,

provided 6 is not a modulus in the covering system. However, these covering systems

are not guaranteed to produce NC-Riesel or NC-Sierpiński numbers. For example,

any k ≡ 4442323 (mod 11184810) can be shown to be a Riesel number by using the

method described in Section 2 and the covering system

n ≡ 0 (mod 2)

n ≡ 1 (mod 3)

n ≡ 1 (mod 4)

n ≡ 7 (mod 8)

n ≡ 11 (mod 12)

n ≡ 3 (mod 24).

However, I(4442323, 11184810) is an empty set.
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