COMBINATORIAL PROOFS OF MERCA'S IDENTITIES INVOLVING THE SUM OF DIFFERENT PARTS CONGRUENT TO r MODULO m IN ALL PARTITIONS OF n

Cristina Ballantine
Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, Massachusetts

Received: 3/24/23, Revised: 11/5/23, Accepted: 1/18/24, Published: 1/29/24

Abstract

We give combinatorial proofs of several recent results due to Merca on the sum of different parts congruent to r modulo m in all partitions of n. The proofs make use of some well-known involutions from the literature and some new involutions introduced here.

1. Introduction

A partition λ of n is a non-increasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ of positive integers that add up to n. We refer to the integers λ_{i} as the parts of λ. As usual, we denote by $p(n)$ the number of partitions of n. Note that $p(x)=0$ if x is not a non-negative integer, and since the empty partition \emptyset is the only partition of 0 , we have that $p(0)=1$.

Let m, n, and r be nonnegative integers such that $0 \leq r<m$. Denote by $a_{r, m}(n)$ the sum of all different parts congruent to r modulo m in all partitions of n. Thus, for a partition λ of n, a part $m j+r$ of λ contributes $m j+r$ to $a_{r, m}(n)$ regardless of its multiplicity. We denote by $s_{m}(n)$ the sum of different parts that appear at least m times in partitions of n. Thus, for a partition λ of n, a part j of λ that occurs at least m times contributes j to $s_{m}(n)$ regardless of its multiplicity.

Recently Merca [15] proved several results relating $a_{m, r}(n), s_{m}(n)$, and numbers of restricted partitions. In this article, we give combinatorial proofs of several results in [15]. Combinatorial proofs of [15, Theorem 1.3 and Corollary 1.4] are given in [14]. In [15] the author gives a combinatorial proof of Theorem 1.6. We prove combinatorially Theorem 1.3 and Corollaries $4.2,4.4,4.6,4.7(\mathrm{i}), 4.9,4.10,5.2,5.3$, $6.3,6.3,7.2,7.3$ of [15]. The corollaries are limiting cases of inequalities obtained in [15] by truncating theta series.

DOI: 10.5281/zenodo. 10580991

2. Combinatorial Proofs of Theorems of Merca

We first introduce some notation. We denote by $\mathcal{P}(n)$ the set of partitions of n and by \mathcal{P} the set of all partitions. The following convention is used for all other sets of partitions: if $\mathcal{A}(n)$ denotes a set of partitions of n, then

$$
\mathcal{A}=\bigcup_{n \geq 0} \mathcal{A}(n)
$$

We write $\lambda \vdash n$ to mean that λ is a partition of n. We also write $|\lambda|=n$ to mean that the parts of λ add up to n. The number of parts of λ is called the length of λ and is denoted by $\ell(\lambda)$. If $\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(k)}$ are partitions, we write $\left(\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(k)}\right) \vdash$ n to mean $\left|\lambda^{(1)}\right|+\left|\lambda^{(2)}\right|+\cdots+\left|\lambda^{(k)}\right|=n$. We define $p_{e-o}(n):=p_{e}(n)-p_{o}(n)$, where $p_{e}(n)$ (respectively $p_{o}(n)$) is the number of partitions of n with an even (respectively odd) number of parts. An overpartition of n is a partition of n in which the first occurrence of a part may be overlined. We denote by $\overline{\mathcal{P}}(n)$ the set of overpartitions of n. As in the case of partitions, we define $\bar{p}_{e-o}(n):=\bar{p}_{e}(n)-\bar{p}_{o}(n)$, where $\bar{p}_{e}(n)$ (respectively $\left.\bar{p}_{o}(n)\right)$ is the number of overpartitions of n with an even (respectively odd) number of parts. Given a set $\mathcal{A}(n)$ of partitions or overpartitions, we denote by $\mathcal{A}_{e}(n)$ (respectively $\mathcal{A}_{o}(n)$) the subset of $\lambda \in \mathcal{A}(n)$ with $\ell(\lambda)$ even (respectively odd). We denote by $\mathcal{Q}(n)$ the set of partitions of n into distinct parts and write $q(n)$ for $|\mathcal{Q}(n)|$. Similarly, we denote by $q_{\text {odd }}(n)$ (respectively $q_{\text {even }}(n)$) the number of partitions of n into distinct parts all odd (respectively even).

Theorem 1 ([15, Theorem 1.3]). Let m, n, and r be nonnegative integers such that $0 \leq r<m$. We have
(i) $a_{r, m}(n)=\sum_{j=0}^{\infty}(m j+r) p(n-m j-r)$;
(ii) $s_{m}(n)=\sum_{j=0}^{\infty} j p(n-m j)$.

Proof. We note that the combinatorial proof of this theorem is implicit in the combinatorial proof of [15, Theorem 1.6]. We write it here in clearer form since it is used in subsequent proofs.
(i) Let $\mathcal{A}_{r, j, m}(n)$ be the set of overpartitions of n with exactly one part overlined and only a part equal to $m j+r$ maybe overlined. Clearly

$$
a_{m, r}(n)=\sum_{j=0}^{\infty}(m j+r)\left|\mathcal{A}_{r, j, m}(n)\right|
$$

We denote by $f_{r, j, m}: \mathcal{A}_{r, j, m}(n) \rightarrow \mathcal{P}(n-m j-r)$ the transformation defined by $f_{r, j, m}(\lambda)=\mu$, where μ is the partition obtained from λ by removing its unique overlined part. Since $f_{r, j, m}$ is a bijection, this completes the proof of (i).
(ii) Let $\mathcal{S}_{j, m}(n)$ be the set of partitions of n in which part j occurs at least m times. Clearly

$$
s_{m}(n)=\sum_{j=0}^{\infty} j\left|\mathcal{S}_{j, m}(n)\right| .
$$

We denote by $g_{j, m}: \mathcal{S}_{a, m}(n) \rightarrow \mathcal{P}(n-m j)$ he transformation defined by $g_{j, m}(\nu)=\eta$, where η is the partitions obtained from ν by removing m parts equal to j. Since $g_{j, m}$ is a bijection, this completes the proof of (ii).

Example 1. Let $n=47, m=3, j=4$, and $r=2$.
(i) Given $\lambda=(15, \overline{14}, 14,2,2) \in \mathcal{A}_{2,4,3}(47)$, we have

$$
f_{2,4,3}(\lambda)=f_{2,4,3}(15, \overline{14}, 14,2,2)=(15,14,2,2) \in \mathcal{P}(47-14)=\mathcal{P}(33)
$$

Conversely, for $\mu=(15,14,2,2) \in \mathcal{P}(33)$, we have

$$
f_{2,4,3}^{-1}(\mu)=f_{2,4,3}^{-1}(15,14,2,2)=(15, \overline{14}, 14,2,2) \in \mathcal{A}_{2,4,3}(33+14)=\mathcal{A}_{2,4,3}(47)
$$

(ii) Given $\nu=(13,10,10,4,4,4,4,1,1) \in \mathcal{S}_{4,3}(47)$, we have

$$
g_{4,3}(\nu)=g_{4,3}(13,10,10,4,4,4,4,1,1)=(13,10,10,4,1,1) \in \mathcal{P}(47-12)=\mathcal{P}(35)
$$

Conversely, for $\eta=(13,10,10,4,1,1) \in \mathcal{P}(35)$, we have

$$
\begin{aligned}
g_{4,3}^{-1}(\eta) & =g_{4,3}^{-1}(13,10,10,4,1,1) \\
& =(13,10,10,4,4,4,4,1,1) \in \mathcal{S}_{4,3}(35+12)=\mathcal{S}_{4,3}(47)
\end{aligned}
$$

Theorem 2 ([15, Corollary 4.2]). Let m, n, and r be nonnegative integers such that $0 \leq r<m$. Then

$$
\begin{equation*}
a_{m, r}(n)+2 \sum_{k=1}^{\infty}(-1)^{k} a_{m, r}\left(n-k^{2}\right)=\sum_{j=0}^{\infty}(m j+r) p_{e-o}(n-m j-r) \tag{1}
\end{equation*}
$$

Proof. By Theorem 1, the left-hand side of Identity (1) equals

$$
\sum_{j=0}^{\infty}(m j+r)\left(p(n-m j-r)+2 \sum_{k=1}^{\infty}(-1)^{k} p\left(n-k^{2}-m j-r\right)\right)
$$

Thus, to prove the theorem, it suffices to show combinatorially that for all $n \geq 0$,

$$
\begin{equation*}
p_{e-o}(n)=p(n)+2 \sum_{k=1}^{\infty}(-1)^{k} p\left(n-k^{2}\right) \tag{2}
\end{equation*}
$$

For $n \geq 1$, let $\overline{\mathcal{P}}^{*}(n)$ be the set of overpartitions of n that are not of the form

$$
(\underbrace{a, a, \ldots, a}_{a \text { times }}) \text { or }(\bar{a}, \underbrace{a, \ldots, a}_{a-1 \text { times }}) .
$$

In [2], Andrews defined an involution $\varphi_{A_{1}}$ on $\overline{\mathcal{P}}^{*}(n)$ that reverses the parity of the length of overpartitions and thus proved combinatorially that

$$
\begin{equation*}
1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}}=\sum_{n=0}^{\infty} \bar{p}_{e-o}(n) q^{n} \tag{3}
\end{equation*}
$$

The restriction $\varphi_{A_{1}}: \overline{\mathcal{P}}_{e}^{*}(n) \rightarrow \overline{\mathcal{P}}_{o}^{*}(n)$ is a bijection.
We define

$$
\begin{aligned}
\mathcal{P} \overline{\mathcal{P}}(n) & :=\{(\alpha, \beta) \vdash n \mid \alpha \in \mathcal{P}, \beta \in \overline{\mathcal{P}}\} \\
\mathcal{P} \overline{\mathcal{P}}^{*}(n) & :=\left\{(\alpha, \beta) \vdash n \mid \alpha \in \mathcal{P}, \beta \in \overline{\mathcal{P}}^{*}\right\} .
\end{aligned}
$$

Moreover, set $\mathcal{P} \overline{\mathcal{P}}^{* *}(n):=\mathcal{P} \overline{\mathcal{P}}(n) \backslash \mathcal{P} \overline{\mathcal{P}}^{*}(n)$.
The transformation $(\alpha, \beta) \mapsto\left(\alpha, \varphi_{A_{1}}(\beta)\right)$ is an involution on $\mathcal{P} \overline{\mathcal{P}}^{*}(n)$ that reverses the parity of $\ell(\beta)$. Hence

$$
\begin{align*}
& \left|\left\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \beta \in \overline{\mathcal{P}}_{e}\right\}\right|-\left|\left\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \beta \in \overline{\mathcal{P}}_{o}\right\}\right| \tag{4}\\
& \quad=\left|\left\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \beta \in \overline{\mathcal{P}}_{e}^{* *}\right\}\right|-\mid\left\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}\left(n \mid \beta \in \overline{\mathcal{P}}_{o}^{* *}\right\} \mid\right.
\end{align*}
$$

Since $\bar{p}_{e-o}(0)=1$ and, if $k>0, \overline{\mathcal{P}}^{* *}(k)$ is either empty or consists of exactly two "square" overpartitions of length congruent to k modulo 2 , mapping $(\alpha, \beta) \mapsto \alpha$, we see that the right-hand side of Equation (4) equals

$$
p(n)+2 \sum_{k=1}^{\infty}(-1)^{k} p\left(n-k^{2}\right)
$$

Next, we define the set

$$
\mathcal{P Q}(n):=\{(\alpha, \eta) \vdash n \mid \alpha \in \mathcal{P}, \eta \in \mathcal{Q}\} .
$$

If $n \geq 1$, we define an involution ψ on $\mathcal{P Q}(n)$ by

$$
\psi(\alpha, \eta):= \begin{cases}\left(\alpha \backslash\left(\alpha_{1}\right), \eta \cup\left(\alpha_{1}\right)\right. & \text { if } \alpha_{1}>\eta_{1} \\ \left(\alpha \cup\left(\eta_{1}\right), \eta \backslash\left(\eta_{1}\right)\right. & \text { if } \alpha_{1} \leq \eta_{1}\end{cases}
$$

Clearly, $\psi(\alpha, \eta)$ reverses the parity of $\ell(\eta)$. Thus, if $n \geq 1$,

$$
\left|\left\{(\alpha, \eta) \in \mathcal{P} \mathcal{Q}(n) \mid \eta \in \mathcal{Q}_{e}\right\}\right|-\left|\left\{(\alpha, \eta) \in \mathcal{P} \mathcal{Q}(n) \mid \eta \in \mathcal{Q}_{o}\right\}\right|=0
$$

and if $n=0$ the difference is 1 since $\{(\alpha, \eta) \in \mathcal{P} \mathcal{Q}(0)\}=\{(\emptyset, \emptyset)\}$.
To prove combinatorially that Identity (2) holds, write $(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n)$ as $(\alpha, \bar{\beta}, \widetilde{\beta})$, where $\bar{\beta}$ is the partition consisting of the overlined parts of β and $\widetilde{\beta}$ is the partition consisting of the nonoverlined parts of β. Fix a partition $\widetilde{\beta}$ and define

$$
\mathcal{P} \overline{\mathcal{P}}_{\widetilde{\beta}}(n):=\{(\alpha, \beta)=(\alpha, \bar{\beta}, \widetilde{\beta}) \in \mathcal{P} \overline{\mathcal{P}}(n)\}
$$

the set of pairs (α, β) in $\mathcal{P} \overline{\mathcal{P}}(n)$ such that the nonoverlined parts in the overpartition β are precisely the parts of $\widetilde{\beta}$. Let $(\gamma, \zeta):=\psi(\alpha, \bar{\beta})$ and define ξ to be the overpartition with overlined parts precisely the parts of ζ and nonoverlined parts precisely the parts of $\widetilde{\beta}$. Then, $(\gamma, \xi) \in \mathcal{P} \overline{\mathcal{P}}_{\widetilde{\beta}}(n)$ and $\ell(\xi)$ and $\ell(\bar{\beta})$ have different parity. Thus,

$$
\begin{array}{r}
\mid\left\{(\alpha, \bar{\beta}, \widetilde{\beta}) \in \mathcal{P} \overline{\mathcal{P}}_{\widetilde{\beta}}(n) \mid \ell(\bar{\beta}) \text { even }\right\}|-|\left\{(\alpha, \bar{\beta}, \widetilde{\beta}) \in \mathcal{P} \overline{\mathcal{P}}_{\widetilde{\beta}}(n) \mid \ell(\bar{\beta}) \text { odd }\right\} \mid \\
=|\{(\emptyset, \emptyset, \widetilde{\beta}) \in \mathcal{P} \overline{\mathcal{P}}(n)\}|=1
\end{array}
$$

Summing over all $\widetilde{\beta}$, we obtain

$$
\begin{aligned}
& \mid\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \ell(\beta) \text { even }\}|-|\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \ell(\beta) \text { odd }\} \mid \\
& \quad=\mid\{(\emptyset, \emptyset, \widetilde{\beta}) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \ell(\widetilde{\beta}) \text { even }\}|-|\{(\emptyset, \emptyset, \widetilde{\beta}) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \ell(\widetilde{\beta}) \text { odd }\} \mid \\
& \quad=p_{e-o}(n)
\end{aligned}
$$

Example 2. For an example using Andrews' involution $\varphi_{A_{1}}$, we refer the reader to [2]. Here we illustrate the transformation ψ. Consider the pair $(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(94)$ with $\alpha=(9,9,3,3,3,1)$ and $\beta=(\overline{9}, 9,9,7,7, \overline{6}, 6,6, \overline{2}, 2, \overline{1}, 1,1)$. Hence $\ell(\beta)=13$, $\bar{\beta}=(9,6,2,1)$ and $\widetilde{\beta}=(9,9,7,7,6,6,2,1,1)$. Since $\alpha_{1}=9 \leq \bar{\beta}_{1}=9$,

$$
\psi(\alpha, \bar{\beta})=((9,9,9,3,3,3,1),(6,2,1))
$$

Then $\xi=(9,9,7,7, \overline{6}, 6,6, \overline{2}, 2, \overline{1}, 1,1)$ and $\ell(\xi)=12$. Thus, (α, β) "cancels" with $((9,9,9,3,3,3,1), \xi)$.

Now consider the pair $(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(106)$ with

$$
\alpha=(12,9,9,3,3,3,1) \quad \text { and } \quad \beta=(\overline{9}, 9,9,7,7, \overline{6}, 6,6, \overline{2}, 2, \overline{1}, 1,1) .
$$

Then, $\ell(\beta)=13, \bar{\beta}=(9,6,2,1)$ and $\widetilde{\beta}=(9,9,7,7,6,6,2,1,1)$. Since $\alpha_{1}=12>$ $\bar{\beta}_{1}=9$, we have

$$
\psi(\alpha, \bar{\beta})=((9,3,3,3,1),(12,9,6,2,1))
$$

Then $\xi=(\overline{12}, \overline{9}, 9,9,7,7, \overline{6}, 6,6, \overline{2}, 2, \overline{1}, 1,1)$ and $\ell(\xi)=14$. Thus, (α, β) "cancels" with $((9,3,3,3,1), \xi)$.

Theorem 3 ([15, Corollary 4.4 (i)]). Let m and n be nonnegative integers. Then

$$
\begin{equation*}
s_{m}(n)+2 \sum_{j=1}^{\infty}(-1)^{j} s_{m}\left(n-j^{2}\right)=\sum_{j=0}^{\infty} j p_{e-o}(n-m j) . \tag{5}
\end{equation*}
$$

Proof. By Theorem 1, the left-hand side of Identity (5) equals

$$
\sum_{j=0}^{\infty} j\left(p(n-m j)+2 \sum_{j=1}^{\infty}(-1)^{j} p\left(n-j^{2}-m j\right)\right)
$$

Then, the combinatorial proof of Identity (2) provided in the proof of Theorem 2 completes the argument.

Theorem 4 ([15, Corollary 4.6]). Let m, n, and r be nonnegative integers such that $0 \leq r<m$. Then

$$
\begin{equation*}
a_{m, r}(n)+2 \sum_{k=1}^{\infty}(-1)^{k} a_{m, r}\left(n-2 k^{2}\right)=\sum_{j=0}^{\infty}(m j+r) q_{o d d}(n-m j-r) \tag{6}
\end{equation*}
$$

Proof. By Theorem 1, the left-hand side of Identity (6) equals

$$
\sum_{j=0}^{\infty}(m j+r)\left(p(n-m j-r)+2 \sum_{k=1}^{\infty}(-1)^{k} p\left(n-2 k^{2}-m j-r\right)\right)
$$

Thus, to prove the theorem, it suffices to show combinatorially that for all $n \geq 0$,

$$
\begin{equation*}
q_{o d d}(n)=p(n)+2 \sum_{k=1}^{\infty}(-1)^{k} p\left(n-2 k^{2}\right) \tag{7}
\end{equation*}
$$

Doubling all parts in Andrews' proof of Identity (3), shows combinatorially that the right-hand side of Identity (7) equals

$$
\begin{aligned}
\mid\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \beta & \text { has even parts, } \left.\beta \in \overline{\mathcal{P}}_{e}\right\} \mid \\
& -\mid\left\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \beta \text { has even parts, } \beta \in \overline{\mathcal{P}}_{o}\right\} \mid .
\end{aligned}
$$

In [10], Gupta constructed an involution φ_{G} on the set of partitions of n with at least one even part or at least one repeated part. By construction, the parity of the number of even parts in λ is different than the parity of the number of even parts in $\varphi_{G}(\lambda)$. This gives a combinatorial proof for

$$
q_{o d d}(n)=p_{e}(n, 2)-p_{o}(n, 2)
$$

where $p_{e}(n, 2)$ (respectively $p_{o}(n, 2)$) is the number of partitions of n with and even (respectively odd) number of even parts.

If $n \geq 1$, the involution ψ of Theorem 2 is well defined when restricted to pairs of partitions in $\mathcal{P Q}(n)$ in which both partitions have only even parts. Thus, if $n \geq 1$,

$$
\begin{aligned}
\mid\{(\alpha, \eta) \in \mathcal{P} \mathcal{Q}(n) & \mid \alpha, \eta \text { have even parts, } \ell(\eta) \text { even }\} \mid \\
& -\mid\{(\alpha, \eta) \in \mathcal{P} \mathcal{Q}(n) \mid \alpha, \eta \text { have even parts, } \ell(\eta) \text { odd }\} \mid=0
\end{aligned}
$$

and if $n=0$ the difference is 1 since $\{(\alpha, \eta) \in \mathcal{P} \mathcal{Q}(0) \mid \alpha, \eta$ have even parts $\}=$ $\{(\emptyset, \emptyset)\}$.

Next, we write $(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n)$ where β has only even parts as $\left(\alpha^{o}, \alpha^{e}, \bar{\beta}, \widetilde{\beta}\right)$, where α^{e} (respectively α^{o}) is the partition consisting of the even (respectively odd) parts of α and $\bar{\beta}, \widetilde{\beta}$ are as in the proof of Theorem 2 . We fix a partition $\widetilde{\beta}$ with even parts and a partition α^{o} with odd parts, and define

$$
\mathcal{P} \overline{\mathcal{P}}_{\widetilde{\beta}, \alpha^{o}}(n):=\left\{(\alpha, \beta)=\left(\alpha^{o}, \alpha^{e}, \bar{\beta}, \widetilde{\beta}\right) \in \mathcal{P} \overline{\mathcal{P}}(n)\right\} .
$$

Using the involution ψ on $\left(\alpha^{e}, \bar{\beta}\right)$ and proceeding as in the proof of Theorem 2 , we obtain

$$
\begin{aligned}
\mid\left\{\left(\alpha^{o}, \alpha^{e}, \bar{\beta}, \widetilde{\beta}\right) \in \mathcal{P} \overline{\mathcal{P}}_{\widetilde{\beta}, \alpha^{o}}(n) \mid \ell(\bar{\beta}) \text { even }\right\} \mid & -\mid\left\{\left(\alpha^{o}, \alpha^{e}, \bar{\beta}, \widetilde{\beta}\right) \in \mathcal{P} \overline{\mathcal{P}}_{\widetilde{\beta}, \alpha^{o}}(n) \mid \ell(\bar{\beta}) \text { odd }\right\} \mid \\
& =\left|\left\{\left(\alpha^{o}, \emptyset, \emptyset, \widetilde{\beta}\right) \in \mathcal{P} \overline{\mathcal{P}}(n)\right\}\right|=1
\end{aligned}
$$

Summing over all α^{o} and $\widetilde{\beta}$, we obtain

$$
\begin{aligned}
& \mid\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \beta \text { has even parts, } \ell(\beta) \text { even }\} \mid \\
& \quad-\mid\{(\alpha, \beta) \in \mathcal{P} \overline{\mathcal{P}}(n) \mid \beta \text { has even parts, } \ell(\beta) \text { odd }\} \mid \\
& =\mid\left\{\left(\alpha^{o}, \widetilde{\beta}\right) \vdash n \mid \alpha^{o} \text { has odd parts, } \widetilde{\beta} \text { has even parts, } \ell(\widetilde{\beta}) \text { even }\right\} \mid \\
& \quad-\mid\left\{\left(\alpha^{o}, \widetilde{\beta}\right) \vdash n \mid \alpha^{o} \text { has odd parts, } \widetilde{\beta} \text { has even parts, } \ell(\widetilde{\beta}) \text { odd }\right\} \mid \\
& =q_{\text {odd }}(n) .
\end{aligned}
$$

The last equality above follows from Gupta's involution.
For an example of the use of Gupta's transformation, see [10].
Theorem 5 ([15, Corollary 4.7(i)]). Let m and n be nonnegative integers. Then

$$
s_{m}(n)+2 \sum_{k=1}^{\infty}(-1)^{k} s_{m}\left(n-2 k^{2}\right)=\sum_{j=0}^{\infty} j q_{o d d}(n-m j)
$$

Proof. By Theorem 1, the left-hand side of Identity (2) equals

$$
\sum_{j=0}^{\infty} j\left(p(n-m j)+2 \sum_{k=1}^{\infty}(-1)^{k} p\left(n-2 k^{2}-m j\right)\right)
$$

Then, the combinatorial proof of Identity (7) provided in the proof of Theorem 4 completes the argument.

Theorem 6 ([15, Corollary 4.9]). Let m, n, and r be nonnegative integers such that $0 \leq r<m$. Then

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k(k+1) / 2} a_{m, r}(n-k(k+1) / 2)=\sum_{j=0}^{\infty}(m j+r) q\left(\frac{n-m j-r}{2}\right) \tag{8}
\end{equation*}
$$

Proof. By Theorem 1, the left-hand side of Identity (8) equals

$$
\sum_{j=0}^{\infty}(m j+r) \sum_{k=0}^{\infty}(-1)^{k(k+1) / 2} p(n-k(k+1) / 2-m j-r)
$$

Then, to prove the theorem, it suffices to prove combinatorially that for all $n \geq 0$,

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k(k+1) / 2} p(n-k(k+1) / 2)=q\left(\frac{n}{2}\right) . \tag{9}
\end{equation*}
$$

Denote by $\mathcal{P E D}(n)$ the set of partitions of n with even parts distinct and odd parts unrestricted. Let $\mathcal{P E D} \mathcal{D}^{*}(n)$ be the subset of partitions in $\mathcal{P E D}(n)$ not of the form

$$
(\underbrace{2 a+1,2 a+1, \ldots, 2 a+1}_{a \text { times }}) \text { or }(\underbrace{2 a-1,2 a-1, \ldots, 2 a-1}_{a \text { times }}) .
$$

In [2], Andrews defined an involution $\varphi_{A_{2}}$ on $\mathcal{P E D}{ }^{*}(n)$ that reverses the parity of the length of partitions and thus proved combinatorially that

$$
\sum_{n=0}^{\infty}(-1)^{j(j+1) / 2} q^{j(j+1) / 2}=\sum_{n=0}^{\infty} \operatorname{ped}_{e-o}(n) q^{n}
$$

where $^{\operatorname{ped}_{e-o}(n)}:=\left|\mathcal{P E} \mathcal{D}_{e}(n)\right|-\left|\mathcal{P E} \mathcal{D}_{o}(n)\right|$. We define

$$
\begin{aligned}
\mathcal{P P \mathcal { E } D}(n) & :=\{(\lambda, \mu) \vdash n \mid \lambda \in \mathcal{P}, \mu \in \mathcal{P E D}\} \\
\mathcal{P} \mathcal{P E D} \mathcal{D}^{*}(n) & :=\left\{(\lambda, \mu) \vdash n \mid \lambda \in \mathcal{P}, \mu \in \mathcal{P E D} \mathcal{D}^{*}\right\} .
\end{aligned}
$$

Moreover, set $\mathcal{P} \mathcal{P E D}{ }^{* *}(n)=\mathcal{P} \mathcal{P E D}(n) \backslash \mathcal{P} \mathcal{P E D}{ }^{*}(n)$.
The mapping $(\alpha, \mu) \mapsto\left(\alpha, \varphi_{A_{2}}(\mu)\right)$ is an involution of $\mathcal{P} \mathcal{P} \mathcal{E D}^{*}(n)$ that reverses the parity of $\ell(\mu)$. Then,

$$
\begin{align*}
& \left|\left\{(\lambda, \mu) \in \mathcal{P} \mathcal{P E} \mathcal{D}(n) \mid \mu \in \mathcal{P} \mathcal{P E D} \mathcal{D}_{e}\right\}\right|-\left|\left\{(\lambda, \mu) \in \mathcal{P} \mathcal{P E D}(n) \mid \mu \in \mathcal{P} \mathcal{P E} \mathcal{D}_{o}\right\}\right| \tag{10}\\
& \quad=\left|\left\{(\lambda, \mu) \in \mathcal{P} \mathcal{P E D}(n) \mid \mu \in \mathcal{P} \mathcal{P E D} \mathcal{D}_{e}^{* *}\right\}\right|-\left|\left\{(\lambda, \mu) \in \mathcal{P} \mathcal{P E D}(n) \mid \mu \in \mathcal{P} \mathcal{P E} \mathcal{D}_{e}^{* *}\right\}\right|
\end{align*}
$$

We have that $\operatorname{ped}_{e-o}(0)=1$ and, if $k>0, \mathcal{P} \mathcal{P E D}(k) \backslash \mathcal{P} \mathcal{P E D} \mathcal{D}^{*}(k)$ is either empty of consists of exactly one partition with a parts, all equal to $2 a+1$ or all equal to $2 a-1$. In each case, a is congruent to k modulo 2 . Hence, the right-hand side of Equation (10) equals

$$
\sum_{k=0}^{\infty}(-1)^{k(k+1) / 2} p(n-k(k+1) / 2)
$$

We write $(\lambda, \mu) \in \mathcal{P P \mathcal { E } \mathcal { D }}(n)$ as $\left(\lambda^{e}, \lambda^{o}, \mu^{e}, \mu^{o}\right)$, where λ^{e} (respectively λ^{o}) is the partition consisting of the even (respectively odd) parts of λ; and μ^{e}, μ^{o} are defined similarly. Note that μ^{e} is a partition with distinct even parts.

Fix λ^{o} and μ^{o} two partitions with odd parts. Define

$$
\mathcal{P} \mathcal{P E} \mathcal{D}_{\lambda^{o}, \mu^{o}}(n):=\left\{(\lambda, \mu)=\left(\lambda^{e}, \lambda^{o}, \mu^{e}, \mu^{o}\right) \in \mathcal{P} \mathcal{P E D}(n)\right\} .
$$

Using the involution ψ of the proof of Theorem 2 on $\left(\lambda^{e}, \mu^{e}\right)$, we obtain

$$
\begin{aligned}
\mid\left\{\left(\lambda^{e}, \lambda^{o}, \mu^{e}, \mu^{o}\right) \in\right. & \left.\mathcal{P} \mathcal{P} \mathcal{E} \mathcal{D}_{\lambda^{o}, \mu^{o}}(n) \mid \ell\left(\mu^{e}\right) \text { even }\right\} \mid \\
& \quad-\mid\left\{\left(\lambda^{e}, \lambda^{o}, \mu^{e}, \mu^{o}\right) \in \mathcal{P} \mathcal{P E} \mathcal{D}_{\lambda^{o}, \mu^{o}}(n) \mid \ell\left(\mu^{e}\right) \text { odd }\right\} \mid \\
= & \left|\left\{\left(\emptyset, \lambda^{o}, \emptyset, \mu^{o}\right) \in \mathcal{P} \mathcal{P} \mathcal{E} \mathcal{D}_{\lambda^{o}, \mu^{o}}(n)\right\}\right|=1
\end{aligned}
$$

Summing over all λ^{o} and μ^{o}, we obtain

$$
\begin{aligned}
\mid\{(\lambda, \mu) \in \mathcal{P} \mathcal{P E} \mathcal{D}(n) \mid & \ell(\mu) \text { even }\} \mid \\
& \quad \mid\{(\lambda, \mu) \in \mathcal{P} \mathcal{P E} \mathcal{D}(n) \mid \ell(\mu) \text { odd }\} \mid \\
=\mid\left\{\left(\lambda^{o}, \mu^{o}\right) \vdash\right. & \left.n \mid \lambda^{o}, \mu^{o} \text { have odd parts, } \ell\left(\mu^{o}\right) \text { even }\right\} \mid \\
& -\mid\left\{\left(\lambda^{o}, \mu^{o}\right) \vdash n \mid \lambda^{o}, \mu^{o} \text { have odd parts, } \ell\left(\mu^{o}\right) \text { odd }\right\} \mid .
\end{aligned}
$$

In [5, Proposition 4], Ballantine and Welch proved that

$$
\begin{aligned}
& \mid\{(\alpha, \beta) \vdash n \mid \alpha, \beta \text { have odd parts, } \ell(\beta) \text { even }\} \mid \\
& \quad-\mid\{(\alpha, \beta) \vdash n \mid \alpha, \beta \text { have odd parts, } \ell(\beta) \text { odd }\} \mid \\
& \quad=q_{\text {even }}(n),
\end{aligned}
$$

where $q_{\text {even }}(n)$ is the number of distinct partitions with even parts. Hence, the left-hand side of Equation (10) equals $q_{\text {even }}(n)$.

Finally, the transformation that maps a partition $\lambda \vdash n$ with distinct even parts to the partition $\mu \vdash n / 2$ with $\mu_{i}=\lambda_{i} / 2$ for all $1 \leq i \leq \ell(\lambda)$ is a bijection and shows that $q_{\text {even }}(n)=q(n / 2)$. This completes the proof.

Remark 1. The involution of [5, Proposition 4] is by no means simple and it is illustrated with several examples in [5].

Theorem 7 ([15, Corollary 4.10]). Let m and n be nonnegative integers. Then

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k(k+1) / 2} s_{m}(n-k(k+1) / 2)=\sum_{j=0}^{\infty} j q\left(\frac{n-m j}{2}\right) \tag{11}
\end{equation*}
$$

Proof. By Theorem 1, the left-hand side of Identity (11) equals

$$
\sum_{j=0}^{\infty} j \sum_{k=1}^{\infty}(-1)^{k(k+1) / 2} p(n-k(k+1) / 2-m j)
$$

Then, the combinatorial proof of Identity (9) provided in the proof of Theorem 6 completes the argument.

We remark a slight error in [14, Corollary 2.13] whose statement is the same as Identity (11) if $m \mid n$. In [14, Corollary 2.13], the right-hand side of Identity (11) is set to 0 if $m \nmid n$. However, it is easily verified that, for example, for $n=10$ and $m=3$ the left-hand side of Identity (11) equals 2 .

The rank $r(\lambda)$ of a partition λ is defined [8] as the largest part of λ minus the number of parts in λ. Thus, $r(\lambda)=\lambda_{1}-\ell(\lambda)$. Let

$$
\mathcal{N}(n):=\{\lambda \vdash n \mid r(\lambda) \geq 0\}\} \quad \text { and } \quad \mathcal{R}(n):=\{\lambda \vdash n \mid r(\lambda)>0\}\}
$$

and define $N(n)=|\mathcal{N}(n)|$ and $R(n)=|\mathcal{R}(n)|$.
Theorem 8 ([15, Corollary 5.2]). Let m, n, and r be nonnegative integers such that $0 \leq r<m$. Then
(i) $\sum_{j=0}^{\infty}(-1)^{j} a_{m, r}(n-j(3 j+1) / 2)=\sum_{j=0}^{\infty}(m j+r) N(n-m j-r)$
(ii) $\sum_{j=1}^{\infty}(-1)^{j+1} a_{m, r}(n-j(3 j+1) / 2)=\sum_{j=0}^{\infty}(m j+r) R(n-m j-r)$.

Proof. As was the case in Theorems 2-7, Theorem 1 implies that it is enough to prove combinatorially that for all $n \geq 0$ we have
$\left(\mathrm{i}^{*}\right) \sum_{j=0}^{\infty}(-1)^{j} p(n-j(3 j+1) / 2)=N(n)$
(ii*) $\sum_{j=1}^{\infty}(-1)^{j+1} p(n-j(3 j+1) / 2)=R(n)$.

Since $p(n)-N(n)=|\{\lambda \vdash n \mid r(\lambda)<0\}|$ and, by conjugation, the number of partitions of n with negative rank equals the number of partitions of n with positive rank, statements (i*) and (ii*) are equivalent.

For $j \in \mathbb{Z}$, set $a(j):=j(3 j+1) / 2$. In [7], Bressoud and Zeilberger constructed an involution

$$
\varphi_{B Z}: \bigcup_{j \in 2 \mathbb{Z}} \mathcal{P}(n-a(j)) \rightarrow \bigcup_{j \in 2 \mathbb{Z}+1} \mathcal{P}(n-a(j))
$$

as follows. Let $\lambda \in \mathcal{P}(n-a(j))$ and define $\varphi_{B Z}(\lambda)$ to be

$$
\begin{aligned}
& \left(\ell(\lambda)+3 j-1, \lambda_{1}-1, \ldots, \lambda_{\ell(\lambda)}-1\right) \in \mathcal{P}(n-a(j-1)) \text { if } \ell(\lambda)+3 j \geq \lambda_{1} \\
& \left(\lambda_{2}+1, \ldots, \lambda_{\ell(\lambda)}+1,1^{\lambda_{1}-3 j-\ell(\lambda)-1}\right) \in \mathcal{P}(n-a(j+1)) \text { if } \ell(\lambda)+3 j<\lambda_{1}
\end{aligned}
$$

where 1^{i} means that there are i parts equal to 1 in the partition. Since $\mathcal{R}(n)=$ $\left\{\lambda \in \mathcal{P}(n-a(0)) \mid \ell(\lambda)<\lambda_{1}\right\}$, restricting $\varphi_{B Z}$ we obtain an involution

$$
\varphi_{B Z}: \mathcal{R}(n) \cup \bigcup_{j \geq 2 \text { even }} \mathcal{P}(n-a(j)) \rightarrow \bigcup_{j \geq 1 \text { odd }} \mathcal{P}(n-a(j))
$$

This completes the combinatorial proof of the theorem.
Example 3. Let $n=20$ and $j=0$. Then $a(0)=0$ and $\lambda=(10,8,2) \in \mathcal{R}(20)=$ $\mathcal{P}(20-a(0))$ has $\ell(\lambda)=3$ and $\lambda_{1}=10$. Thus,

$$
\varphi_{B Z}(10,8,2)=\left(9,3,1^{6}\right) \in \mathcal{P}(20-a(1))=\mathcal{P}(20-2)=\mathcal{P}(18)
$$

Let $n=20$ and $j=2$. Then, $a(2)=7$ and $\lambda=(4,3,3,2,1) \in \mathcal{P}(13)=$ $\mathcal{P}(20-a(2))$ has $\ell(\lambda)=5$ and $\lambda_{1}=4$. Thus $\ell(\lambda)+3 j \geq \lambda_{1}$ and

$$
\varphi_{B Z}(4,3,3,2,1)=(5+6-1,3,2,2,1)=(10,3,2,2,1) \in \mathcal{P}(18)=\mathcal{P}(20-a(1))
$$

Theorem 9 ([15, Corollary 5.3]). Let m and n be nonnegative integers. Then
(i) $\sum_{j=0}^{\infty}(-1)^{j} s_{m}(n-j(3 j+1) / 2)=\sum_{j=0}^{\infty} j N(n-m j)$
(ii) $\sum_{j=1}^{\infty}(-1)^{j+1} s_{m}(n-j(3 j+1) / 2)=\sum_{j=0}^{\infty} j R(n-m j)$.

Proof. Theorem 1 implies that it is enough to prove Identities (i*) and (ii*) given in the proof of Theorem 8.

Garden of Eden partitions we introduced by Hopkins and Sellers in [11] in connection to the game Bulgarian solitaire. They are partitions λ with all parts less than $\ell(\lambda)-1$. Hence they are precisely the partitions with rank at most -2 . Denote by $G(n)$ the number of Garden of Eden partitions of n.

Theorem 10 ([15, Corollaries 6.2 and 6.3]). Let m, n, and r be nonnegative integers such that $0 \leq r<m$. Then
(i) $\sum_{j=0}^{\infty}(-1)^{j+1} a_{m, r}(n-3 j(j+1) / 2)=\sum_{j=0}^{\infty}(m j+r) G(n-m j-r)$
(ii) $\sum_{j=1}^{\infty}(-1)^{j+1} s_{m}(n-3 j(j+1) / 2)=\sum_{j=0}^{\infty} j G(n-m j)$.

Proof. Theorem 1 implies that to prove both identities is suffices to show that for all $n \geq 0$,

$$
G(n)=\sum_{j \geq 1}(-1)^{j+1} p(n-3 j(j+1) / 2)
$$

A combinatorial proof of this identity is given by Hopkins and Sellers in [11]. They give an involution similar to Bressoud and Zeilberger's involution $\varphi_{B Z}$ described in the proof of Theorem 8.

Given a partitions λ, we denote by $m_{\lambda}(1)$ the number of parts equal to 1 in λ and by $w(\lambda)$ the number of parts greater than $m_{\lambda}(1)$ in λ. Then the $\operatorname{crank} \operatorname{cr}(\lambda)$ of λ is defined [3] as

$$
\operatorname{cr}(\lambda):= \begin{cases}\lambda_{1} & \text { if } m_{\lambda}(1)=0 \\ w(\lambda)-m_{\lambda}(1) & \text { if } m_{\lambda}(1)>0\end{cases}
$$

Let

$$
\begin{aligned}
\mathcal{C}(n) & :=\{\lambda \vdash n \mid \operatorname{cr}(\lambda) \geq 0\}\} \\
\mathcal{D}(n) & :=\{\lambda \vdash n \mid \operatorname{cr}(\lambda)>0\}\}
\end{aligned}
$$

and define $C(n)=|\mathcal{C}(n)|$ and $D(n)=|\mathcal{D}(n)|$.
Theorem 11 ([15, Corollary 7.2]). Let m, n, and r be nonnegative integers such that $0 \leq r<m$. Then
(i) $\sum_{j=0}^{\infty}(-1)^{j} a_{m, r}(n-j(j+1) / 2)=\sum_{j=0}^{\infty}(m j+r) C(n-m j-r)$
(ii) $\sum_{j=1}^{\infty}(-1)^{j+1} a_{m, r}(n-j(j+1) / 2)=\sum_{j=0}^{\infty}(m j+r) D(n-m j-r)$.

Proof. Theorem 1 implies that it is enough to prove combinatorially that for all $n \geq 0$ we have
$\left(\mathrm{i}^{* *}\right) \sum_{j=0}^{\infty}(-1)^{j} p(n-j(j+1) / 2)=C(n)$
$\left(\mathrm{ii}^{* *}\right) \sum_{j=1}^{\infty}(-1)^{j+1} p(n-j(j+1) / 2)=D(n)$.
Berkovich and Gravan [6] proved combinatorially that $D(n)$ is also equal to the number of partitions of n with negative crank, i.e., $p(n)-C(n)$. Thus statements (i**) and (ii**) are equivalent.

Given a partition λ, the smallest positive integer that is not a part of λ is called the minimal excludant of λ and is denoted by $\operatorname{mex}(\lambda)$ (see $[9,4]$). For example,

$$
\operatorname{mex}(7,7,4,2,1,1)=3
$$

If n, j are nonnegative integers with $0<j(j+1) / 2 \leq n$, and $\lambda \in \mathcal{P}(n-j(j+1) / 2)$, the transformation that adds parts $1,2, \ldots, j$ to λ is a bijection from $\mathcal{P}(n-j(j+1) / 2)$ to the set of partitions $\lambda \in \mathcal{P}(n)$ with $\operatorname{mex}(\lambda)>j$. This shows combinatorially that, for $n, j \geq 0$, we have

$$
p\left(n-\frac{j(j+1)}{2}\right)-p\left(n-\frac{(j+1)(j+2)}{2}\right)=|\{\lambda \in \mathcal{P}(n) \mid \operatorname{mex}(\lambda)=j+1\}|
$$

Therefore, we have a combinatorial proof that

$$
\left.\sum_{j \geq 0}(-1)^{j} p\left(n-\frac{j(j+1)}{2}\right)=\mid\{\lambda \in \mathcal{P}(n) \mid \operatorname{mex}(\lambda) \text { odd }\} \right\rvert\, .
$$

Hopkins, Sellers, and Yee [12], and also Konan [13], proved combinatorially that

$$
C(n)=\mid\{\lambda \in \mathcal{P}(n) \mid \operatorname{mex}(\lambda) \text { odd }\} \mid .
$$

This completes the combinatorial proof of Theorem 11.

Theorem 12 ([15, Corollary 7.3]). Let m and n be nonnegative integers. Then
(i) $\sum_{j=0}^{\infty}(-1)^{j} s_{m}(n-j(j+1) / 2)=\sum_{j=0}^{\infty} j C(n-m j)$
(ii) $\sum_{j=1}^{\infty}(-1)^{j+1} s_{m}(n-j(j+1) / 2)=\sum_{j=0}^{\infty} j D(n-m j)$.

Proof. Theorem 1 implies that it is enough to prove Identities (i**) and (ii**) given in the proof of Theorem 11.

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
[2] G. E. Andrews, Two theorems of Gauss and allied identities proved arithmetically, Pacific J. Math. 41 (1972), 563-578.
[3] G. E. Andrews and F. G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167-171.
[4] G. E. Andrews and D. Newman, Partitions and the minimal excludant, Ann. Comb. 23 (2) (2019), 249-254.
[5] C. Ballantine and A. Welch, PED and POD partitions: combinatorial proofs of recurrence relations, Discrete Math. 346 (3) (2023), Paper No. 113259, 20 pp.
[6] A. Berkovich and F. G. Garvan, Some observations on Dysons new symmetries of partitions, J. Combin. Theory Ser. A 100 (1) (2002), 61-93.
[7] D. M. Bressoud and D. Zeilberger, Bijecting Euler's partitions-recurrence, Amer. Math. Monthly 92 (1) (1985), 54-55.
[8] F. Dyson, Some guesses in the theory of partitions, Eureka 8 (1944), 10-15.
[9] P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J. 12 (2006), 439-454.
[10] H. Gupta, Combinatorial proof of a theorem on partitions into an even or odd number of parts, J. Combin. Theory Ser. A 21 (1) (1976), 100-103.
[11] B. Hopkins and J.A. Sellers, Exact enumeration of Garden of Eden partitions, Integers 7 (2) (2007), \#A19.
[12] B. Hopkins, J. A. Sellers, and A. J. Yee, Combinatorial perspectives on the crank and mex partition statistics, Electron. J. Combin. 29 (2) (2022), Paper No. 2.11, 20 pp.
[13] I. Konan, A Bijective proof of a generalization of the non-negative crank - odd mex identity, Electron. J. Combin. 30 (1) (2023), Paper No. 1.41, 20 pp.
[14] P. J. Mahanta and M. P. Saikia, Refinement of some partition identities of Merca and Yee, Int. J. Number Theory 18 (5) (2022), 1131-1142.
[15] M. Merca, Linear inequalities concerning the sum of distinct parts congruent to r modulo m in all the partitions on n, Quaest. Math. 46 (12) (2023), 2637-2659.

