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Abstract

Let F (s) be a function from the Selberg class, F (k)(s) be the kth derivative of
F (s), and a be a complex number. The solutions of F (k)(s) = a are called a-points
of F (k)(s). In this paper, we study the distribution of the a-points of F (k)(s) and
estimate the number of these a-points. Furthermore, we give an asymptotic formula
for ∑

ρ
(k)
a :1<γ

(k)
a <T

xρ
(k)
a as T →∞,

where x is a positive real number such that x > 1 and ρ
(k)
a = β

(k)
a + iγ

(k)
a denotes

an a-point of the kth derivative of F (s).
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1. Introduction

An L-function in number theory is often defined by a Dirichlet series, or an Eulerian

product on prime numbers, and satisfies certain analytical properties. The typical

example of an L-function is the Riemann zeta function; it plays an important role in

mathematical research, constitutes a first link between arithmetic and analysis and

was used by Euler, Dirichlet, Tchebychev and Riemann to study the distribution

of prime numbers. The distribution of the zeros of the Riemann zeta function

ζ(s), as well as of other zeta and L-functions, is related to important questions in

number theory. The famous (yet unproved) Riemann hypothesis, which claims that

all nontrivial (nonreal) zeros of ζ(s) lie on the critical line s = 1
2 + it with t ∈ R,

is of special interest. The Riemann hypothesis is the subject of several studies and

research papers, has a variety of equivalent statements, and may be extended to

a large class of L-functions (see for instance [2] and [10]). Dixit et al. [3] studied

the vertical shifts s to s + iτ . In [8], Li and Radziwill established results on the

distribution of values of ζ
(
1
2 + i(al + b)

)
, where a and b are real numbers with

a > 0, and l ranges over the integers in some dyadic interval [T, 2T ]. Gonek [4]

developed a uniform version of an explicit formula known as Landau’s formula (it

provides a connection between zeros of the zeta function and primes) which can be

used in applications. The study of the derivatives of zeta functions was inspired by

Speiser’s paper [16]. Moreover, he proved that the Riemann hypothesis is equivalent

to the absence of zeros of the derivative of the Riemann zeta function to the left

of the critical line. Berndt [1] studied the number of zeros of the higher-order

derivatives of the Riemann zeta function, and Spira [17] investigated the zero-free

regions of the higher-order derivatives of the Riemann zeta function. Levinson and

Montgomery [7] proved that, under certain conditions, the Riemann zeta function

and its derivative have approximately the same number of zeros to the left of the

critical line. They also studied the zeros of the higher-order derivatives of the

Riemann zeta function, and assuming the Riemann hypothesis, they proved that

there are a finite number of such zeros in the critical strip. Yildirim [20] considered

the number of zeros of the first and higher-order derivatives of the Dirichlet L-

functions. He obtained zero-free regions and an estimate of the number of zeros for

these functions.

Let F (s) be a function from the Selberg class, F (k)(s) be the kth derivative of

F (s), and a be a complex number. The solutions of F (k)(s) = a are called a-points

of F (k)(s). In this paper, we study the distribution of the a-points of F (k)(s) and

we estimate the number of these a-points.

Theorem 1. Let F (s) be a function belonging to the Selberg class, k be a positive

integer and a be a nonzero complex number. Then, for sufficiently large T we have

Nk(a;T, F ) =
dFT

2π
log T +

T

2π
log
(
λQ2

)
− dFT

2π
+O (log T ) ,
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where Nk(a;T, F ) denotes the number of a-points of F (k)(s) in the region 0 < t < T

and E2 < σ < E1, where E1 and E2 are from Lemmas 1 and 3, respectively, as

given below.

Remark 1. The case a = 0 was already proved by R. Šimenas in [14]. In fact, he
calculated the number of zeros of F (k)(s) in the region |t| < T and E2 < σ < E1;
he obtained the following result:

Nk(0;−T, T, F ) =
∑

ρ
(k)
0 :

−T < γ
(k)
0 < T

E2 < β
(k)
0 < E1

1

=
dFT

π
log T +

T

π
log
(
λQ2)− dFT

π
− T

π
log `+O (log T ) ,

where ` ∈ N is the least number such that the Dirichlet series coefficient a` for

F (k)(s) does not vanish. In a similar way to Šimenas’s work, we can easily prove

the following result:

Nk(0;T, F ) =
dFT

2π
log T +

T

2π
log
(
λQ2

)
− dFT

2π
− T

2π
log `+O (log T ) .

Remark 2. For the case k = 0, we refer to Steuding’s book [18, Chapter 7].

Theorem 2. Let F (s) be a function belonging to the Selberg class, k be a positive
integer and a be a complex number. Then, for x > 1 and sufficiently large T we
have ∑
ρ
(k)
a :

0 < γ
(k)
a < T

E2 < β
(k)
a < E1

xρ
(k)
a =

T

2π

∑
l ≥ 0

n0, n1, ..., nl ≥ `
x = n0n1...nl

(−1)k(l+1)

al+1
(logn0)k+1

×(logn1 logn2... lognl)
kan0an1 ...anl +O(log T ), if (a 6= 0)

and ∑
ρ
(k)
a :

0 < γ
(k)
a < T

E2 < β
(k)
a < E1

xρ
(k)
a =

T

2π

∑
l ≥ 0
n0 ≥ `

n1, ..., nl ≥ ` + 1

x = n0n1...nl/`
l+1

(
−1

a` logk `

)l+1

(logn0)k+1

×(logn1 logn2... lognl)
kan0an1 ...anl +O(log T ), if (a = 0),

where ` ∈ N is the least number such that the Dirichlet series coefficient a` for

F (k)(s) does not vanish, ρ
(k)
a = β

(k)
a + iγ

(k)
a denotes an a-point of the kth derivative

F (k)(s), while E1 and E2 are from Lemmas 1 and 3, respectively, as given below. If

a 6= 0, the sum on the right-hand side is zero for x /∈ Z, and if a = 0 with `nx /∈ Z
for any n ∈ N, then the sum on the right-hand side is zero.
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2. Preliminary Lemmas and Equations

The Selberg class S was introduced by Selberg [13]. It consists of the Dirichlet

series

F (s) =

∞∑
n=1

a(n)

ns
, (Re (s) > 1),

which satisfy the following conditions:

• Ramanujan hypothesis: a(n) = O(nε).

• Euler product : For s with sufficiently large real part,

F (s) =
∏
p

exp

( ∞∑
k=1

b(pk)

pks

)
,

with suitable coefficients b(pk) satisfying b(pk) = O(pkθ) for some θ < 1
2 .

• Analytic continuation: There exists a non-negative integer m such that (s −
1)mF (s) is an entire function of finite order (in the sequel mF denotes the

smallest integer m with this property).

• Functional equation: For 1 ≤ j ≤ r, there exist positive real numbers QF ,

λj , and complex numbers µj , ω with Re(µj) ≥ 0 and |ω| = 1 such that

φF (s) = ωφF (1− s), where

φF (s) = F (s)QsF

r∏
j=1

Γ(λjs+ µj). (2.1)

It follows from the Euler product that F ∈ S has no zeros in the half-plane σ > 1.

Also, F admits zeros in the left-half plane, which are generated by the poles of the

Γ-factor appearing in the functional equation. These zeros are called trivial and

they are located at the points s = −n+µjλj
, where n ∈ N and 1 ≤ j ≤ r.

All other zeros are located inside the critical strip and they are called nontrivial

zeros of F . It is expected that for every function in the Selberg class, the analogue

of the Riemann hypothesis holds, i.e., all nontrivial zeros lie on the critical line

Re (s) = 1
2 . The degree of F ∈ S is defined by dF = 2

∑r
j=1 λj . The logarithmic

derivative of F (s) has a Dirichlet series expansion, as given below:

−F
′

F
(s) =

∞∑
n=1

ΛF (n)n−s, (Re s > 1)

where ΛF (n) = b(n) log n is the generalized von Mangoldt function (supported on

the prime powers). The Euler product of every F ∈ S can be written in the standard
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form F (s) =
∏
p Fp(s), where Fp(s) = 1 +

∑∞
m=1

aF (pm)
pms . It has been conjectured

in [6] that the p-factors Fp are of polynomial type, hence we have

Fp(s) =

νF∏
i=1

(
1− αi(p)

ps

)−1
, |αi(p)| ≤ 1.

In view of our investigations, the functional equation is of special interest. We

rewrite the functional equation as

F (s) = ∆F (s)F (1− s), (2.2)

where

∆F (s) = ωQ1−2s
r∏
j=1

Γ(λj(1− s) + µj)

Γ(λjs+ µj)
. (2.3)

By Stirling’s formula, we have

∆F (σ + it) =
(
λQ2tdF

) 1
2−σ−it exp

(
itdF +

iπ(µ− dF )

4

)
{ω +O(1/t)}

and

−∆′F
∆F

(σ + it) = log
(
λQ2tdF

)
+O

(
1

t

)
,

where µ = 2
∑r
j=1(1− 2µj) and λ =

∏r
j=1 λ

2λj
j . Further, we have

µF (σ) = lim sup
t→±∞

log |F (σ + it)|
log |t|

=

{
0 for σ > 1,

( 1
2 − σ)dF for σ < 0,

and

µF (σ) ≤ 1

2
dF (1− σ) for 0 ≤ σ ≤ 1.

Also

F (σ + it)�ε t
µF (σ)+ε.

For more details, kindly see Lemma 2.1 in [9]. Moreover, by Cauchy’s integral

formula we have

F (k)(s) =
k!

2πi

∫
C

F (w)

(w − s)k+1
ds, (2.4)

where C is any arbitrary small circle centered at s. By using the last bound of F (s)

of (2.2), it follows that

F (k)(s)�ε t
µF (σ)+ε. (2.5)

Lemma 1. Let F (s) be a function belonging to the Selberg class, k be a positive

integer and a ∈ C. Then, there exists a real number E1 = E1(k, a, F ) ≥ 1 such that

there is no a-point of F (k)(s) in the region {s ∈ C : σ ≥ E1}.
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Proof. The case a = 0 was treated by Šimenas in [14]. Hence, we consider only the

case a 6= 0. Since F (k)(s) = (−1)k
∑
n≥2

an(logn)
k

ns , we have

|F (k)(s)| ≤
∑
n≥2

|an|(log n)k

nσ
−→ 0 as σ −→∞.

Hence, there exists E1 = E1(k, a, F ) ≥ 1 such that |F (k)(s)| < |a| for σ ≥ E1. Thus

F (k)(s) 6= a in this half-plane.

Lemma 2. Let F (s) be a function belonging to the Selberg class and k be a positive

integer. Then, for c > 1 the following equation holds in the region {s ∈ C : σ >

c, |t| ≥ τk} for sufficiently large τk:

F (1− s)
(k)

=
(dF )k

πrω
Q2s−1

r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)

×

 r∏
j=1

sinπ(−λjs+ λj + µj)

 logk(s)

×F (s)

(
1 +O

(
1

| log(s)|

))
.

Proof. Using Equations (2.2), (2.3) and applying the Euler reflection formula

Γ(1− s)Γ(s) =
π

sinπs

with s 6= 0,−1,−2, · · · , we obtain

F (1− s) =
1

πrω
Q2s−1F (s)

r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)

×
r∏
j=1

sinπ(−λjs+ λj + µj).

Further, by differentiating the previous equation k times we get

F (1− s)
(k)

=
1

πrω
Q2s−1

(
r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)

)(k)

×
r∏
j=1

sinπ(−λjs+ λj + µj)F (s)

+
1

πrω
Q2s−1

k−1∑
n=0

(
r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)

)(n)

Rn,k(s),
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where

Rn,k(s) =

k−n∑
m=0

m∑
l=0

(
k
n

)(
k − n
m

)(
m
l

)
(2 logQ)k−n−m

×

 r∏
j=1

sinπ(−λjs+ λj + µj)

(m−l)

F (l)(s).

Using [20, Equation (13)], derivatives of the Gamma function can be estimated as

follows:

Γ(j)(s) = Γ(s) (log s)
j

(
1 +O

(
1

s log s

))
in the region {s ∈ C, σ ≥ 1 + δ, |t| ≥ 1}. Furthermore, with the use of the last

estimated values of Γ(j)(s) and the equality log(as + b) = log s + log
(
a+ b

s

)
, it

follows that for sufficiently large |t| ≥ τk and σ ≥ c > 1 one has r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)

(k)

=
∑

n1+n2+...+n2r=k

(
k

n1, n2, ..., n2r

)
(Γ(λ1s+ µ1))(n1)

×(Γ(λ1s+ 1− λ1 − µ1))(n2)... (Γ(λ2r−1s+ µ2r−1))(n2r−1)

×Γ(λ2rs+ 1− λ2r − µ2r)
(n2r)

= logk(s)

r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)
(

1 +O

(
1

s log(s)

))

×
∑

n1+n2+...+n2r=k

(
k

n1, n2, ..., n2r

)
λn1+n2
1 λn3+n4

2 ...λ
n2r−1+n2r
r

= (dF )k logk(s)
r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)
(

1 +O

(
1

s log(s)

))
.

Moreover, using the same argument as above in the same region F (s) � 1 and

F (l)(s) =
∑
n≥2

an(− logn)l

ns � 1 we get∣∣∣∣∣∣
r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)
r∏
j=1

sinπ(−λjs+ λj + µj)F (s)

∣∣∣∣∣∣
�

∣∣∣∣∣∣
r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj) logk(s)eπ(λ1+λ2+...+λr)|t|

∣∣∣∣∣∣
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and∣∣∣∣∣∣∣
k−1∑
n=0

 r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)

(n)

Rn,k(s)

∣∣∣∣∣∣∣

�

∣∣∣∣∣∣
r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj) logk−1(s)eπ(λ1+λ2+...+λr)|t|

∣∣∣∣∣∣ .
As a consequence, we get

F (1− s)
(k)

=
(dF )k

πrω
Q2s−1

r∏
j=1

Γ(λjs+ µj)Γ(λjs+ 1− λj − µj)

×

 r∏
j=1

sinπ(−λjs+ λj + µj)

 logk(s)F (s)

(
1 +O

(
1

| log(s)|

))

in the region {s ∈ C : σ > c, |t| ≥ τk}.

Lemma 3. Let F (s) be a function belonging to the Selberg class, k be a positive

integer and a ∈ C. Then, there exists a real number E2 = E2(k, a, F ) ≤ 0 such that

there is no a-point of F (k)(s) in the region {s ∈ C : σ ≤ E2, |t| ≥ τk} for sufficiently

large τk.

Proof. It follows from Lemma 2 that F (k)(1− s) → ∞ as σ → ∞ and there exists

E2 = E2(k, a, F ) ≤ 0 such that |F (k)(s)| > |a| for σ ≤ E2 and |t| ≥ τk. Thus

F (k)(s) 6= a in this region.

Remark 3. It can also be seen by Rouché’s theorem [19, Section 3.42] and Lemma 2

that there is Nk = Nk(a, F ) < 0 such that F (k)(s) has an a-point around any trivial

zero s = −n+µjλj
, n ∈ N, 1 ≤ j ≤ r of F (s) in the region {s ∈ C : σ ≤ Nk, |t| ≤ τk}.

Those a-points can be regarded as trivial a-points of F (k)(s).

Now, we consider the number Nk(a;T, F ) of a-points of F (k)(s), k ≥ 1 in the

region 0 < t < T and E2 < σ < E1, where E1 and E2 are from Lemmas 1 and 3,

respectively. The following lemma is a direct result of a combinations of Equation

(2.5) and Jensen’s formula.

Lemma 4. Let F (s) be a function belonging to the Selberg class, k be a positive

integer and a ∈ C. Then, for sufficiently large T , we have

Nk(a;T + 1, F )−Nk(a;T, F )� log(T ).
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Lemma 5. Let F (s) be a function belonging to the Selberg class, k be a positive

integer and a ∈ C. Then, for any constants σ1, σ2 and s ∈ C with σ1 < σ < σ2 and

large t, we have

F (k+1)(s)

F (k)(s)− a
=

∑
|γ(k)
a −t|≤1

1

s− ρ(k)a

+O (log t) ,

where ρ
(k)
a denotes an a-point of the kth derivative F (k)(s) and γ

(k)
a = Im(ρ

(k)
a ).

Proof. It is clearly reflected from Equations (2.2), (2.3) and Stirling’s formula that

the function (s− 1)mFF (s) is of order one (see Lemma 3.3 in [15] for more details).

Further, using Equation (2.4) the same result can easily be shown for the functions

(s − 1)mF+k(F (k)(s) − a), k ≥ 1. Hence, by the Hadamard factorization theorem

we get

(s− 1)mF+k(F (k)(s)− a)

= exp (Ak,a +Bk,as) s
mk,a

∏
ρ
(k)
a 6=0

(
1− s

ρ
(k)
a

)
exp

(
s

ρ
(k)
a

)
,

where Ak,a and Bk,a are certain complex constants, mk,a is a positive integer and

the product is taken over all a-points ρ
(k)
a of F (k)(s). Hence, applying the property

of the logarithmic derivative we obtain

F (k+1)(s)

F (k)(s)− a
= − Ak,a

s− 1
+Bk,a +

mk,a

s
+
∑
ρ
(k)
a 6=0

(
1

s− ρ(k)a

+
1

ρ
(k)
a

)

=
∑
ρ
(k)
a 6=0

(
1

s− ρ(k)a

+
1

ρ
(k)
a

)
+O(1).

Then, by the same argument due to Onozuka [12, Lemma 2.6] and using Lemma 4

we complete the proof.

Lemma 6. Let F (s) be a function belonging to the Selberg class, k be a positive

integer and a ∈ C. Then, for s ∈ C with sufficiently large σ ≥ E1 we have

F (k+1)(s)
F (k)(s)−a =

∑
l ≥ 0

n0, n1, ..., nl ≥ `

(−1)k(l+1)

al+1 (log n0)k+1(log n1 log n2... log nl)
k

×an0an1 ...anl
ns0n

s
1...n

s
l
, if a 6= 0

and

F (k+1)(s)
F (k)(s)−a =

∑
l ≥ 0
n0 ≥ `

n1, ..., nl ≥ ` + 1

(
−1

a` logk `

)l+1

(log n0)k+1(log n1 log n2... log nl)
k

× `
(l+1)san0an1 ...anl

ns0n
s
1...n

s
l

, if a = 0.
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Proof. When a 6= 0, we have

F (k+1)(s)

F (k)(s)− a
=

F (k+1)(s)

−a
(

1− F (k)(s)
a

) =
F (k+1)(s)

−a
∑
l≥0

(
F (k)(s)

a

)l

=
(−1)k+1

−a
∑
n0≥`

an0(logn0)k+1

ns0

×
∑
l≥0

 (−1)k

a

∑
n1≥`

an1(logn1)k

ns1

l

=
∑
l ≥ 0

n0, n1, ., nl ≥ `

(−1)k(l+1)

al+1
(logn0)k+1

×(logn1 logn2.. lognl)
k an0an1 ..anl
ns0n

s
1..n

s
l

.

When a = 0, one has

F (k+1)(s)

F (k)(s)
= −

∑
n0≥`

an0
(logn0)

k+1

ns0

a`(log `)
k

`s

(
1 + `s

a`(log `)
k

∑
n1≥`+1

an1 (logn1)k

ns1

)
= − `s

a`(log `)k

∑
n0≥`

an0(logn0)k+1

ns0

×
∑
l≥0

 −`s

a`(log `)k

∑
n1≥`+1

an1(logn1)k

ns1

l

=
∑
l ≥ 0
n0 ≥ `

n1, ..., nl ≥ ` + 1

(
−1

a` logk `

)l+1

(logn0)k+1(logn1 logn2... lognl)
k

× `
(l+1)san0an1 ...anl

ns0n
s
1...n

s
l

.

3. Proof of Theorem 1

We now present a proof of our first main theorem.

Proof of Theorem 1. Let a be a complex number. We write s = σ + it and ρ
(k)
a =

β
(k)
a + iγ

(k)
a with real numbers σ, t, β

(k)
a and γ

(k)
a . The case a = 0 was already proved

by Šimenas in [14] so here we assume a 6= 0. By the residue theorem we have

Nk(a;T, F ) =
1

2πi

∮
R

F (k+1)(s)

F (k)(s)− a
ds+O(1),



INTEGERS: 24 (2024) 11

where the integration is taken over a rectangular contour in the counterclockwise

direction, denoted by R with vertices u+ib, u+iT, v+iT, v+ib with some constants

b > 0, u ≥ E1, v ≤ E2 such that F (k)(s) has no a-point on the lines t = T and

t = b. Hence, we have

Nk(a;T, F ) =
1

2πi

∫
R

F (k+1)(s)

F (k)(s)− a
ds+O(1)

=
1

2πi

{∫ u+ib

v+ib

+

∫ u+iT

u+ib

+

∫ v+iT

u+iT

+

∫ v+ib

v+iT

}
F (k+1)(s)

F (k)(s)− a
ds+O(1)

= I1 + I2 + I3 + I4 +O(1).

The first integral I1 is independent of T so I1 = O(1). Next we consider I2. Using

Lemma 6 it easy to see that I2 = O(1). From Lemma 5, we get for I3:

I3 =
1

2πi

∑
|γ(k)
a −T |<1

∫ v+iT

u+iT

1

s− ρ(k)a

ds+O

(∫ v+iT

u+iT

(log t)ds

)

=
1

2πi

∑
|γ(k)
a −T |<1

∫ v+iT

u+iT

1

s− ρ(k)a

ds+O (log T ) .

Now we change the path of integration. If γ
(k)
a < T , we change the path to the

upper semi circle with center ρ
(k)
a and radius 1 (see Figure 1). If γ

(k)
a > T , we

change the path to the lower semicircle with center ρ
(k)
a and radius 1 (see Figure

2).

Figure 1: The case γ
(k)
a < T . Figure 2: The case γ

(k)
a > T .
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Therefore, 1

s−ρ(k)a

� 1 on the new path, which yields

I3 = O

 ∑
|γ(k)
a −T |<1

1

+O (log T ) .

Hence, by Lemma 4 we obtain I3 = O (log T ).

Finally, we have to estimate the value for I4. Since |F (k)(s)| > |a| for σ ≤ E2

and |t| ≥ τk, one has

I4 =
1

2πi

∫ v+iτk

v+iT

F (k+1)(s)

F (k)(s)− a
ds+O (1)

=
1

2πi

∫ v+iτk

v+iT

F (k+1)(s)

F (k)(s)
× 1

1− a
F (k)(s)

ds+O (1)

=
1

2πi

∫ v+iτk

v+iT

F (k+1)(s)

F (k)(s)

1 +
∑
n≥1

(
a

F (k)(s)

)n ds+O (1)

=
1

2πi

∫ v+iτk

v+iT

F (k+1)(s)

F (k)(s)
ds+

1

2πi

∫ v+iτk

v+iT

F (k+1)(s)

F (k)(s)

∑
n≥1

(
a

F (k)(s)

)n
ds

+O (1) .

Combining Lemma 2 and Stirling’s formula we get

F (k)(v + it)� |t| r2−dF v+ r
2 dF e−π(λ1+λ2+...+λr)|t|(log |t|)keπ(λ1+λ2+...+λr)|t|.

Here we choose v such that r
2−dF v+ r

2dF >
3
2 . Then, we obtain F (k)(v+it)� |t| 32 .

Therefore ∑
n≥1

(
a

F (k)(v + it)

)n
� |t|− 3

2 .

Furthermore, from Lemma 2 we have F (k+1)(v+it)
F (k)(v+it)

� log |t|. Finally we get

I4 =
1

2πi

∫ v+iτk

v+iT

F (k+1)(s)

F (k)(s)
ds+O

(∫ v+iτk

v+iT

log(|t|)|t|− 3
2 dt

)
+O (1)

=
1

2πi

∫ v+iτk

v+iT

F (k+1)(s)

F (k)(s)
ds+O (1) . (3.1)

The estimate of the first term of Equation (3.1) goes with the same method as per

the estimation of I3 in [14]. We have

I4 =
dFT

2π
log T +

T

2π
log
(
λQ2

)
− dFT

2π
+O (log T ) .

Theorem 1 follows from the estimation of I1, I2, I3 and I4.
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4. Proof of Theorem 2

In this section, we present a proof of our second main theorem.

Proof of Theorem 2. Let a be a complex number. Since there are finitely many

a-points in the region 0 < t < τk and E2 < σ < E1, by the residue theorem we have∑
ρ
(k)
a :

0 < γ
(k)
a < T

E2 < β
(k)
a < E1

xρ
(k)
a =

1

2πi

∮
R

xs
F (k+1)(s)

F (k)(s)− a
ds+O(1),

where τk is the same as in Lemma 2. The integration is taken over a rectangular
contour in the counterclockwise direction, denoted by R with vertices u + iτk, u +
iT,−v + iT,−v + iτk with some constants u ≥ E1, v ≤ E2. When F (k)(s) has no
a-point on the lines t = T and t = τk, then∑

ρ
(k)
a :

0 < γ
(k)
a < T

E2 < β
(k)
a < E1

xρ
(k)
a =

1

2πi

∮
R

xs
F (k+1)(s)

F (k)(s)− a
ds+O(1)

=
1

2πi

{∫ u+iτk

v+iτk

+

∫ u+iT

u+iτk

+

∫ v+iT

u+iT

+

∫ v+iτk

v+iT

}
×xs F

(k+1)(s)

F (k)(s)− a
ds+ O(1)

= J1 + J2 + J3 + J4 +O(1).

The first integral I1 is independent of T , so J1 = O(1). Similar to the estimate of

I3, by Lemmas 4 and 5 the integral J3 can be estimated as J3 = O (log T ). Next

we consider J4. Using Lemma 2 we obtain

F (k+1)(v + it)

F (k)(v + it)− a
� log t, t ≥ τk.

Hence

J4 �
∫ T

τk

xv log tdt� xvT log T −→ 0, v −→ −∞.

Now we proceed in order to estimate the value of J2. In Lemma 6 the right-hand

side is complicated; let us write it as
∑
d α(d)d−s. Hence, we have

J2 =
1

2πi

∫ u+iT

u+iτk

xs
∑
d

α(d)d−sds =
1

2πi

∑
d

α(d)

∫ u+iT

u+iτk

(x
d

)s
ds.

The integral factor can be calculated as∫ u+iT

u+iτk

(x
d

)s
ds =

{
iT +O(1) for x = d,

O (1) for x 6= d.
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which yields

J2 =

{
T
2π

∑
d,x=d α(d) +O(1) for x = d,

O (1) for x 6= d.

Combining the estimated values of J1, J2, J3 and J4, we finally obtain Theorem

2.

5. Concluding Remarks

In this section, we present some problems that will be considered in a sequel to this

article.

1. Prove an asymptotic for the sum of F (k)(ρa)Xρa , where F (k)(s) denotes the

nth derivative of F , X is a positive real number, and ρa denotes a nontrivial a-

point of F (s). The sum is over the zeros with imaginary parts up to a height

T , as T → ∞. We can find a new form of the asymptotic formula, when

X is a positive integer and that highlights the differences in the asymptotic

expansions as X changes its arithmetic nature (see [11]).

2. Following [5], we can investigate the distribution of the fractional parts of the

sequence (αγka), where α is any fixed non-zero real number and γka runs over

the imaginary parts of the a-points of F (k)(s).

3. Study a-points of combinations of functions φF defined in (2.1) (see [3] for

a = 0 and F = ζ).
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