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Abstract
We give combinatorial proofs of several recent results due to Merca on the sum of
different parts congruent to r modulo m in all partitions of n. The proofs make
use of some well-known involutions from the literature and some new involutions
introduced here.

1. Introduction

A partition X\ of n is a non-increasing sequence A = (A1, \a,...,A¢) of positive
integers that add up to n. We refer to the integers \; as the parts of A. As usual,
we denote by p(n) the number of partitions of n. Note that p(z) = 0 if  is not a
non-negative integer, and since the empty partition (} is the only partition of 0, we
have that p(0) = 1.

Let m,n, and r be nonnegative integers such that 0 < r < m. Denote by a, ., (n)
the sum of all different parts congruent to » modulo m in all partitions of n. Thus,
for a partition X of n, a part mj+r of A contributes mj+r to a, ,(n) regardless of
its multiplicity. We denote by s,,(n) the sum of different parts that appear at least
m times in partitions of n. Thus, for a partition \ of n, a part j of A that occurs
at least m times contributes j to s,,(n) regardless of its multiplicity.

Recently Merca [15] proved several results relating a, »(n), sm(n), and numbers
of restricted partitions. In this article, we give combinatorial proofs of several results
in [15]. Combinatorial proofs of [15, Theorem 1.3 and Corollary 1.4] are given in
[14]. In [15] the author gives a combinatorial proof of Theorem 1.6. We prove
combinatorially Theorem 1.3 and Corollaries 4.2, 4.4, 4.6, 4.7(i), 4.9, 4.10, 5.2, 5.3,
6.3, 6.3, 7.2, 7.3 of [15]. The corollaries are limiting cases of inequalities obtained
in [15] by truncating theta series.
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2. Combinatorial Proofs of Theorems of Merca

We first introduce some notation. We denote by P(n) the set of partitions of n and
by P the set of all partitions. The following convention is used for all other sets of
partitions: if A(n) denotes a set of partitions of n, then

A= ] An).
n>0

We write A - n to mean that A is a partition of n. We also write |A| = n to mean that
the parts of A add up to n. The number of parts of \ is called the length of A and is
denoted by £(X). If XD X AR) are partitions, we write (A, X2 X)) |-
n to mean AW |4+ |X®) |+ ..+ |]AF)| = n. We define pe_,(n) := pe(n) —po(n), where
pe(n) (respectively p,(n)) is the number of partitions of n with an even (respectively
odd) number of parts. An overpartition of n is a partition of n in which the first
occurrence of a part may be overlined. We denote by P(n) the set of overpartitions
of n. As in the case of partitions, we define p,_,(n) := p.(n) — p,(n), where p,(n)
(respectively p,(n)) is the number of overpartitions of n with an even (respectively
odd) number of parts. Given a set A(n) of partitions or overpartitions, we denote
by Ac(n) (respectively A,(n)) the subset of A € A(n) with £()\) even (respectively
odd). We denote by Q(n) the set of partitions of n into distinct parts and write
q(n) for |Q(n)|. Similarly, we denote by goqq(n) (respectively geyen(n)) the number
of partitions of n into distinct parts all odd (respectively even).

Theorem 1 ([15, Theorem 1.3]). Let m,n, and r be nonnegative integers such that
0 <r<m. We have

o0

(i) apm(n) = Z(mj +r)p(n—mj—r);
7=0

(i) 5 (n) = jp(n — my).
=0

Proof. We note that the combinatorial proof of this theorem is implicit in the com-
binatorial proof of [15, Theorem 1.6]. We write it here in clearer form since it is
used in subsequent proofs.
(i) Let A, j.m(n) be the set of overpartitions of n with exactly one part overlined
and only a part equal to mj + r maybe overlined. Clearly
o0
() = Y (g + 1) Arjm (7))
j=0
We denote by frjm @ Arjm(n) = P(n —mj — r) the transformation defined by
frjm(A) = p, where g is the partition obtained from A by removing its unique
overlined part. Since f; j n is a bijection, this completes the proof of (i).
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(ii) Let Sj.m(n) be the set of partitions of n in which part j occurs at least m

times. Clearly
n) =Y ilSjm(n)
j=0

We denote by ¢j,m : Sa,m(n) = P(n—my) he transformation defined by g; ...(v) = n,
where 7 is the partitions obtained from v by removing m parts equal to j. Since
gj,m is a bijection, this completes the proof of (ii). O

Example 1. Let n =47, m =3,7 =4, and r = 2.
(i) Given A = (15,14,14,2,2) € Ay 4 5(47), we have

fous(\) = fous(15,T4,14,2,2) = (15,14,2,2) € P(47 — 14) = P(33).
Conversely, for p = (15,14,2,2) € P(33), we have
foas() = f145(15,14,2,2) = (15,14,14,2,2) € Ay 43(33 + 14) = Ay 4 3(47).
(ii) Given v = (13,10,10,4,4,4,4,1,1) € S; 5(47), we have
913(v) = 91.5(13,10,10,4,4,4,4,1,1) = (13,10,10,4,1,1) € P(47 — 12) = P(35).
Conversely, for n = (13,10,10,4,1,1) € P(35), we have

gra(n) = ¢55(13,10,10,4,1,1)
= (13,10,10,4,4,4,4,1,1) € 84 5(35 + 12) = S,43(47).

Theorem 2 ([15, Corollary 4.2]). Let m,n, and r be nonnegative integers such that
0<r<m. Then

(N0 +22 am,«nfk:2 ijerpeo —mj—r). (1)

Proof. By Theorem 1, the left-hand side of Identity (1) equals

Z(mj +7) (p(n —mj—r)+ QZ(fl)kp(n —k* —mj — r)) .
j=0 k=1

Thus, to prove the theorem, it suffices to show combinatorially that for all n > 0,

pefo( —p +QZ n_k2)~ (2)
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For n > 1, let P~ (n) be the set of overpartitions of n that are not of the form

(a,a,...,a)or (a,a,...,a).
——— ———

a times a—1 times

In [2], Andrews defined an involution ¢4, on P (n) that reverses the parity of the
length of overpartitions and thus proved combinatorially that

1423 (-1)"¢" = B o(n)g". (3)
n=1 n=0
The restriction @4, : P, (n) — P, (n) is a bijection.
We define
PP(n) :={(a,B8) Fn|aecP,BeP}
PP (n):={(e,B)Fn|acP,BeP }.

Moreover, set PP (n) := PP(n) \ PP (n).
The transformation (o, ) — (a,¢a4,(3)) is an involution on PP (n) that re-
verses the parity of ¢(3). Hence

{(a,8) €PP(n) | B € Pe} = [{(a, B) € PP(n) | B € Po} (4)
={(e,8) € PP(n) | € P} = [{(e, 8) € PP(n | B P,
Since p,_,(0) =1 and, if k > 0, P (k) is either empty or consists of exactly two

“square” overpartitions of length congruent to k& modulo 2, mapping («, 8) — a,
we see that the right-hand side of Equation (4) equals

p(n) +2 3" (~1)p(n — ).
k=1

Next, we define the set
PQ(n) :=={(a,n)Fn|laeP,ne Q}.
If n > 1, we define an involution i on PQ(n) by

(@\ (a1),nU (1) if g >,

vl = {(au )\ () ifar <.

Clearly, ¥(a, ) reverses the parity of ¢(n). Thus, if n > 1,

{(a,n) € PQ(n) [ € Qe}| = [{(a,n) € PQ(n) [n € Qo}| =0,
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and if n = 0 the difference is 1 since {(a,n) € PQ(0)} = {(0,0)}.

To prove combinatorially that Identity (2) holds, write (o, 3) € PP(n) as («, 3, B),
where 3 is the partition consisting of the overlined parts of 5 and 5 is the partition
consisting of the nonoverlined parts of 8. Fix a partition E and define

PP3(n) = {(a, B) = (. B, B) € PP(n)},

the set of pairs (a, ) in PP(n) such that the nonoverlined parts in the overpar-
tition B are precisely the parts of B Let (v,¢) := 9(a, B) and define ¢ to be the
overpartition with overlined parts precisely the parts of { and nonoverlined parts
precisely the parts of 3. Then, (v,&) € Pfg(n) and ¢(¢) and ¢(B3) have different
parity. Thus,

{(c, B, 5) € PP5(n) | £(B) even}| — |{(a, B, B) € PP5(n) | £(B) odd}]
= {(0,0,8) € PP(n)}| = 1.

Summing over all E , we obtain

{(a, B) € PP(n) | £(8) even}| — [{(a, B) € PP(n) | £(8) odd}]

)
= [{(0,0,8) € PP(n) | £(B) even}| — [{(0,0, B) € PP(n) | £(B) odd}|
= Pe—o Tl) O

Example 2. For an example using Andrews’ involution ¢4,, we refer the reader
to [2]. Here we illustrate the transformation . Consider the pair («, 3) € PP(94)
with a = (9,9,3,3,3,1) and 8 = (9,9,9,7,7,6,6,6,2,2,1,1,1). Hence £(3) = 13,
B=1(9,6,2,1) and 3 = (9,9,7,7,6,6,2,1,1). Since oy =9 < 3, = 9,

¥(e, B) =1((9,9,9,3,3,3,1),(6,2,1)).
Then ¢ = (9,9,7,7,6,6,6,2,2,1,1,1) and () = 12. Thus, (o, 3) “cancels” with
((97 97 9’ 3’ 37 37 1)’ 6)'
Now consider the pair (o, 3) € PP(106) with

a=(12,9,9,3,3,3,1) and B=(9,9,9,7,7,6,6,6,2,2,1,1,1).

Then, £(8) = 13, B = (9,6,2,1) and E =(9,9,7,7,6,6,2,1,1). Since a; = 12 >
B, =9, we have

Y(a, B) =((9,3,3,3,1),(12,9,6,2,1)).

Then & = (12,9,9,9,7,7,6,6,6,2,2,1,1,1) and £(£) = 14. Thus, (a,3) “cancels”
with ((9,3,3,3,1),€).
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Theorem 3 ([15, Corollary 4.4 (i)]). Let m and n be nonnegative integers. Then

+QZ Y sm(n — j§2) ije,o(n—mj). (5)
j=0

Proof. By Theorem 1, the left-hand side of Identity (5) equals

Z] p(n —mj +ZZ - j* —mj)

Then, the combinatorial proof of Identity (2) provided in the proof of Theorem 2
completes the argument. O

Theorem 4 ([15, Corollary 4.6]). Let m,n, and r be nonnegative integers such that
0<r<m. Then

(N +22 amrankz Zm]JrTqudn* mj—r). (6)
7=0

Proof. By Theorem 1, the left-hand side of Identity (6) equals

Z(mj +7) <p(n —mj—r)+ 22(—1)’“]3(” —2k* —mj — 7‘)) )
3=0 k=1

Thus, to prove the theorem, it suffices to show combinatorially that for all n > 0,
Goda(n) Z p(n — 2k%). (7)
Doubling all parts in Andrews’ proof of Identity (3), shows combinatorially that
the right-hand side of Identity (7) equals

|{(e, 3) € PP(n) | B has even parts, 3 € P.}|
— {(c, B) € PP(n) | B has even parts, 8 € P,}|.
In [10], Gupta constructed an involution ¢ on the set of partitions of n with at
least one even part or at least one repeated part. By construction, the parity of the

number of even parts in A is different than the parity of the number of even parts
in pg(N). This gives a combinatorial proof for

qodd(n) = De (TL, 2) - po(n7 2)7
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where p.(n,2) (respectively p,(n,2)) is the number of partitions of n with and even
(respectively odd) number of even parts.

If n > 1, the involution 1 of Theorem 2 is well defined when restricted to pairs of
partitions in PQ(n) in which both partitions have only even parts. Thus, if n > 1,

{(a,n) € PQ(n) | o, m have even parts, £(n) even}|
— {(a,n) € PQ(n) | o, n have even parts, £(n) odd}| =0,

and if n = 0 the difference is 1 since {(a,n) € PQO(0) | a,n have even parts} =
{0.0)}. - o

Next, we write (a,3) € PP(n) where § has only even parts as (a°,a®,f, ),
where o (respectively a°) is the partition consisting of the even (respectively odd)
parts of & and 8, 5 are as in the proof of Theorem 2. We fix a partition 5 with even
parts and a partition a® with odd parts, and define

PPj00(n) = {(a, B) = (a%,0°, B, B) € PP(n)}.

Using the involution 1 on (a®, ) and proceeding as in the proof of Theorem 2, we
obtain

{(a®,a%, B, B) € PP5.(n) | L(B) even}| — [{(a, 0", B, B) € PP ,.(n) | £(B) odd}|
= [{(a®,0,0,5) € PP(n)}| = 1.
Summing over all a® and E, we obtain

{(a, 8) € PP(n) | B has even parts, £(3) even}|
— |{(, B) € PP(n) | B has even parts, £(3) odd}|

= \{(a",B) Fn | a has odd parts, 5 has even parts, 4(3) even}|
—|{(a®,B) F n | a° has odd parts, 3 has even parts, £(3) odd}|
= qodd(n).
The last equality above follows from Gupta’s involution. O
For an example of the use of Gupta’s transformation, see [10].

Theorem 5 ([15, Corollary 4.7(i)]). Let m and n be nonnegative integers. Then

Sm(n) +2 Z(—l)ksm(n —2k%) = quodd(n —myj).
k=1 §=0

Proof. By Theorem 1, the left-hand side of Identity (2) equals

> i <p(n —mj)+2) (—=1)*p(n — 2k* - mj)) :
k=1

=0
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Then, the combinatorial proof of Identity (7) provided in the proof of Theorem 4
completes the argument. O

Theorem 6 ([15, Corollary 4.9]). Let m,n, and r be nonnegative integers such that
0<r<m. Then

Z KOHD/20 (0 — k(K +1)/2) = Z mj +1)q <”;7T> (8)
k=0 7=0

Proof. By Theorem 1, the left-hand side of Identity (8) equals
Z(mj+ Z DEEED2p00 — k(k +1)/2 — mgj — ).
7=0 k=0

Then, to prove the theorem, it suffices to prove combinatorially that for all n > 0,

oo

> (DD — k(4 1)/2) = ¢ (5) - (9)

k=0

Denote by PED(n) the set of partitions of n with even parts distinct and odd
parts unrestricted. Let PED*(n) be the subset of partitions in PED(n) not of the
form

(2a+1,2a+1,...,2a+1)or (2a —1,2a —1,...,2a — 1).

a times a times

In [2], Andrews defined an involution ¢4, on PED*(n) that reverses the parity of
the length of partitions and thus proved combinatorially that

oo oo

Z(_l)j(j+1)/2qj(j+1)/2 = Zpedefo(n)qm

n=0 n=0
where ped._,(n) := |PED.(n)| — |PED,(n)|. We define
PPED(n) :={(\,u)Fn| e P,ue PED}
PPED*(n) :={(\,p)Fn| e P,uecPED"}.
Moreover, set PPED™ (n) = PPED(n) \ PPED*(n).

The mapping (o, ) — (@, 0 a,(1)) is an involution of PPED*(n) that reverses
the parity of £(u). Then,

H(A\ p) € PPED(n) | p € PPED}| — {(A, ) € PPED(n) | u € PPED,}| (10)
=|{(\, 1) € PPED(n) | p € PPEDL Y — {(A\, ) € PPED(n) | u € PPEDL"}.
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We have that ped._,(0) = 1 and, if &k > 0, PPED(k) \ PPED* (k) is either empty
of consists of exactly one partition with a parts, all equal to 2a + 1 or all equal to
2a — 1. In each case, a is congruent to k modulo 2. Hence, the right-hand side of
Equation (10) equals

S (D 20— k(k 4 1)/2)
k=0

We write (A, u) € PPED(n) as (A%, \°, u®, u°), where A° (respectively A°) is the
partition consisting of the even (respectively odd) parts of \; and €, u° are defined
similarly. Note that p© is a partition with distinct even parts.

Fix A° and p° two partitions with odd parts. Define

PPEDxo yo(n) = {(A, 1) = (A, A%, u®, u°) € PPED(n)}.
Using the involution v of the proof of Theorem 2 on (A¢, u¢), we obtain

(A A%, 18, 1) € PPED o po(n) | (1) event}
— {(A% A%, 18, 1°) € PPED o yo(n) | €(p®) odd}|
= |{((Z), )\07 (Z), ,U/O) (S PP(S‘D)\D’MO(TL)}| =1.

Summing over all \° and p°, we obtain

{(X 1) € PPED(n) | £(p) even}|
—{(A\ 1) € PPED(n) | £(p) odd}|
= {(A% u°) Fn| A p® have odd parts, £(u°) even}|
—{(\%, 1) Fn | A% u° have odd parts, £(u°) odd}|.

In [5, Proposition 4], Ballantine and Welch proved that

{(a, B) Fn | a, 8 have odd parts, £(5) even}|
— {(a, B) F n | o, B have odd parts, £(3) odd}|

= QGven(n)v

where geypen(n) is the number of distinct partitions with even parts. Hence, the
left-hand side of Equation (10) equals geyen(n)-

Finally, the transformation that maps a partition A - n with distinct even parts
to the partition b n/2 with u; = A;/2 for all 1 < ¢ < £()) is a bijection and shows
that geyen(n) = g(n/2). This completes the proof. O

Remark 1. The involution of [5, Proposition 4] is by no means simple and it is
illustrated with several examples in [5].
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Theorem 7 ([15, Corollary 4.10]). Let m and n be nonnegative integers. Then

S (~ 1k (n—k<k+1>/2>:2jq<” mj). (11)
k=0 7=0

Proof. By Theorem 1, the left-hand side of Identity (11) equals

S5 S DM 2 (£ 1)/2 — m).

j=0 k=1

Then, the combinatorial proof of Identity (9) provided in the proof of Theorem 6
completes the argument. O

We remark a slight error in [14, Corollary 2.13] whose statement is the same as
Identity (11) if m | n. In [14, Corollary 2.13], the right-hand side of Identity (11)
is set to 0 if m { n. However, it is easily verified that, for example, for n = 10 and
m = 3 the left-hand side of Identity (11) equals 2.

The rank r(\) of a partition A is defined [8] as the largest part of A minus the
number of parts in A. Thus, r(A) = A\ — £()\). Let

Nmn):={AFn]|r(A)>0}} and R(n):={AFn]|r(A)>0}}
and define N(n) = |N(n)| and R(n) = |R(n)|.

Theorem 8 ([15, Corollary 5.2]). Let m,n, and r be nonnegative integers such that
0<r<m. Then

(1) (=1 apmr(n—35(35+1)/2) :ng—i—r (n—mj—r)
7=0 7=0

(i) Y (—1) M apma(n—j(3j+1)/2) = > (mj+r)R(n—mj—r).
j=1 3=0

Proof. As was the case in Theorems 2 - 7, Theorem 1 implies that it is enough to
prove combinatorially that for all n > 0 we have

(i) Y (=1)p(n — j(3j +1)/2) = N(n)

(i) Y (=1)*'p(n = j(3j + 1)/2) = R(n).
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Since p(n) — N(n) = {A F n | r(A) < 0} and, by conjugation, the number of
partitions of n with negative rank equals the number of partitions of n with positive
rank, statements (i*) and (ii*) are equivalent.

For j € Z, set a(j) := j(35 + 1)/2. In [7], Bressoud and Zeilberger constructed

an involution
U P(n—a(j U P(n—a(j

JE2L JE2Z+1

as follows. Let A € P(n — a(j)) and define ¢pz(\) to be

(2()\)4-3] — 1,)\1 — 1,...,)\4()\) — 1) S P(n—a(] — 1)) lff()\) +3] > )\1,

M2+ 1,0 Ay + 1, 173N € P — a5 + 1)) if £(N) + 35 < A1,

where 1 means that there are i parts equal to 1 in the partition. Since R(n) =
{N € P(n—a(0)) ] £(N) < A1}, restricting ¢z we obtain an involution

vBz : R(n U P(n—alj U P(n—a(j)).
j>2 even j>1 odd
This completes the combinatorial proof of the theorem. O

Example 3. Let n = 20 and j = 0. Then a(0) = 0 and A = (10,8,2) € R(20) =
P(20 — a(0)) has £(A\) = 3 and A\; = 10. Thus,

©0pz(10,8,2) = (9,3,1%) € P(20 — a(1)) = P(20 — 2) = P(18).

Let n = 20 and j = 2. Then, a(2) = 7 and A = (4,3,3,2,1) € P(13) =
P(20 — a(2)) has £(A) =5 and Ay = 4. Thus £(A) +3j > A and

0p7(4,3,3,2,1) = (5+6—1,3,2,2,1) = (10,3,2,2,1) € P(18) = P(20 — a(1)).
Theorem 9 ([15, Corollary 5.3]). Let m and n be nonnegative integers. Then

(1) ) (=1 sm(n—j(3j+1)/2) = Z]Nn—my

'M8

<
I
=)

M8

(i) Y (=1)"tsm(n —j(3j +1) ZJRn—mJ

<.
Il
—_

Proof. Theorem 1 implies that it is enough to prove Identities (i*) and (ii*) given
in the proof of Theorem 8. O



INTEGERS: 24 (2024) 12

Garden of Eden partitions we introduced by Hopkins and Sellers in [11] in con-
nection to the game Bulgarian solitaire. They are partitions A with all parts less
than ¢(A) — 1. Hence they are precisely the partitions with rank at most —2. Denote
by G(n) the number of Garden of Eden partitions of n.

Theorem 10 ([15, Corollaries 6.2 and 6.3]). Let m,n, and r be nonnegative integers
such that 0 < r <m. Then

oo

(1) Y (=1 g p(n = 35(j +1 Z mj +r)G(n —mj—r)

(ii) Z(—l)jﬂs -3j(j+1)/2) = Z]G n—mj).

j=1

Proof. Theorem 1 implies that to prove both identities is suffices to show that for
all n > 0,

G(n) => (1) "'p(n —3j(j +1)/2).

Jjz1

A combinatorial proof of this identity is given by Hopkins and Sellers in [11]. They
give an involution similar to Bressoud and Zeilberger’s involution ¢z described in
the proof of Theorem 8. O

Given a partitions A, we denote by mx(1) the number of parts equal to 1 in A
and by w(\) the number of parts greater than my(1) in A\. Then the crank cr(\)
of A is defined [3] as

() = 4 M if my(1) =0,
Ok {w(/\)—m,\(l) if my(1) > 0.

Let

Cn):={AkFn|cr(N) >0}},
D(n) :={AkFn|cr(N) >0}},

and define C'(n) = |C(n)| and D(n) = |D(n)|.

Theorem 11 ([15, Corollary 7.2]). Let m,n, and r be nonnegative integers such
that 0 <r <m. Then

3

() D (1Y amr(n =5 +1)/2) = 3 (mj +1)Cln—mj =)
7=0

(=)

<.

oo

i) > (1) am o (n =5 +1)/2) = > (mj +r)D(n—mj —r).

7=0

=

.
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Proof. Theorem 1 implies that it is enough to prove combinatorially that for all
n > 0 we have

(i) Y _(=1)7p(n—j(i +1)/2) = C(n)

I

<
Il
=)

(i) Y (=1 *'p(n—j(j +1)/2) = D(n).

NE

<.
I
—

Berkovich and Gravan [6] proved combinatorially that D(n) is also equal to the
number of partitions of n with negative crank, i.e., p(n) — C(n). Thus statements
(i**) and (ii**) are equivalent.

Given a partition A, the smallest positive integer that is not a part of A is called
the minimal excludant of A and is denoted by mex(\) (see [9, 4]). For example,

mex(7,7,4,2,1,1) = 3.

If n, j are nonnegative integers with 0 < j(j+1)/2 <n,and A € P(n—j(j+1)/2),
the transformation that adds parts 1,2, ..., j to A is a bijection from P(n—j(j+1)/2)
to the set of partitions A € P(n) with mex(\) > j. This shows combinatorially that,
for n,j > 0, we have

D (n— jn(j;”) —-p (n— U+DE+2) 1)2(j+2)> = |{\ € P(n) | mex(\) = j + 1}|.

Therefore, we have a combinatorial proof that
- (7 +1
Z(—l)ﬂp (n - ](]2+)> = |{X € P(n) | mex(X) odd}|.
j=0
Hopkins, Sellers, and Yee [12], and also Konan [13], proved combinatorially that
C(n) = [{\ € P(n) | mex(A) odd}|.

This completes the combinatorial proof of Theorem 11. O

Theorem 12 ([15, Corollary 7.3]). Let m and n be nonnegative integers. Then

oo

D) Y (~Dsmln—j(i+1)/2) = Z]Cn*mj

(ii) Z D s (n—35(G+1)/2) = Z]anm]

j=1

Proof. Theorem 1 implies that it is enough to prove Identities (i**) and (ii**) given
in the proof of Theorem 11. O
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