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Abstract

We give combinatorial proofs of several recent results due to Merca on the sum of
different parts congruent to r modulo m in all partitions of n. The proofs make
use of some well-known involutions from the literature and some new involutions
introduced here.

1. Introduction

A partition λ of n is a non-increasing sequence λ = (λ1, λ2, . . . , λ`) of positive

integers that add up to n. We refer to the integers λi as the parts of λ. As usual,

we denote by p(n) the number of partitions of n. Note that p(x) = 0 if x is not a

non-negative integer, and since the empty partition ∅ is the only partition of 0, we

have that p(0) = 1.

Let m,n, and r be nonnegative integers such that 0 ≤ r < m. Denote by ar,m(n)

the sum of all different parts congruent to r modulo m in all partitions of n. Thus,

for a partition λ of n, a part mj+ r of λ contributes mj+ r to ar,m(n) regardless of

its multiplicity. We denote by sm(n) the sum of different parts that appear at least

m times in partitions of n. Thus, for a partition λ of n, a part j of λ that occurs

at least m times contributes j to sm(n) regardless of its multiplicity.

Recently Merca [15] proved several results relating am,r(n), sm(n), and numbers

of restricted partitions. In this article, we give combinatorial proofs of several results

in [15]. Combinatorial proofs of [15, Theorem 1.3 and Corollary 1.4] are given in

[14]. In [15] the author gives a combinatorial proof of Theorem 1.6. We prove

combinatorially Theorem 1.3 and Corollaries 4.2, 4.4, 4.6, 4.7(i), 4.9, 4.10, 5.2, 5.3,

6.3, 6.3, 7.2, 7.3 of [15]. The corollaries are limiting cases of inequalities obtained

in [15] by truncating theta series.
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2. Combinatorial Proofs of Theorems of Merca

We first introduce some notation. We denote by P(n) the set of partitions of n and

by P the set of all partitions. The following convention is used for all other sets of

partitions: if A(n) denotes a set of partitions of n, then

A =
⋃
n≥0

A(n).

We write λ ` n to mean that λ is a partition of n. We also write |λ| = n to mean that

the parts of λ add up to n. The number of parts of λ is called the length of λ and is

denoted by `(λ). If λ(1), λ(2), . . . , λ(k) are partitions, we write (λ(1), λ(2), . . . , λ(k)) `
n to mean |λ(1)|+ |λ(2)|+ · · ·+ |λ(k)| = n. We define pe−o(n) := pe(n)−po(n), where

pe(n) (respectively po(n)) is the number of partitions of n with an even (respectively

odd) number of parts. An overpartition of n is a partition of n in which the first

occurrence of a part may be overlined. We denote by P(n) the set of overpartitions

of n. As in the case of partitions, we define pe−o(n) := pe(n)− po(n), where pe(n)

(respectively po(n)) is the number of overpartitions of n with an even (respectively

odd) number of parts. Given a set A(n) of partitions or overpartitions, we denote

by Ae(n) (respectively Ao(n)) the subset of λ ∈ A(n) with `(λ) even (respectively

odd). We denote by Q(n) the set of partitions of n into distinct parts and write

q(n) for |Q(n)|. Similarly, we denote by qodd(n) (respectively qeven(n)) the number

of partitions of n into distinct parts all odd (respectively even).

Theorem 1 ([15, Theorem 1.3]). Let m,n, and r be nonnegative integers such that

0 ≤ r < m. We have

(i) ar,m(n) =

∞∑
j=0

(mj + r)p(n−mj − r);

(ii) sm(n) =

∞∑
j=0

jp(n−mj).

Proof. We note that the combinatorial proof of this theorem is implicit in the com-

binatorial proof of [15, Theorem 1.6]. We write it here in clearer form since it is

used in subsequent proofs.

(i) Let Ar,j,m(n) be the set of overpartitions of n with exactly one part overlined

and only a part equal to mj + r maybe overlined. Clearly

am,r(n) =

∞∑
j=0

(mj + r)|Ar,j,m(n)|.

We denote by fr,j,m : Ar,j,m(n) → P(n − mj − r) the transformation defined by

fr,j,m(λ) = µ, where µ is the partition obtained from λ by removing its unique

overlined part. Since fr,j,m is a bijection, this completes the proof of (i).



INTEGERS: 24 (2024) 3

(ii) Let Sj,m(n) be the set of partitions of n in which part j occurs at least m

times. Clearly

sm(n) =

∞∑
j=0

j|Sj,m(n)|.

We denote by gj,m : Sa,m(n)→ P(n−mj) he transformation defined by gj,m(ν) = η,

where η is the partitions obtained from ν by removing m parts equal to j. Since

gj,m is a bijection, this completes the proof of (ii).

Example 1. Let n = 47,m = 3, j = 4, and r = 2.

(i) Given λ = (15, 14, 14, 2, 2) ∈ A2,4,3(47), we have

f2,4,3(λ) = f2,4,3(15, 14, 14, 2, 2) = (15, 14, 2, 2) ∈ P(47− 14) = P(33).

Conversely, for µ = (15, 14, 2, 2) ∈ P(33), we have

f−12,4,3(µ) = f−12,4,3(15, 14, 2, 2) = (15, 14, 14, 2, 2) ∈ A2,4,3(33 + 14) = A2,4,3(47).

(ii) Given ν = (13, 10, 10, 4, 4, 4, 4, 1, 1) ∈ S4,3(47), we have

g4,3(ν) = g4,3(13, 10, 10, 4, 4, 4, 4, 1, 1) = (13, 10, 10, 4, 1, 1) ∈ P(47− 12) = P(35).

Conversely, for η = (13, 10, 10, 4, 1, 1) ∈ P(35), we have

g−14,3(η) = g−14,3(13, 10, 10, 4, 1, 1)

= (13, 10, 10, 4, 4, 4, 4, 1, 1) ∈ S4,3(35 + 12) = S4,3(47).

Theorem 2 ([15, Corollary 4.2]). Let m,n, and r be nonnegative integers such that

0 ≤ r < m. Then

am,r(n) + 2
∞∑
k=1

(−1)kam,r(n− k2) =
∞∑
j=0

(mj + r)pe−o(n−mj − r). (1)

Proof. By Theorem 1, the left-hand side of Identity (1) equals

∞∑
j=0

(mj + r)

(
p(n−mj − r) + 2

∞∑
k=1

(−1)kp(n− k2 −mj − r)

)
.

Thus, to prove the theorem, it suffices to show combinatorially that for all n ≥ 0,

pe−o(n) = p(n) + 2

∞∑
k=1

(−1)kp(n− k2). (2)
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For n ≥ 1, let P∗(n) be the set of overpartitions of n that are not of the form

(a, a, . . . , a︸ ︷︷ ︸
a times

) or (a, a, . . . , a︸ ︷︷ ︸
a−1 times

).

In [2], Andrews defined an involution ϕA1 on P∗(n) that reverses the parity of the

length of overpartitions and thus proved combinatorially that

1 + 2

∞∑
n=1

(−1)nqn
2

=

∞∑
n=0

pe−o(n)qn. (3)

The restriction ϕA1
: P∗e(n)→ P∗o(n) is a bijection.

We define

PP(n) := {(α, β) ` n | α ∈ P, β ∈ P}

PP∗(n) := {(α, β) ` n | α ∈ P, β ∈ P∗}.

Moreover, set PP∗∗(n) := PP(n) \ PP∗(n).

The transformation (α, β) 7→ (α,ϕA1
(β)) is an involution on PP∗(n) that re-

verses the parity of `(β). Hence

|{(α, β) ∈PP(n) | β ∈ Pe}| − |{(α, β) ∈ PP(n) | β ∈ Po}| (4)

= |{(α, β) ∈ PP(n) | β ∈ P∗∗e }| − |{(α, β) ∈ PP(n | β ∈ P∗∗o }|.

Since pe−o(0) = 1 and, if k > 0, P∗∗(k) is either empty or consists of exactly two

“square” overpartitions of length congruent to k modulo 2, mapping (α, β) 7→ α,

we see that the right-hand side of Equation (4) equals

p(n) + 2

∞∑
k=1

(−1)kp(n− k2).

Next, we define the set

PQ(n) := {(α, η) ` n | α ∈ P, η ∈ Q}.

If n ≥ 1, we define an involution ψ on PQ(n) by

ψ(α, η) :=

{
(α \ (α1), η ∪ (α1) if α1 > η1,

(α ∪ (η1), η \ (η1) if α1 ≤ η1.

Clearly, ψ(α, η) reverses the parity of `(η). Thus, if n ≥ 1,

|{(α, η) ∈ PQ(n) | η ∈ Qe}| − |{(α, η) ∈ PQ(n) | η ∈ Qo}| = 0,
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and if n = 0 the difference is 1 since {(α, η) ∈ PQ(0)} = {(∅, ∅)}.
To prove combinatorially that Identity (2) holds, write (α, β) ∈ PP(n) as (α, β, β̃),

where β is the partition consisting of the overlined parts of β and β̃ is the partition

consisting of the nonoverlined parts of β. Fix a partition β̃ and define

PP β̃(n) := {(α, β) = (α, β, β̃) ∈ PP(n)},

the set of pairs (α, β) in PP(n) such that the nonoverlined parts in the overpar-

tition β are precisely the parts of β̃. Let (γ, ζ) := ψ(α, β) and define ξ to be the

overpartition with overlined parts precisely the parts of ζ and nonoverlined parts

precisely the parts of β̃. Then, (γ, ξ) ∈ PP β̃(n) and `(ξ) and `(β) have different

parity. Thus,

|{(α, β, β̃) ∈ PP β̃(n) | `(β) even}| − |{(α, β, β̃) ∈ PP β̃(n) | `(β) odd}|

= |{(∅, ∅, β̃) ∈ PP(n)}| = 1.

Summing over all β̃, we obtain

|{(α, β) ∈ PP(n) | `(β) even}| − |{(α, β) ∈ PP(n) | `(β) odd}|

= |{(∅, ∅, β̃) ∈ PP(n) | `(β̃) even}| − |{(∅, ∅, β̃) ∈ PP(n) | `(β̃) odd}|
= pe−o(n).

Example 2. For an example using Andrews’ involution ϕA1 , we refer the reader

to [2]. Here we illustrate the transformation ψ. Consider the pair (α, β) ∈ PP(94)

with α = (9, 9, 3, 3, 3, 1) and β = (9, 9, 9, 7, 7, 6, 6, 6, 2, 2, 1, 1, 1). Hence `(β) = 13,

β = (9, 6, 2, 1) and β̃ = (9, 9, 7, 7, 6, 6, 2, 1, 1). Since α1 = 9 ≤ β1 = 9,

ψ(α, β) = ((9, 9, 9, 3, 3, 3, 1), (6, 2, 1)).

Then ξ = (9, 9, 7, 7, 6, 6, 6, 2, 2, 1, 1, 1) and `(ξ) = 12. Thus, (α, β) “cancels” with

((9, 9, 9, 3, 3, 3, 1), ξ).

Now consider the pair (α, β) ∈ PP(106) with

α = (12, 9, 9, 3, 3, 3, 1) and β = (9, 9, 9, 7, 7, 6, 6, 6, 2, 2, 1, 1, 1).

Then, `(β) = 13, β = (9, 6, 2, 1) and β̃ = (9, 9, 7, 7, 6, 6, 2, 1, 1). Since α1 = 12 >

β1 = 9, we have

ψ(α, β) = ((9, 3, 3, 3, 1), (12, 9, 6, 2, 1)).

Then ξ = (12, 9, 9, 9, 7, 7, 6, 6, 6, 2, 2, 1, 1, 1) and `(ξ) = 14. Thus, (α, β) “cancels”

with ((9, 3, 3, 3, 1), ξ).



INTEGERS: 24 (2024) 6

Theorem 3 ([15, Corollary 4.4 (i)]). Let m and n be nonnegative integers. Then

sm(n) + 2

∞∑
j=1

(−1)jsm(n− j2) =

∞∑
j=0

jpe−o(n−mj). (5)

Proof. By Theorem 1, the left-hand side of Identity (5) equals

∞∑
j=0

j

p(n−mj) + 2

∞∑
j=1

(−1)jp(n− j2 −mj)

 .

Then, the combinatorial proof of Identity (2) provided in the proof of Theorem 2

completes the argument.

Theorem 4 ([15, Corollary 4.6]). Let m,n, and r be nonnegative integers such that

0 ≤ r < m. Then

am,r(n) + 2

∞∑
k=1

(−1)kam,r(n− 2k2) =

∞∑
j=0

(mj + r)qodd(n−mj − r). (6)

Proof. By Theorem 1, the left-hand side of Identity (6) equals

∞∑
j=0

(mj + r)

(
p(n−mj − r) + 2

∞∑
k=1

(−1)kp(n− 2k2 −mj − r)

)
.

Thus, to prove the theorem, it suffices to show combinatorially that for all n ≥ 0,

qodd(n) = p(n) + 2

∞∑
k=1

(−1)kp(n− 2k2). (7)

Doubling all parts in Andrews’ proof of Identity (3), shows combinatorially that

the right-hand side of Identity (7) equals

|{(α, β) ∈ PP(n) | β has even parts, β ∈ Pe}|
− |{(α, β) ∈ PP(n) | β has even parts, β ∈ Po}|.

In [10], Gupta constructed an involution ϕG on the set of partitions of n with at

least one even part or at least one repeated part. By construction, the parity of the

number of even parts in λ is different than the parity of the number of even parts

in ϕG(λ). This gives a combinatorial proof for

qodd(n) = pe(n, 2)− po(n, 2),
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where pe(n, 2) (respectively po(n, 2)) is the number of partitions of n with and even

(respectively odd) number of even parts.

If n ≥ 1, the involution ψ of Theorem 2 is well defined when restricted to pairs of

partitions in PQ(n) in which both partitions have only even parts. Thus, if n ≥ 1,

|{(α, η) ∈ PQ(n) | α, η have even parts, `(η) even}|
− |{(α, η) ∈ PQ(n) | α, η have even parts, `(η) odd}| = 0,

and if n = 0 the difference is 1 since {(α, η) ∈ PQ(0) | α, η have even parts} =

{(∅, ∅)}.
Next, we write (α, β) ∈ PP(n) where β has only even parts as (αo, αe, β, β̃),

where αe (respectively αo) is the partition consisting of the even (respectively odd)

parts of α and β, β̃ are as in the proof of Theorem 2. We fix a partition β̃ with even

parts and a partition αo with odd parts, and define

PP β̃,αo(n) := {(α, β) = (αo, αe, β, β̃) ∈ PP(n)}.

Using the involution ψ on (αe, β) and proceeding as in the proof of Theorem 2, we

obtain

|{(αo, αe, β, β̃) ∈ PP β̃,αo(n) | `(β) even}| − |{(αo, αe, β, β̃) ∈ PP β̃,αo(n) | `(β) odd}|

= |{(αo, ∅, ∅, β̃) ∈ PP(n)}| = 1.

Summing over all αo and β̃, we obtain

|{(α, β) ∈ PP(n) | β has even parts, `(β) even}|
− |{(α, β) ∈ PP(n) | β has even parts, `(β) odd}|

= |{(αo, β̃) ` n | αo has odd parts, β̃ has even parts, `(β̃) even}|

− |{(αo, β̃) ` n | αo has odd parts, β̃ has even parts, `(β̃) odd}|
= qodd(n).

The last equality above follows from Gupta’s involution.

For an example of the use of Gupta’s transformation, see [10].

Theorem 5 ([15, Corollary 4.7(i)]). Let m and n be nonnegative integers. Then

sm(n) + 2

∞∑
k=1

(−1)ksm(n− 2k2) =

∞∑
j=0

jqodd(n−mj).

Proof. By Theorem 1, the left-hand side of Identity (2) equals

∞∑
j=0

j

(
p(n−mj) + 2

∞∑
k=1

(−1)kp(n− 2k2 −mj)

)
.
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Then, the combinatorial proof of Identity (7) provided in the proof of Theorem 4

completes the argument.

Theorem 6 ([15, Corollary 4.9]). Let m,n, and r be nonnegative integers such that

0 ≤ r < m. Then

∞∑
k=0

(−1)k(k+1)/2am,r(n− k(k + 1)/2) =

∞∑
j=0

(mj + r)q

(
n−mj − r

2

)
. (8)

Proof. By Theorem 1, the left-hand side of Identity (8) equals

∞∑
j=0

(mj + r)

∞∑
k=0

(−1)k(k+1)/2p(n− k(k + 1)/2−mj − r).

Then, to prove the theorem, it suffices to prove combinatorially that for all n ≥ 0,

∞∑
k=0

(−1)k(k+1)/2p(n− k(k + 1)/2) = q
(n

2

)
. (9)

Denote by PED(n) the set of partitions of n with even parts distinct and odd

parts unrestricted. Let PED∗(n) be the subset of partitions in PED(n) not of the

form

(2a+ 1, 2a+ 1, . . . , 2a+ 1︸ ︷︷ ︸
a times

) or (2a− 1, 2a− 1, . . . , 2a− 1︸ ︷︷ ︸
a times

).

In [2], Andrews defined an involution ϕA2
on PED∗(n) that reverses the parity of

the length of partitions and thus proved combinatorially that

∞∑
n=0

(−1)j(j+1)/2qj(j+1)/2 =

∞∑
n=0

pede−o(n)qn,

where pede−o(n) := |PEDe(n)| − |PEDo(n)|. We define

PPED(n) := {(λ, µ) ` n | λ ∈ P, µ ∈ PED}
PPED∗(n) := {(λ, µ) ` n | λ ∈ P, µ ∈ PED∗}.

Moreover, set PPED∗∗(n) = PPED(n) \ PPED∗(n).

The mapping (α, µ) 7→ (α,ϕA2(µ)) is an involution of PPED∗(n) that reverses

the parity of `(µ). Then,

|{(λ, µ) ∈ PPED(n) | µ ∈ PPEDe}| − |{(λ, µ) ∈ PPED(n) | µ ∈ PPEDo}| (10)

= |{(λ, µ) ∈ PPED(n) | µ ∈ PPED∗∗e }| − |{(λ, µ) ∈ PPED(n) | µ ∈ PPED∗∗e }|.
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We have that pede−o(0) = 1 and, if k > 0, PPED(k) \ PPED∗(k) is either empty

of consists of exactly one partition with a parts, all equal to 2a + 1 or all equal to

2a − 1. In each case, a is congruent to k modulo 2. Hence, the right-hand side of

Equation (10) equals

∞∑
k=0

(−1)k(k+1)/2p(n− k(k + 1)/2).

We write (λ, µ) ∈ PPED(n) as (λe, λo, µe, µo), where λe (respectively λo) is the

partition consisting of the even (respectively odd) parts of λ; and µe, µo are defined

similarly. Note that µe is a partition with distinct even parts.

Fix λo and µo two partitions with odd parts. Define

PPEDλo,µo(n) := {(λ, µ) = (λe, λo, µe, µo) ∈ PPED(n)}.

Using the involution ψ of the proof of Theorem 2 on (λe, µe), we obtain

|{(λe, λo, µe, µo) ∈ PPEDλo,µo(n) | `(µe) even}|
− |{(λe, λo, µe, µo) ∈ PPEDλo,µo(n) | `(µe) odd}|

= |{(∅, λo, ∅, µo) ∈ PPEDλo,µo(n)}| = 1.

Summing over all λo and µo, we obtain

|{(λ, µ) ∈ PPED(n) | `(µ) even}|
− |{(λ, µ) ∈ PPED(n) | `(µ) odd}|

= |{(λo, µo) ` n | λo, µo have odd parts, `(µo) even}|
− |{(λo, µo) ` n | λo, µo have odd parts, `(µo) odd}|.

In [5, Proposition 4], Ballantine and Welch proved that

|{(α, β) ` n | α, β have odd parts, `(β) even}|
− |{(α, β) ` n | α, β have odd parts, `(β) odd}|

= qeven(n),

where qeven(n) is the number of distinct partitions with even parts. Hence, the

left-hand side of Equation (10) equals qeven(n).

Finally, the transformation that maps a partition λ ` n with distinct even parts

to the partition µ ` n/2 with µi = λi/2 for all 1 ≤ i ≤ `(λ) is a bijection and shows

that qeven(n) = q(n/2). This completes the proof.

Remark 1. The involution of [5, Proposition 4] is by no means simple and it is

illustrated with several examples in [5].
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Theorem 7 ([15, Corollary 4.10]). Let m and n be nonnegative integers. Then

∞∑
k=0

(−1)k(k+1)/2sm(n− k(k + 1)/2) =

∞∑
j=0

jq

(
n−mj

2

)
. (11)

Proof. By Theorem 1, the left-hand side of Identity (11) equals

∞∑
j=0

j

∞∑
k=1

(−1)k(k+1)/2p(n− k(k + 1)/2−mj).

Then, the combinatorial proof of Identity (9) provided in the proof of Theorem 6

completes the argument.

We remark a slight error in [14, Corollary 2.13] whose statement is the same as

Identity (11) if m | n. In [14, Corollary 2.13], the right-hand side of Identity (11)

is set to 0 if m - n. However, it is easily verified that, for example, for n = 10 and

m = 3 the left-hand side of Identity (11) equals 2.

The rank r(λ) of a partition λ is defined [8] as the largest part of λ minus the

number of parts in λ. Thus, r(λ) = λ1 − `(λ). Let

N (n) := {λ ` n | r(λ) ≥ 0}} and R(n) := {λ ` n | r(λ) > 0}},

and define N(n) = |N (n)| and R(n) = |R(n)|.

Theorem 8 ([15, Corollary 5.2]). Let m,n, and r be nonnegative integers such that

0 ≤ r < m. Then

(i)

∞∑
j=0

(−1)jam,r(n− j(3j + 1)/2) =

∞∑
j=0

(mj + r)N(n−mj − r)

(ii)

∞∑
j=1

(−1)j+1am,r(n− j(3j + 1)/2) =

∞∑
j=0

(mj + r)R(n−mj − r).

Proof. As was the case in Theorems 2 - 7, Theorem 1 implies that it is enough to

prove combinatorially that for all n ≥ 0 we have

(i∗)

∞∑
j=0

(−1)jp(n− j(3j + 1)/2) = N(n)

(ii∗)

∞∑
j=1

(−1)j+1p(n− j(3j + 1)/2) = R(n).
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Since p(n) − N(n) = |{λ ` n | r(λ) < 0}| and, by conjugation, the number of

partitions of n with negative rank equals the number of partitions of n with positive

rank, statements (i∗) and (ii∗) are equivalent.

For j ∈ Z, set a(j) := j(3j + 1)/2. In [7], Bressoud and Zeilberger constructed

an involution

ϕBZ :
⋃
j∈2Z
P (n− a(j))→

⋃
j∈2Z+1

P (n− a(j))

as follows. Let λ ∈ P(n− a(j)) and define ϕBZ(λ) to be

(`(λ) + 3j − 1, λ1 − 1, . . . , λ`(λ) − 1) ∈ P(n− a(j − 1)) if `(λ) + 3j ≥ λ1,

(λ2 + 1, . . . , λ`(λ) + 1, 1λ1−3j−`(λ)−1) ∈ P(n− a(j + 1)) if `(λ) + 3j < λ1,

where 1i means that there are i parts equal to 1 in the partition. Since R(n) =

{λ ∈ P(n− a(0)) | `(λ) < λ1}, restricting ϕBZ we obtain an involution

ϕBZ : R(n) ∪
⋃

j≥2 even

P (n− a(j))→
⋃

j≥1 odd

P (n− a(j)) .

This completes the combinatorial proof of the theorem.

Example 3. Let n = 20 and j = 0. Then a(0) = 0 and λ = (10, 8, 2) ∈ R(20) =

P(20− a(0)) has `(λ) = 3 and λ1 = 10. Thus,

ϕBZ(10, 8, 2) = (9, 3, 16) ∈ P(20− a(1)) = P(20− 2) = P(18).

Let n = 20 and j = 2. Then, a(2) = 7 and λ = (4, 3, 3, 2, 1) ∈ P(13) =

P(20− a(2)) has `(λ) = 5 and λ1 = 4. Thus `(λ) + 3j ≥ λ1 and

ϕBZ(4, 3, 3, 2, 1) = (5 + 6− 1, 3, 2, 2, 1) = (10, 3, 2, 2, 1) ∈ P(18) = P(20− a(1)).

Theorem 9 ([15, Corollary 5.3]). Let m and n be nonnegative integers. Then

(i)

∞∑
j=0

(−1)jsm(n− j(3j + 1)/2) =

∞∑
j=0

jN(n−mj)

(ii)

∞∑
j=1

(−1)j+1sm(n− j(3j + 1)/2) =

∞∑
j=0

jR(n−mj).

Proof. Theorem 1 implies that it is enough to prove Identities (i∗) and (ii∗) given

in the proof of Theorem 8.
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Garden of Eden partitions we introduced by Hopkins and Sellers in [11] in con-

nection to the game Bulgarian solitaire. They are partitions λ with all parts less

than `(λ)−1. Hence they are precisely the partitions with rank at most −2. Denote

by G(n) the number of Garden of Eden partitions of n.

Theorem 10 ([15, Corollaries 6.2 and 6.3]). Let m,n, and r be nonnegative integers

such that 0 ≤ r < m. Then

(i)

∞∑
j=0

(−1)j+1am,r(n− 3j(j + 1)/2) =

∞∑
j=0

(mj + r)G(n−mj − r)

(ii)

∞∑
j=1

(−1)j+1sm(n− 3j(j + 1)/2) =

∞∑
j=0

jG(n−mj).

Proof. Theorem 1 implies that to prove both identities is suffices to show that for

all n ≥ 0,

G(n) =
∑
j≥1

(−1)j+1p(n− 3j(j + 1)/2).

A combinatorial proof of this identity is given by Hopkins and Sellers in [11]. They

give an involution similar to Bressoud and Zeilberger’s involution ϕBZ described in

the proof of Theorem 8.

Given a partitions λ, we denote by mλ(1) the number of parts equal to 1 in λ

and by w(λ) the number of parts greater than mλ(1) in λ. Then the crank cr(λ)

of λ is defined [3] as

cr(λ) :=

{
λ1 if mλ(1) = 0,

w(λ)−mλ(1) if mλ(1) > 0.

Let

C(n) := {λ ` n | cr(λ) ≥ 0}},
D(n) := {λ ` n | cr(λ) > 0}},

and define C(n) = |C(n)| and D(n) = |D(n)|.

Theorem 11 ([15, Corollary 7.2]). Let m,n, and r be nonnegative integers such

that 0 ≤ r < m. Then

(i)

∞∑
j=0

(−1)jam,r(n− j(j + 1)/2) =

∞∑
j=0

(mj + r)C(n−mj − r)

(ii)

∞∑
j=1

(−1)j+1am,r(n− j(j + 1)/2) =

∞∑
j=0

(mj + r)D(n−mj − r).
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Proof. Theorem 1 implies that it is enough to prove combinatorially that for all

n ≥ 0 we have

(i∗∗)

∞∑
j=0

(−1)jp(n− j(j + 1)/2) = C(n)

(ii∗∗)

∞∑
j=1

(−1)j+1p(n− j(j + 1)/2) = D(n).

Berkovich and Gravan [6] proved combinatorially that D(n) is also equal to the

number of partitions of n with negative crank, i.e., p(n) − C(n). Thus statements

(i∗∗) and (ii∗∗) are equivalent.

Given a partition λ, the smallest positive integer that is not a part of λ is called

the minimal excludant of λ and is denoted by mex(λ) (see [9, 4]). For example,

mex(7, 7, 4, 2, 1, 1) = 3.

If n, j are nonnegative integers with 0 < j(j+ 1)/2 ≤ n, and λ ∈ P(n− j(j+ 1)/2),

the transformation that adds parts 1, 2, . . . , j to λ is a bijection from P(n−j(j+1)/2)

to the set of partitions λ ∈ P(n) with mex(λ) > j. This shows combinatorially that,

for n, j ≥ 0, we have

p

(
n− j(j + 1)

2

)
− p

(
n− (j + 1)(j + 2)

2

)
= |{λ ∈ P(n) | mex(λ) = j + 1}|.

Therefore, we have a combinatorial proof that∑
j≥0

(−1)jp

(
n− j(j + 1)

2

)
= |{λ ∈ P(n) | mex(λ) odd}|.

Hopkins, Sellers, and Yee [12], and also Konan [13], proved combinatorially that

C(n) = |{λ ∈ P(n) | mex(λ) odd}|.

This completes the combinatorial proof of Theorem 11.

Theorem 12 ([15, Corollary 7.3]). Let m and n be nonnegative integers. Then

(i)

∞∑
j=0

(−1)jsm(n− j(j + 1)/2) =

∞∑
j=0

jC(n−mj)

(ii)

∞∑
j=1

(−1)j+1sm(n− j(j + 1)/2) =

∞∑
j=0

jD(n−mj).

Proof. Theorem 1 implies that it is enough to prove Identities (i∗∗) and (ii∗∗) given

in the proof of Theorem 11.
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