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Abstract

In this paper, we investigate a class of permutation polynomials of the form htk(x) =∑k
n=1 n

txn over a finite field Fp, where k and t are positive integers, and p is an
odd prime. We find certain conditions on k and t for htk(x) to be a permutation
polynomial over Fp. We then use this class of permutation polynomials to find a new
congruence identity on the parts of ordered partitions of (p−1), 2(p−1), . . . , µ(p− 1)
into s parts, where µ is the largest integer satisfying µ(p− 1) ≤ ks.

1. Introduction

Let n be a positive integer. A partition of n is a finite non-increasing sequence of

positive integers ω1, ω2, . . . , ωs such that
∑s
t=1 ωt = n. Each wi is called a part

of the partition, and s is called the length of the partition. Thus, a partition is

an unordered collection of parts, and when the order of the parts is relevant, we

call it an ordered partition or composition. It is easy to see that the number of

compositions of n into s parts is
(
n−1
s−1

)
, and that the total number of compositions

is 2n−1. Compositions with some restrictions on parts are interesting. Restrictions

on compositions can happen in many ways, such as restricting how parts of the

compositions are arranged or restricting the set from which the parts are taken.

In a composition, if the parts are taken from the set S, compositions are called

S-restricted compositions. We refer interested readers to [1, 2] for a complete survey

and the history of compositions.

Throughout the paper, let Nk denote the set {1, . . . , k}, and [x] denote the great-

est integer less than or equal to x. We denote the parts of the Nk-restricted compo-
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sitions of j(p− 1) into s parts by ω
(j)
1 , ω

(j)
2 , . . . , ω

(j)
s , i.e., ω

(j)
1 + ω

(j)
2 + · · ·+ ω

(j)
s =

j(p− 1), where j is a positive integer; ω
(j)
i ∈ Nk for all 1 ≤ i ≤ s, and p is an odd

prime. In this paper, we obtain an interesting congruence relation among the parts

of Nk-restricted compositions of j(p − 1) into s parts for 1 ≤ j ≤ [ks/(p− 1)]. In

particular, we have established the following congruence identity.

Theorem 1. Assume that p is an odd prime and t is any positive integer. Let k

and s be positive integers such that s 6≡ 0 (mod p) and k ≡ 1 (mod p(p− 1)). The

integer k satisfies an additional condition that (k − 1) is a multiple of p2 whenever

t is a multiple of (p− 1). Let µ be the greatest integer such that µ(p− 1) ≤ ks, that

is, µ =
[
ks/(p− 1)

]
. Then the following congruence identity holds:

µ∑
j=1

∑
Υs(j(p−1))

(
ω1

(j) · ω2
(j) · · ·ωs(j)

)t
≡ 0 (mod p),

where Υs(j(p − 1)) for each 1 ≤ j ≤ µ indicates summation over all the s-tuples

(ω
(j)
1 , ω

(j)
2 , . . . , ω

(j)
s ) satisfying ω

(j)
1 + ω

(j)
2 + · · · + ω

(j)
s = j(p − 1), and ω

(j)
i ∈

Nk for all 1 ≤ i ≤ s.

This work is in continuation of the earlier work by the second author and M. K.

Singh [7], in which they obtained some congruence identities on the ordered partition

using permutation polynomials. In particular, they proved the congruence identity

in Theorem 1 for t = 1. It is surprising that the congruence identity in Theorem 1

holds for every positive integer t, and proving this theorem is the main objective of

the paper.

This paper is organized as follows. In Section 2, we illustrate some significant

preliminary results and lemmas. In Section 3, we propose a new class of permutation

polynomials and use it to give the proof of Theorem 1.

2. Preliminaries

Let q be a prime power, and Fq be a finite field with size q. It is well known

that for every function φ : Fq → Fq, there is a unique polynomial f(x) ∈ Fq[x]

such that deg(f(x)) ≤ q − 1 and φ(a) = f(a) for every a ∈ Fq. The polynomial

f(x) ∈ Fq[x] representing φ can be easily obtained by the Lagrange interpolation

formula f(x) =
∑
c∈Fq

φ(c)(1− (x− c)q−1). Also note that for any two polynomials

f(x) and g(x) over the finite field Fq, we have f(a) = g(a) for each a ∈ Fq if and

only if f(x) ≡ g(x) (mod xq − x) (see [4, Chapter 7]).

A polynomial f(x) in Fq[x] is a permutation polynomial of Fq if its associated

polynomial function f : c 7→ f(c) from Fq to itself is a permutation of Fq. Finding

a new class of permutation polynomials over a finite field is a nontrivial problem
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[4, 5, 6]. We refer the interested reader to [4, Chapter 7] for the detailed study of

permutation polynomials over finite fields.

This section gives a brief introduction to permutation polynomials over a finite

field. We use permutation polynomials over finite fields to prove our result on

restricted composition. Since Fq contains a finite number of elements, we have the

following equivalent conditions for a permutation polynomial.

Lemma 1 ([4]). The polynomial f(x) ∈ Fq[x] is a permutation polynomial of Fq if

and only if one of the following conditions holds:

(1) the function f : c 7→ f(c) is onto,

(2) the function f : c 7→ f(c) is one-to-one,

(3) f(x) = d has a solution in Fq for each d ∈ Fq,

(4) f(x) = d has a unique solution in Fq for each d ∈ Fq.

The following theorem, known as Hermite’s Criterion, will be used to prove our

result in Section 3.

Theorem 2 ([4, Theorem 7.6]). A polynomial f(x) ∈ Fq[x] is a permutation poly-

nomial of Fq if and only if the following two conditions hold:

(1) f(x) has exactly one root in Fq,

(2) for each integer t with 1 ≤ t ≤ q−2 and t 6≡ 0 (mod p), the reduction of f(x)t

(mod xq − x) has degree ≤ q − 2.

We need the next result on summation involving binomial coefficients.

Theorem 3 ([3]). For any two real or complex numbers x and y, and for any two

positive integers n and m, we have the following identity:

n∑
i=0

(−1)i
(
n

i

)
(kx+ iy)m =

{
(−1)nynn!, for n = m,

0, for each n > m.
(1)

We also need the following two lemmas in the sequel.

Lemma 2 ([4, Theorem 7.8]). The polynomial xd is a permutation polynomial over

Fq if and only if gcd(d, q − 1) = 1.

Lemma 3 ([4, Lemma 7.3]). Let a1, a2, . . . , aq be elements of Fq. Then the following

two conditions are equivalent:

(1) a1, a2, . . . , aq are distinct,

(2)
q∑
i=1

ai
t =

{
0, for t = 0, 1, . . . , q − 2,

−1, for t = q − 1.
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3. Results

Let htk(x) =
∑k
n=1 n

txn be a polynomial over finite field Fp, where t and k are

positive integers. We start this section with the following lemma in which we find

a function g(x), that is equivalent to the polynomial htk(x) such that g(α) = htk(α)

for each α ∈ Fp \ {1}. This lemma will be used to investigate the permutation

properties of the polynomial htk(x).

Lemma 4. For positive integers t, k, and for x 6= 1, a function equivalent to the

polynomial htk(x) =
k∑

n=1
ntxn is given by

t∑
n=1

n−1∑
i=0

(−1)i
(
t+1
i

)
(n− i)txn +

t+1∑
m=1

t+1∑
i=m

(−1)i
(
t+1
i

)
(k +m− i)txk+m

(1− x)t+1
.

Proof. We assume that

(1− x)rhtk(x) =

k+r∑
n=1

T
(r)
(n,t)x

n,

where T
(r)
(n,t) is the coefficient of xn in the expansion of (1− x)rhtk(x). It is easy to

see that T
(r)
(n,t) satisfies the recurrence relation T

(r)
(n,t) = T

(r−1)
(n,t) −T

(r−1)
(n−1,t). We clearly

have T
(r)
(1,t) = 1 for all r ∈ N and T

(r)
(n,t) = 0 for all n > k + r. We claim that the

coefficients T
(r)
(n,t) can be obtained by the following expressions:

T
(r)
(n,t) =



n−1∑
i=0

(−1)i
(
r
i

)
(n− i)t, for n ≤ r,

r∑
i=0

(−1)i
(
r
i

)
(n− i)t, for r + 1 ≤ n ≤ k,

r∑
i=m

(−1)i
(
r
i

)
(n− i)t, for n = k +m,m = 1, . . . , r.

(2)

We prove the claim by induction on r. For r = 1, we have

(1− x)htk(x) = x+ (2t − 1)x2 + (3t − 2t)x3 + · · ·+ (kt − (k − 1)t)xk − ktxk+1

= x+

k∑
n=2

(
nt − (n− 1)t

)
xn − ktxk+1. (3)

Substituting r = 1 in Equation (2), we have
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T
(1)
(n,t) =



n−1∑
i=0

(−1)i
(

1
i

)
(n− i)t = 1, for n ≤ 1,

1∑
i=0

(−1)i
(

1
i

)
(n− i)t = nt − (n− 1)t, for 2 ≤ n ≤ k,

1∑
i=m

(−1)i
(

1
i

)
(n− i)t = −kt, for n = k +m, m = 1.

(4)

We see from Equations (3) and (4) that the expressions in Equation (2) are

satisfied when r = 1. We assume that the expressions in Equation (2) are satisfied

for r. We next show that this is also true for r+ 1, that is, the coefficients of xn in

the expansion of (1− x)r+1htk(x) are given by the following expressions:

T
(r+1)
(n,t) =



n−1∑
i=0

(−1)i
(
r+1
i

)
(n− i)t, for n ≤ r + 1,

r+1∑
i=0

(−1)i
(
r+1
i

)
(n− i)t, for r + 2 ≤ n ≤ k,

r+1∑
i=m

(−1)i
(
r+1
i

)
(n− i)t, for n = k +m,m = 1, . . . , r + 1.

(5)

Now, using the recurrence relation T
(r)
(n,t) − T

(r)
(n−1,t) = T

(r+1)
(n,t) , and using Equation

(2) for n ≤ r + 1, we get

T
(r+1)
(n,t) = T

(r)
(n,t) − T

(r)
(n−1,t)

=

n−1∑
i=0

(−1)i
(
r

i

)
(n− i)t −

n−2∑
i=0

(−1)i
(
r

i

)
(n− 1− i)t

= nt −
n−1∑
i=1

(−1)i
(
r

i

)
(n− i)t −

n−1∑
i=1

(−1)i−1

(
r

i− 1

)
(n− i)t

= nt −
n−1∑
i=1

(−1)i
((

r

i

)
+

(
r

i− 1

))
(n− i)t

=

n−1∑
i=0

(−1)i
(
r + 1

i

)
(n− i)t. (6)
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Further, for r + 2 ≤ n ≤ k. We have

T
(r+1)
(n,t) = T

(r)
(n,t) − T

(r)
(n−1,t)

=

r∑
i=0

(−1)i
(
r

i

)
(n− i)t −

r∑
i=0

(−1)i
(
r

i

)
(n− 1− i)t

= nt −
r∑
i=1

(−1)i
(
r

i

)
(n− i)t −

r+1∑
i=1

(−1)i−1

(
r

i− 1

)
(n− i)t

= nt −
r∑
i=1

(−1)i
((

r

i

)
+

(
r

i− 1

))
(n− i)t + (−1)r+1

(
r

r

)
(n− r − 1)t

=
r+1∑
i=0

(−1)i
(
r + 1

i

)
(n− i)t. (7)

Similarly, for n = k +m,m = 1, . . . , r + 1, we can obtain the following identity:

T
(r+1)
(n,t) =

r+1∑
i=m

(−1)i
(
r + 1

i

)
(n− i)t. (8)

Thus, we see from Equations (6), (7), and (8) that the expressions in Equation (2)

are true for r + 1. Now, we can obtain the coefficients of xn in the expansion of

(1− x)rhtk(x) using expressions in Equation (2) for any values of r ∈ N. Hence, for

r = t+ 1, we have

(1− x)t+1htk(x) =

k+t+1∑
n=1

T
(t+1)
(n,t) x

n (9)

and

T
(t+1)
(n,t) =



n−1∑
i=0

(−1)i
(
t+1
i

)
(n− i)t, for n ≤ t+ 1,

t+1∑
i=0

(−1)i
(
t+1
i

)
(n− i)t, for t+ 2 ≤ n ≤ k,

t+1∑
i=m

(−1)i
(
t+1
i

)
(k +m− i)t, for n = k +m,m = 1, . . . , t+ 1.

(10)

Using Theorem 3, we see that
t∑
i=0

(−1)i
(
t+1
i

)
(t+1−i)t =

t+1∑
i=0

(−1)i
(
t+1
i

)
(t+1−i)t = 0,

and
t+1∑
i=0

(−1)i
(
t+1
i

)
(n− i)t = 0. Therefore, Equation (10) is equivalent to

T
(t+1)
(n,t) =



n−1∑
i=0

(−1)i
(
t+1
i

)
(n− i)t, for n ≤ t,

0, for t+ 1 ≤ n ≤ k,
t+1∑
i=m

(−1)i
(
t+1
i

)
(k +m− i)t, for n = k +m,m = 1, . . . , t+ 1.

(11)
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Thus, we have the following required expression:

(1− x)t+1htk(x) =

t∑
n=1

n−1∑
i=0

(−1)i
(
t+ 1

i

)
(n− i)txn

+

t+1∑
m=1

t+1∑
i=m

(−1)i
(
t+ 1

i

)
(k +m− i)txk+m.

This completes the proof.

The next lemma presents a new class of permutation polynomials having ex-

ponents in arithmetic progression. Due to their simple algebraic structure, such

permutation polynomials are interesting and have been studied previously in the

literature. In 1994 [5], Matthews investigated permutation polynomials of the form

hk(x) =
∑k
i=0 x

i over Fq with odd q and proved that hk(x) is a permutation poly-

nomial over Fq if and only if k ≡ 1 (mod p(p−1)). Later, in 1998 [6], Park and Lee

examined permutation properties of polynomials of the type hk,r,s(x) = xr
∑k
i=0 x

si

over Fq. They determined the necessary and sufficient conditions on k and r for

the polynomial hk,r,1(x) to be a permutation polynomial over Fq, where q = p or

q = p2.

In the following lemma, we find certain conditions on k and t under which the

polynomial
k∑

n=1
ntxn is a permutation polynomial of Fp. Later, we give the proof of

Theorem 1 by using this class of permutation polynomials.

Lemma 5. Let Fp be a finite field with odd characteristic p, and let k and t be

positive integers. If k ≡ 1 (mod p(p− 1)), then the polynomial

htk(x) =

k∑
n=1

ntxn

is a permutation polynomial over Fp if one of the following two conditions holds:

• t 6= u(p− 1) for any u ∈ N,

• if t = u(p− 1) for some u ∈ N, then p2|(k − 1).

Proof. In order to prove this, first we show that if k ≡ l (mod p(p − 1)), then

htk(x) = htl(x) for all x ∈ Fp \ {1}. To show this, if x ∈ Fp and x 6= 1, then from

Lemma 4, we have

(1− x)t+1htk(x) =

k+t+1∑
n=1

T
(t+1)
(n,t) x

n (mod xp − x),
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where

T
(t+1)
(n,t) =



n−1∑
i=0

(−1)i
(
t+1
i

)
(n− i)t, for n ≤ t,

0, for t+ 1 ≤ n ≤ k,
t+1∑
i=m

(−1)i
(
t+1
i

)
(n− i)t, for n = k +m,m = 1, . . . , t+ 1.

(12)

Since k = up(p − 1) + l for some u ∈ Z+, plugging k into the above equation, we

have

(1− x)t+1htk(x) =

t∑
n=1

n−1∑
i=0

(−1)i
(
t+ 1

i

)
(n− i)txn

+

t+1∑
m=1

t+1∑
i=m

(−1)i
(
t+ 1

i

)
(up(p− 1) + l +m− i)txup(p−1)+l+m

≡
t∑

n=1

n−1∑
i=0

(−1)i
(
t+ 1

i

)
(n− i)txn

+

t+1∑
m=1

t+1∑
i=m

(−1)i
(
t+ 1

i

)
(l +m− i)txl+m (mod xp − x)

≡ (1− x)t+1htl(x) (mod xp − x).

Thus, for k ≡ l (mod p(p − 1)), we have htk(α) = htl(α) for all α ∈ Fp \ {1}. Since

k ≡ 1 (mod p(p−1)) and ht1(x) = x, we have htk(α) = ht1(α) = α for all α ∈ Fp\{1}.
Now, for x = 1, we have

htk(1) = 1 + 2t + 3t + · · ·+ kt (mod p).

It is given that k ≡ 1 (mod p(p − 1)), or equivalently, k = vp(p − 1) + 1 for some

v ∈ Z+. This implies that

htk(1) = 1 + 2t + 3t + · · ·+ kt (mod p)

= v(p− 1)
( ∑
a∈Fp

at
)

+ kt = v(p− 1)
( ∑
a∈Fp

at
)

+ 1 (mod p).

Therefore, using Lemma 3, we get

htk(1) =

{
1, for t = 0, 1, . . . , p− 2,

v + 1 = 1, for t = p− 1.

Thus, if k ≡ 1 (mod p(p− 1)), then htk(x) and ht1(x) = x induce the same map on

Fp. This proves that htk(x) is a permutation polynomial of Fp.
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Let a be any positive integer such that gcd(a+ 1, p− 1) = 1. Then from Lemma

2 and Lemma 5, we have the following corollary.

Corollary 1. Let Fp be a finite field with odd characteristic p, and let k and t be

positive integers. Let a be any positive integer such that gcd(a + 1, p − 1) = 1. If

k ≡ 1 (mod p(p− 1)), then the polynomial

h(x) =

k∑
n=1

ntxn+a

is a permutation polynomial over Fp if one of the following two conditions holds:

• t 6= u(p− 1) for any u ∈ N,

• if t = u(p− 1) for some u ∈ N, then p2|(k − 1).

Proof. For k ≡ 1 (mod p(p− 1)), we have seen that htk(x) ≡ x (mod xp − x). Now

the proof is direct by noting the fact that

h(x) = xahtk(x) =

k∑
n=1

ntxn+a ≡ xa+1 (mod xp − x).

Proof of Theorem 1. Since k ≡ 1 (mod p(p − 1)), from Lemma 5, htk(x) is a per-

mutation polynomial over Fp. For j(p − 1) ≤ ks, the coefficient of xj(p−1) in the

expansion of htk(x)
s

is ∑
Υs(j(p−1))

(
ω

(j)
1 · ω

(j)
2 · · ·ω(j)

s

)t
,

where Υs(j(p− 1)) indicates summation over all s-part compositions of j(p− 1), or

equivalently, the summation over all s-tuples (ω
(j)
1 , ω

(j)
2 , . . . , ω

(j)
s ) satisfying ω

(j)
1 +

ω
(j)
2 + · · ·+ω

(j)
s = j(p− 1). In the reduction of htk(x)

s
(mod xp−x), the coefficient

of xp−1 is the sum of all the coefficients of xp−1, x2(p−1), . . . , xµ(p−1), where µ is

the largest integer satisfying µ(p − 1) ≤ ks. So, the coefficient of xp−1 in htk(x)
s

(mod xp − x) is given as∑
Υs(p−1)

(
ω1

(1) · ω2
(1) · · ·ωs(1)

)t
+ · · ·+

∑
Υs(µ(p−1))

(
ω1

(µ) · ω2
(µ) · · ·ωs(µ)

)t
,

or equivalently, the coefficient of xp−1 in htk(x)
s

(mod xp − x) is

µ∑
j=1

∑
Υs(j(p−1))

(
ω1

(j) · ω2
(j) · · ·ωs(j)

)t
.
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Since htk(x) is a permutation polynomial over Fp, from Theorem 2, we have

µ∑
j=1

∑
Υs(j(p−1))

(
ω1

(j) · ω2
(j) · · ·ωs(j)

)t
≡ 0 (mod p).

This completes the proof.

Clearly, for t = 1 and k ≡ 1 (mod p(p − 1)), the polynomial h
(1)
k (x) =

k∑
n=1

nxn

is a permutation polynomial over Fp. This gives the following known congruence

identity.

Corollary 2 ([7]). Assume that p is an odd prime. Let k and s be positive integers

such that s 6≡ 0 (mod p) and k ≡ 1 (mod p(p − 1)). Let µ be the greatest integer

such that µ(p− 1) ≤ ks. Then the following congruence identity holds:

µ∑
j=1

∑
Υs(j(p−1))

ω1
(j) · ω2

(j) · · ·ωs(j) ≡ 0 (mod p),

where Υs(j(p− 1)) for each 1 ≤ j ≤ µ indicates summation over all s-part compo-

sitions ω
(j)
1 + ω

(j)
2 + · · ·+ ω

(j)
s = j(p− 1), and ω

(j)
i ∈ Nk for all 1 ≤ i ≤ s.

We now demonstrate Theorem 1 by the following example.

Example 1. We take p = 5, t = 3, k = 21, and s = 2 so that the conditions of

Theorem 1 and Lemma 5 are satisfied. Accordingly, h
(3)
k (x) = x+23x2+· · ·+213x21.

The coefficients of xj(p−1) in the expansion of h
(3)
k (x)2 for j = 1, 2, . . . , 10 are

3, 3, 0, 4, 0, 3, 1, 0, 3, 3, respectively. The sum of these coefficients is 20, which is

congruent to 0 modulo 5.

It is known that for any two permutation polynomials f(x) and g(x) over a finite

field, the composition f(g(x)) is also a permutation polynomial. Let a be a positive

integer such that gcd(a, p − 1) = 1. Since the polynomial
∑k
n=1(an)txan equals

athtk(xa), we have the following result using Lemma 5 and Lemma 2.

Corollary 3. Let Fp be a finite field with odd characteristic p, and let k and t be

positive integers. Let a 6≡ 0 (mod p) be a positive integer such that gcd(a, p−1) = 1.

If k ≡ 1 (mod p(p−1)), then the polynomial htk,a(x) =
k∑

n=1
(an)txan is a permutation

polynomial over Fp if one of the following two conditions holds:

• t 6= u(p− 1) for any u ∈ N,

• if t = u(p− 1) for some u ∈ N, then p2|(k − 1).
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As a consequence of Corollary 3 and Theorem 1, we can obtain the following

result.

Corollary 4. Let p be an odd prime and t be a positive integer. Assume that

gcd(a, p − 1) = 1 for a ∈ Z+. Let k and s be positive integers such that s 6≡ 0

(mod p) and k ≡ 1 (mod p(p− 1)). We take k such that p2 | (k − 1) whenever t is

a multiple of (p − 1). Let µ be the greatest integer such that µ(p − 1) ≤ ks. Then

the following congruence identity holds:

µ∑
j=1

∑
Υs(j(p−1))

(
ω1

(j) · ω2
(j) · · ·ωs(j)

)t
≡ 0 (mod p),

where Υs(j(p− 1)) for each 1 ≤ j ≤ µ indicates summation over all s-part compo-

sitions ω
(j)
1 +ω

(j)
2 + · · ·+ω

(j)
s = j(p−1) , and ω

(j)
i ∈ {an : n = 1, . . . , k} for all 1 ≤

i ≤ s.
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