A NOTE ON THE DECIMAL EXPANSION OF RECIPROCALS OF MERSENNE PRIMES

Amitabha Tripathi
Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi, India
atripath@maths.iitd.ac.in

Received: 7/13/23, Revised: 10/17/23, Accepted: 1/16/24, Published: 1/29/24

Abstract

Mersenne primes M_{p} are prime numbers of the form $2^{p}-1$. The decimal expansion of $1 / M_{p}$ is purely recurring, with period length L that divides $M_{p}-1$. If p divides L, we partition the periodic part into p blocks, each of length ℓ. We show that there exists a permutation $B_{1}^{\prime}, \ldots, B_{p}^{\prime}$ of the blocks such that (i) $B_{1}^{\prime}=2 B_{p}^{\prime}-10^{\ell}$, $B_{k+1}^{\prime}=2 B_{k}^{\prime}$ for $1 \leq k \leq p-2, B_{p}^{\prime}=2 B_{p-1}^{\prime}+1$, and (ii) $B_{1}^{\prime}+\cdots+B_{p}^{\prime}=10^{\ell}-1$.

1. Introduction

The decimal expansion of $1 / n$ has been studied for centuries, and was popularized by several authors; for instance, see $[1,5,6,10,11]$. When $n=p$ is a prime, a result of Midy [9] gives an intriguing "property of nines". An extension of this result by Ginsberg [3] more than a century and a half later led to a resurgence of interest in problems related to Midy's theorem by several authors; for instance, see [2, 4, 7, 8].

Mersenne primes M_{p} are prime numbers of the form $2^{p}-1$. It is easy to see that M_{p} is prime implies p is prime. However, the converse is not true; for instance, $2^{11}-1=23 \times 89$. We know that every prime divisor of M_{p} is of the form $2 k p+1$. There are only 51 such primes known to date; see www.mersenne. org for a complete and updated list.

For prime $q \neq 2,5$, the decimal expansion of $1 / q$ is purely recurring:

$$
\frac{1}{q}=0 . \overline{c_{1} \ldots c_{L}}
$$

Let $B(1, q)$ denote the smallest repeating block of digits in the decimal expansion of $1 / q$:

$$
B(1, q)=c_{1} c_{2} c_{3} \ldots c_{L}
$$

DOI: 10.5281/zenodo. 10580982

The number of digits L in $B(1, q)$ is the period length of $1 / q$. Since $\operatorname{gcd}(q, 10)=1$, $10^{q-1} \equiv 1(\bmod q)$. Therefore, there exists a least positive integer h satisfying $10^{h} \equiv 1(\bmod q)$, which we denote by $\operatorname{ord}_{q} 10$. It is easy to see that $\operatorname{ord}_{q} 10 \mid(q-1)$.

Consider the case $q=M_{p}$. Then both p and L divide $2^{p}-2$. Throughout this note, we only consider those Mersenne primes M_{p} for which $p \mid L$. Since $1 / M_{p}$ is the sum of an infinite geometric progression with first term $B\left(1, M_{p}\right) / 10^{L}$ and common ratio $1 / 10^{L}$, we have

$$
\begin{equation*}
M_{p} \cdot B\left(1, M_{p}\right)=10^{L}-1 \tag{1}
\end{equation*}
$$

Suppose $B\left(1, M_{p}\right)$ is divided into p blocks, each of length ℓ; thus $L=p \ell$. Let the blocks be given by

$$
\begin{aligned}
B_{1} & =c_{1} c_{2} c_{3} \ldots c_{\ell-1} c_{\ell} \\
B_{2} & =c_{\ell+1} c_{\ell+2} c_{\ell+3} \ldots c_{2 \ell-1} c_{2 \ell} \\
B_{3} & =c_{2 \ell+1} c_{2 \ell+2} c_{2 \ell+3} \ldots c_{3 \ell-1} c_{3 \ell} \\
& \vdots \\
B_{p} & =c_{(p-1) \ell+1} c_{(p-1) \ell+2} c_{(p-1) \ell+3} \ldots c_{p \ell-1} c_{p \ell} .
\end{aligned}
$$

We have

$$
\begin{align*}
B_{1} & =\left\lfloor\frac{10^{\ell}}{2^{p}-1}\right\rfloor, \quad B_{1} B_{2}=\left\lfloor\frac{10^{2 \ell}}{2^{p}-1}\right\rfloor, \quad B_{1} B_{2} B_{3}=\left\lfloor\frac{10^{3 \ell}}{2^{p}-1}\right\rfloor, \ldots, \\
B_{1} B_{2} B_{3} \ldots B_{p} & =\left\lfloor\frac{10^{p \ell}}{2^{p}-1}\right\rfloor . \tag{2}
\end{align*}
$$

The purpose of this note is to show that:
(i) $B_{1}^{\prime}=2 B_{p}^{\prime}-10^{\ell}, B_{k+1}^{\prime}=2 B_{k}^{\prime}$ for $1 \leq k \leq p-2$ and $B_{p}^{\prime}=2 B_{p-1}^{\prime}+1$ for some permutation $B_{1}^{\prime}, \ldots, B_{p}^{\prime}$ of the blocks B_{1}, \ldots, B_{p}.
(ii) $B_{1}+B_{2}+B_{3}+\cdots+B_{p}=10^{\ell}-1$.

Proposition 1. Let $2^{p}-1$ be prime such that p divides the periodic length of the decimal expansion of $1 /\left(2^{p}-1\right)$. If the repeating block of the decimal expansion is partitioned into p blocks, each of length ℓ, then $10^{\ell} \equiv 2^{r}\left(\bmod 2^{p}-1\right)$ for some $r \in\{1, \ldots, p-1\}$.

Proof. The congruence $x^{p} \equiv 1\left(\bmod 2^{p}-1\right)$ has at most p (incongruent) solutions modulo $2^{p}-1$ since $2^{p}-1$ is prime. Since each of the p integers $1,2,2^{2}, \ldots, 2^{p-1}$ is a solution to the congruence, these must be all the solutions. Since $\left(2^{p}-1\right) \mid$ $\left(\left(10^{\ell}\right)^{p}-1\right)$ by Equation (1), $x=10^{\ell}$ is a solution to the above congruence, and so we have $10^{\ell} \equiv 2^{r}\left(\bmod 2^{p}-1\right)$ for some $r \in\{0,1,2, \ldots, p-1\}$. Moreover, from $\operatorname{ord}_{2^{p}-1} 10=L=p \ell$, we have $\operatorname{ord}_{2^{p}-1} 10^{\ell}=p$, so that $r>0$.

The main result of this note is the content of Theorem 1.
Theorem 1. Let $2^{p}-1$ be prime such that p divides the periodic length of the decimal expansion of $1 /\left(2^{p}-1\right)$. Suppose the repeating block of the decimal expansion is partitioned into p blocks, each of length ℓ. Let r be such that $10^{\ell} \equiv 2^{r}\left(\bmod 2^{p}-1\right)$, with $1 \leq r \leq p-1$, and let $s \equiv r^{-1}(\bmod p)$. Then
(i)

$$
B_{k s+1}= \begin{cases}2 B_{(k-1) s+1} & \text { if } 1 \leq k \leq p-1, k \neq p-r \\ 2 B_{(k-1) s+1}+1 & \text { if } k=p-r \\ 2 B_{(k-1) s+1}-10^{\ell} & \text { if } k=p\end{cases}
$$

where the block subscripts are taken modulo p and from the set $\{1, \ldots, p\}$.
In particular,

$$
B_{k+1}= \begin{cases}2 B_{k} & \text { if } 1 \leq k \leq p-2 \\ 2 B_{k}+1 & \text { if } k=p-1 ; \\ 2 B_{k}-10^{\ell} & \text { if } k=p ;\end{cases}
$$

when $r=1$.
(ii) $B_{1}+B_{2}+B_{3}+\cdots+B_{p}=10^{\ell}-1$.

Proof. Throughout this proof, we take the block subscripts modulo p and from the set $\{1, \ldots, p\}$. By Proposition $1,10^{\ell} \equiv 2^{r}\left(\bmod 2^{p}-1\right)$ for some $r \in\{1, \ldots, p-1\}$, and so $10^{k \ell} \equiv 2^{k r} \equiv 2^{k r}(\bmod p)\left(\bmod 2^{p}-1\right)$ for each $k \in\{1, \ldots, p\}$.

Fix $k \in\{1, \ldots, p\}$. We have

$$
B_{1} B_{2} B_{3} \ldots B_{k}=\left\lfloor\frac{10^{k \ell}}{2^{p}-1}\right\rfloor=\frac{10^{k \ell}-2^{k r(\bmod p)}}{2^{p}-1}
$$

by Equation (2). Hence

$$
\begin{align*}
B_{k} & =B_{1} B_{2} B_{3} \ldots B_{k}-\left(B_{1} B_{2} B_{3} \ldots B_{k-1} \times 10^{\ell}\right) \\
& =\frac{10^{k \ell}-2^{k r(\bmod p)}}{2^{p}-1}-\frac{10^{\ell}\left(10^{(k-1) \ell}-2^{(k-1) r(\bmod p)}\right)}{2^{p}-1} \\
& =\frac{10^{\ell} \cdot 2^{(k-1) r(\bmod p)}-2^{k r(\bmod p)}}{2^{p}-1} \tag{3}
\end{align*}
$$

Let $s \equiv r^{-1}(\bmod p)$. Then

$$
\begin{align*}
B_{k+s} & =\frac{10^{\ell} \cdot 2^{(k-1) r+s r(\bmod p)}-2^{(k r+s r)(\bmod p)}}{2^{p}-1} \\
& =\frac{10^{\ell} \cdot 2^{(k-1) r+1(\bmod p)}-2^{(k r+1)(\bmod p)}}{2^{p}-1} . \tag{4}
\end{align*}
$$

From Equation (3) and Equation (4), we have

$$
B_{k+s}=2 B_{k}
$$

except when $(k-1) r \equiv-1(\bmod p)$ or when $k r \equiv-1(\bmod p)$.
Write $k=(\lambda-1) s+1,1 \leq \lambda \leq p$. If $(k-1) r \equiv-1(\bmod p)$, then $\lambda=p$, and

$$
\begin{aligned}
2 B_{k}-10^{\ell} & =\frac{10^{\ell} \cdot 2 \cdot 2^{p-1}-2 \cdot 2^{r-1}}{2^{p}-1}-10^{\ell} \\
& =\frac{10^{\ell}-2^{r}}{2^{p}-1} \\
& =B_{k+s}
\end{aligned}
$$

by Equation (3). If $k r \equiv-1(\bmod p)$, then $\lambda=p-r$, and

$$
\begin{aligned}
2 B_{k}+1 & =\frac{10^{\ell} \cdot 2 \cdot 2^{p-r-1}-2 \cdot 2^{p-1}}{2^{p}-1}+1 \\
& =\frac{10^{\ell} \cdot 2^{p-r}-1}{2^{p}-1} \\
& =B_{k+s}
\end{aligned}
$$

by Equation (3). Thus,

$$
B_{k+s}= \begin{cases}2 B_{k} & \text { if } k=(\lambda-1) s+1, \lambda \neq p-r, p \\ 2 B_{k}+1 & \text { if } k=(p-r-1) s+1 \\ 2 B_{k}-10^{\ell} & \text { if } k=(p-1) s+1\end{cases}
$$

where the block subscripts are taken modulo p and from the set $\{1, \ldots, p\}$. Replacing k by $(\lambda-1) s+1$ with $1 \leq \lambda \leq p$, we may rewrite this as

$$
B_{\lambda s+1}= \begin{cases}2 B_{(\lambda-1) s+1} & \text { if } 1 \leq \lambda \leq p-1, \lambda \neq p-r \\ 2 B_{(\lambda-1) s+1}+1 & \text { if } \lambda=p-r \\ 2 B_{(\lambda-1) s+1}-10^{\ell} & \text { if } \lambda=p\end{cases}
$$

where the block subscripts are taken modulo p and from the set $\{1, \ldots, p\}$. This completes the proof of part (i).

From Equation (3), we have

$$
\begin{aligned}
\sum_{k=1}^{p} B_{k} & =\frac{10^{\ell} \sum_{k=1}^{p} 2^{(k-1) r(\bmod p)}-\sum_{k=1}^{p} 2^{k r(\bmod p)}}{2^{p}-1} \\
& =\frac{10^{\ell} \sum_{t=0}^{p-1} 2^{t}-\sum_{t=0}^{p-1} 2^{t}}{2^{p}-1} \\
& =10^{\ell}-1
\end{aligned}
$$

This completes the proof of part (ii).

We close this note with some data concerning the decimal expansion of reciprocals of Mersenne primes. Table 1 lists the first thirteen Mersenne primes $2^{p}-1$ together with the period length L of the decimal expansion of their reciprocals. The only primes p among these which do not divide L are $p=2$ and $p=17$.

p	$2^{p}-1$	L	$p \mid L$
2	3	1	N
3	7	6	Y
5	31	15	Y
7	127	42	Y
13	8191	1365	Y
17	131071	3855	N
19	524287	74898	Y
31	2147483647	195225786	Y
61	2305843009213693951	1152921504606846975	Y
89	618970019642690137449562111	103161669940448356241593685	Y
107	162259276829213363391578010288127	162259276829213363391578010288126	Y
127	170141183460469231731687303715884105727	2330701143294099064817634297477864462	Y
521	686479766013060971498190079908139321726	343239883006530485749095039954069660863	Y
	943530014330540939446345918554318339765	471765007165270469723172959277159169882	
	605212255964066145455497729631139148085	802606127982033072727748864815569574042	
	8037121987999716643812574028291115057151	9018560993999858321906287014145557528575	

Table 1: Table for lengths of decimal expansion of $1 /\left(2^{p}-1\right)$ when $2^{p}-1$ is prime; ($\mathrm{Y}=\mathrm{Yes}, \mathrm{N}=\mathrm{No}$)

We look at the decimal expansion of $1 /\left(2^{p}-1\right)$ for $p=3,5,7,13$; the last has 1365 digits, so we list only the key digits here.

$$
\begin{aligned}
& \frac{1}{7}=\begin{array}{lll}
0.14 \quad 28 \quad 57
\end{array} \\
& \frac{1}{31}=\begin{array}{lllll}
0.032258 & 064516 & 129032 & 258064 & 516129
\end{array} \\
& \frac{1}{127}=\begin{array}{llllllll}
0.007874 & 015748 & 031496 & 062992 & 125984 & 251968 & 503937
\end{array} \\
& \frac{1}{8191}=0 . \overline{0001 \ldots 7568 \quad 0625 \ldots 4848 \quad 0039 \ldots 2178} \\
& \overline{0002 \ldots 5136} 1250 \ldots 9696 \text { 0078 } \ldots 4356 \\
& \text { 0004...0272 2500...9392 0156...8712 } \\
& \text { 0009... } 0544 \text { 5000 ... } 8784 \text { 0312 } \ldots 7424 \\
& \overline{0019 \ldots 1089 .}
\end{aligned}
$$

We note that p divides L in each case. Using the notation in Proposition $1, r=1$
in the first three examples and $r=9$ in the last example. Notice that the blocks essentially double as move left to right in the first three examples, but essentially double after every three blocks in the last example. The explanation for the last mentioned fact is that 3 is the inverse of 9 modulo 13.

Acknowledgement. The author wishes to thank the referee for his/her comments. The author also wishes to thank the Managing Editor for his comments.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea Publishing Company, New York, 1952.
[2] S. Dang, S. Nanoti and A. Tripathi, Extensions of Midy's theorem for periodic decimals, Integers 21, (2021), \# A26, 13 pp.
[3] B. D. Ginsberg, Midy's (nearly) secret theorem - an extension after 165 years, College Math. J. 35 (2004), 26-30.
[4] A. Gupta and B. Sury, Decimal expansion of $1 / p$ and subgroup sums, Integers 5 (2005), \#A19, 5 pp .
[5] R. Honsberger, Ingenuity in Mathematics, Random House/Singer, New Mathematical Library, 1970.
[6] W. G. Leavitt, A theorem on repeating decimals, Amer. Math. Monthly 74 (1967), 669-673.
[7] J. Lewittes, Midy's theorem for periodic decimals, Integers 7 (2007), \#A02, 11 pp.
[8] H. W. Martin, Generalizations of Midy's theorem on repeating decimals, Integers 7 (2007), \#A03, 7 pp.
[9] E. Midy, De quelques propriétés des nombres et des fractions décimales périodiques, Nantes, 1836.
[10] H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics, Princeton University Press, Princeton, 1957.
[11] M. Shrader-Frechette, Complementary rational numbers, Math. Mag. 51 (1978), 90-98.

