SIERPIŃSKI AND RIESEL NUMBERS IN NARAYANA'S COW SEQUENCE

Katherine Franzone
Department of Mathematics, Cedar Crest College, Allentown, Pennsylvania
kafranzo@cedarcrest.edu
Joshua Harrington
Department of Mathematics, Cedar Crest College, Allentown, Pennsylvania
joshua.harrington@cedarcrest.edu

Received: 7/29/23, Accepted: 12/24/23, Published: 1/29/24

Abstract

In this paper, we show that there are infinitely many Sierpiński numbers and infinitely many Riesel numbers in Narayana's Cow Sequence.

1. Introduction

In 1956, Riesel [16] proved that there are infinitely many odd integers k such that $k \cdot 2^{n}-1$ is composite for all positive integers n. Four years later, in 1960, Sierpiński [17] proved that there are infinitely many odd integers ℓ such that $\ell \cdot 2^{n}+1$ is composite for all positive integers n. Today, such integers k and ℓ are called Riesel numbers and Sierpiński numbers, respectively. Since the original findings of Riesel and Sierpiński, many papers have been published that investigate the existence of Riesel numbers and/or Sierpiński numbers in various other integer sequences:

- binomial coefficients [1];
- polygonal numbers [3, 4];
- Lucas sequence [5].
- Carmichael numbers [6];
- perfect powers $[10,12,14]$;
- Ruth-Aaron pairs [11];
- in the image of various polynomials [13];
- Fibonacci sequence [15];

DOI: 10.5281/zenodo. 10580942

In this article, we show that there are infinitely many Riesel numbers and infinitely many Sierpiński numbers in Narayana's cow sequence. We call such numbers NCRiesel numbers and NC-Sierpiński numbers, respectively.

Narayana's cow sequence is the ternary recurrent sequence satisfying $N_{0}=0$, $N_{1}=N_{2}=1$ and $N_{t}=N_{t-1}+N_{t-3}$ for all $t \geq 3$. The first fifteen terms of the sequence are

$$
1,1,1,2,3,4,6,9,13,19,28,41,60,88,129
$$

Recent interest in Narayana's cow sequence has produced several papers that explore the intersection of this sequence with other sequences $[7,8,9]$.

2. Constructing Riesel and Sierpiński Numbers

The method commonly used to produce Riesel or Sierpiński numbers involves using a covering system of the integers. A covering system of the integers is a collection of congruences such that every integer satisfies at least one congruence in the collection. For example, the collection

$$
\begin{array}{rlr}
n & \equiv 1 & (\bmod 2) \\
n & \equiv 0 & (\bmod 3) \\
n & \equiv 0 & (\bmod 4) \tag{1}\\
n & \equiv 6 \quad(\bmod 8) \\
n & \equiv 2 \quad(\bmod 12) \\
n & \equiv 10 \quad(\bmod 24)
\end{array}
$$

is a covering system of the integers. To see this, one can check that every positive integer, up to the lease common multiple of the moduli, satisfies at least one of the congruences in the collection. For an integer $m \geq 2$, let p_{m} be a prime divisor of $2^{m}-1$. When $n \equiv r(\bmod m)$, notice that

$$
k \cdot 2^{n}-1 \equiv k \cdot 2^{r}-1 \quad\left(\bmod p_{m}\right)
$$

Thus, if $n \equiv r(\bmod m)$ and $k \equiv 2^{-r}\left(\bmod p_{m}\right)$, then $k \cdot 2^{n}-1$ is divisible by p_{m}. With the covering system in (1), choosing k to satisfy

$$
\begin{align*}
k & \equiv 2 \quad(\bmod 3) \\
k & \equiv 1 \quad(\bmod 7) \\
k & \equiv 1 \quad(\bmod 5) \\
k & \equiv 4 \quad(\bmod 17) \tag{2}\\
k & \equiv 10 \quad(\bmod 13) \\
k & \equiv 237 \quad(\bmod 241)
\end{align*}
$$

ensures that for any positive integer $n, k \cdot 2^{n}-1$ is divisible by at least one of the primes in the set $\{3,5,7,13,17,241\}$. Hence, using the Chinese remainder theorem, we can find infinitely many Riesel numbers by further choosing $k \equiv 1(\bmod 2)$ with $2 k-1>241$. Consequently, any $k \equiv 8086751(\bmod 11184810)$ is a Riesel number. A similar method shows that any $\ell \equiv 3098059(\bmod 11184810)$ is a Sierpiński number.

We note that the method described above relies on the moduli of (2) being pairwise relatively prime. The following theorem of Bang [2] ensures that any covering system with distinct moduli will yield infinitely many Riesel numbers and infinitely many Sierpiński numbers, provided 6 is not a modulus in the covering system.

Theorem 1 (Bang). For any integer $m>1$ and $m \neq 6$, there exists a prime p such that p divides $2^{m}-1$ and p does not divide $2^{\tilde{m}}-1$ for any $\tilde{m}<m$.

3. NC-Riesel and NC-Sierpiński Numbers

From our discussion in Section 2, any N_{t} in Narayana's cow sequence satisfying $N_{t} \equiv 8086751(\bmod 1184810)$ will be a NC-Riesel number. For integers a and $m \geq 2$, let $\mathcal{I}(a, m)=\left\{j: N_{j} \equiv a(\bmod m)\right\}$. Then for any
$t \in \mathcal{I}(8086751,1184810)$

$$
=\mathcal{I}(1,2) \cap \mathcal{I}(2,3) \cap \mathcal{I}(1,7) \cap \mathcal{I}(1,5) \cap \mathcal{I}(4,17) \cap \mathcal{I}(10,13) \cap \mathcal{I}(237,241)
$$

N_{t} will be a NC-Riesel number.
It is useful to note that for $m \geq 2$, Narayana's cow sequence is periodic modulo m. For example,

$$
\begin{align*}
& N_{0}=0 \\
& N_{1}=1 \\
& N_{2}=1 \\
& N_{3}=1 \\
& N_{4}=2 \equiv 0 \quad(\bmod 2) \tag{3}\\
& N_{5}=3 \equiv 1 \quad(\bmod 2) \\
& N_{6}=4 \equiv 0 \quad(\bmod 2) \\
& N_{7}=6 \equiv 0 \quad(\bmod 2) \\
& N_{8}=9 \equiv 1 \quad(\bmod 2) \\
& N_{9}=13 \equiv 1 \quad(\bmod 2)
\end{align*}
$$

and we see that $N_{t} \equiv N_{n-7}(\bmod 2)$ for every $t \geq 7$. Thus, $t \in \mathcal{I}(1,2)$ if and only if $t \equiv x(\bmod 7)$ for some $x \in\{1,2,3,5\}$.

Due to the periodic nature of Narayana's cow sequence modulo m, we denote the length of the period modulo m by $\mathcal{P}(m)$, and we modify our previous notation so that
$\mathcal{I}(a, m) \quad(\bmod \mathcal{P}(p)):=\left\{j \quad(\bmod \mathcal{P}(p)): N_{j} \equiv a \quad(\bmod m)\right.$ with $\left.0 \leq j \leq \mathcal{P}(p)-1\right\}$.
Then

$$
\begin{aligned}
\mathcal{I}(1,2)(\bmod 7)= & \{1,2,3,5\} \\
\mathcal{I}(2,3)(\bmod 8)= & \{4\} \\
\mathcal{I}(1,7)(\bmod 57)= & \{1,2,3,23,27,44,51,52,55\} \\
\mathcal{I}(1,5)(\bmod 31)= & \{1,2,3,7,12,18,25,26,29\} \\
\mathcal{I}(4,17)(\bmod 288)= & \{6,36,38,79,103,114,127,146,189,247,257, \\
& 260,269,273\} \\
\mathcal{I}(10,13)(\bmod 168)= & \{14,19,41,62,73,77,108,127,157\} \\
\mathcal{I}(237,241)(\bmod 9680)= & \{70,766,842,1038,1125,1185,1415,1461,1856, \\
& 2030,2240,2280,2489,2984,2998,3657,4162, \\
& 4209,4513,4605,4663,4827,4977,5206,5423, \\
& 6227,6287,6539,6735,7344,7993,8012,8141, \\
& 8654,8934,9092,9385,9607\} .
\end{aligned}
$$

Considering the intersection of these sets yields the following theorem.
Theorem 2. If $t \equiv x(\bmod 718391520)$ for some

$$
\begin{aligned}
x \in\{ & 3629412,13386852,73151172,96325092,101203812,119499012, \\
& 175604292,198778212,212194692,240247332,268299972,328064292, \\
& 337821732,360995652,384169572,402464772,425638692,467107812, \\
& 476865252,495160452,564682212,587856132,592734852,611030052, \\
& 629325252,652499172,703725732\}
\end{aligned}
$$

then N_{t} is a NC-Riesel number.
To obtain an analogous result for Sierpiński numbers, we look for a number in Narayana's cow sequence satisfying $N_{t} \equiv 3098059(\bmod 11184810)$. In other words, we want to find

$$
\begin{aligned}
& t \in \mathcal{I}(8086751,1184810) \\
& \quad=\mathcal{I}(1,2) \cap \mathcal{I}(1,3) \cap \mathcal{I}(6,7) \cap \mathcal{I}(4,5) \cap \mathcal{I}(13,17) \cap \mathcal{I}(3,13) \cap \mathcal{I}(4,241) .
\end{aligned}
$$

There are 180 values $0 \leq x<718391520$ in the intersection of the sets

$$
\begin{aligned}
\mathcal{I}(1,2) \quad(\bmod 7)= & \{1,2,3,5\} \\
\mathcal{I}(1,3) \quad(\bmod 8)= & \{1,2,3,6,9,10\} \\
\mathcal{I}(6,7)(\bmod 57)= & \{7,9,12,29,43,53\} \\
\mathcal{I}(4,5)(\bmod 31)= & \{6,8,10,15,16,27\} \\
\mathcal{I}(13,17)(\bmod 288)= & \{9,28,31,48,84,86,89,124,130,149,165,168,175, \\
& 176,200,212,246\} \\
\mathcal{I}(3,13)(\bmod 168)= & \{5,18,31,40,64,82,84,95,99,106,107,110,113,114, \\
& 115,132,134,159\} \\
\mathcal{I}(4,241)(\bmod 9680)= & \{6,224,424,555,852,905,1313,1513,1762,1989,2283, \\
& 2528,2660,2755,2929,2963,3114,3242,3373,3769,3859, \\
& 3928,4026,4057,4293,4577,4741,4840,4861,5031,5158, \\
& 5259,5401,5966,6484,6572,6700,6786,6991,8558,8684, \\
& 9041,9360,9549,9634,9665\} .
\end{aligned}
$$

The smallest is $x=1966553$. Hence, for any $t \equiv 1966553(\bmod 718391520), N_{t}$ is a NC-Sierpiński number. This leads us to the following theorem.

Theorem 3. There are infinitely many NC-Sierpiński numbers.
We noted at the end of Section 2 that any covering system with distinct moduli will yield infinitely many Riesel numbers and infinitely many Sierpiński numbers, provided 6 is not a modulus in the covering system. However, these covering systems are not guaranteed to produce NC-Riesel or NC-Sierpiński numbers. For example, any $k \equiv 4442323(\bmod 11184810)$ can be shown to be a Riesel number by using the method described in Section 2 and the covering system

$$
\begin{aligned}
& n \equiv 0 \quad(\bmod 2) \\
& n \equiv 1 \quad(\bmod 3) \\
& n \equiv 1 \quad(\bmod 4) \\
& n \equiv 7 \quad(\bmod 8) \\
& n \equiv 11 \quad(\bmod 12) \\
& n \equiv 3 \quad(\bmod 24)
\end{aligned}
$$

However, $\mathcal{I}(4442323,11184810)$ is an empty set.

References

[1] A. Armbruster, G. Barger, S. Bykova, T. Dvorachek, E. Eckard, J. Harrington, Y. Sun, and T.W.H. Wong, On binomial coefficients associated with Sierpiński and Riesel numbers, Integers 21 (2021), \#A61.
[2] A. S. Bang, Taltheoretiske Undersogelser, Tidsskrift Mat., 5 (1886), pp.70-80.
[3] D. Baczkowski, J. Eitner, C.E. Finch, M. Kozek and B. Suminski, Polygonal, Sierpiński, and Riesel numbers, J. Integer Seq. 18 (2015), no. 8, Article 15.8.1.
[4] D. Baczkowski and J. Eitner, Polygonal-Sierpiński-Riesel sequences with terms having at least two distinct prime divisors, Integers 16 (2016), \#A40.
[5] D. Baczkowski, O. Fasoranti, and C. E. Finch, Lucas-Sierpiński and Lucas-Riesel numbers, Fibonacci Quart. 49 (2011), no. 4, 334-339.
[6] W. Banks, C. Finch, F. Luca, C. Pomerance, and P. Stănică, Sierpiński and Carmichael numbers, Trans. Amer. Math. Soc 367 (2015), no. 1, 355-376.
[7] K. Bhoi, B. K. Patel, and P.K. Ray, Narayana numbers as sums of two base b repdigits, Acta Comment. Univ. Tartu. Math. 26 (2022), no. 2, 183-192.
[8] K. Bhoi and P.K. Ray, Fermat numbers in Narayan's cows sequence, Integers 22 (2022), \#A16.
[9] K. Bhoi and P.K. Ray, On the x-coordinates of Pell equations which are Narayana numbers, Integers 22 (2022), \#A107.
[10] Y.G. Chen, On integers of the forms $k^{r}-2^{n}$ and $k^{r} 2^{n}+1$, J. Number Theory bf 98 (2003), 310-319.
[11] E.R. Emadian, C.E. Finch-Smith, and M.G. Kallus, Ruth-Aaron pairs containing Riesel or Sierpiński numbers, Integers 18 (2018), \#A72.
[12] M. Filaseta, C. Finch, and M. Kozek, On powers associated with Sierpiński number, Riesel numbers and Polignac's conjecture, J. Number Theory 128 (2008), no. 7, 1916-1940.
[13] C. Finch, J. Harrington, and L. Jones, Nonlinear Siperinski and Riesel numbers, J. Number Theory 133 (2013), no. 2, 534-544.
[14] C. Finch and L. Jones, Perfect power Riesel numbers, J. Number Theory 150 (2015), 41-46.
[15] F. Luca and V. J. Mijía Huguet, Fibonacci-Riesel and Fibonacci-Sierpiński numbers, Fibonacci Quart. 46/47 (2008/2009), 216-219.
[16] H. Riesel, Några stora primal, Elementa 39 (1956), 258-260.
[17] W. Sierpiński, Sur un problème concernant les nombres $k 2^{n}+1$, Elem. Math. 15 (1960), 73-74.

