

A REMARK ON SINGULAR DUALS OF MOEBIUS MAPS

Fritz Schweiger Department of Mathematics, Universität Salzburg, Salzburg, Austria fritz.schweiger@plus.sbg.ac.at

Received: 7/19/23, Accepted: 1/29/24, Published: 2/19/24

Abstract

Let (B, T) be a fibred map. A standard method for the determination of the density of an invariant measure is provided by the theory of dual maps, a generalization of backward continued fractions. A dual map $(B^{\#}, T^{\#})$ is called a natural dual if there is a differentiable map M with the property $M \circ T = T^{\#} \circ M$. In this paper we present the surprising result of a family of fibred maps (B, T) such that the set $B^{\#}$ of every natural dual is a one-point set.

1. Introduction

The search for invariant measures has seen a lot of publications, starting with [3] and through the years that followed (see, for example, [1] and [2]).

Let $T: B \to B$ be a map on the interval B = [a, b] subject to the following conditions. There is a partition $a = x_0 < x_1 < ... < x_N = b$ such that the map Tis injective on every interval $[x_j, x_{j+1}]$ and $T[x_j, x_{j+1}] = B$, $0 \le j < N$ (a special case of a *fibred system*; see [7]). The inverse function $V_j: B \to [x_j, x_{j+1}]$ is called an *inverse branch* of T.

If there is a matrix

$$V_k = \left(\begin{array}{cc} a_{00}^k & a_{01}^k \\ a_{10}^k & a_{11}^k \end{array}\right)$$

which corresponds to a map

$$V_k x = \frac{a_{10}^k + a_{11}^k x}{a_{00}^k + a_{01}^k x},$$

then we call it a *Moebius map* (see [6]).

A Moebius map $T^{\#}: B^{\#} \to B^{\#}, B^{\#} := [a^{\#}, b^{\#}]$, is called a *dual map* if its inverse branches are given by the transposed matrices $V_k^{\#}$, i.e.,

$$V_k^{\#} y = \frac{a_{01}^k + a_{11}^k y}{a_{00}^k + a_{10}^k y}.$$

DOI: 10.5281/zenodo.10680366

Then

$$h(x) = \int_{B^{\#}} \frac{dy}{(1+xy)^2}$$

is the density of an invariant measure for (B,T) (see [7], [6]). If there exists a symmetric matrix M with the associated map

$$M(t) = \frac{B + Dt}{A + Bt}$$

such that

$$M: B \to B^{\#} \text{ and } MV_k = V_k^{\#} M$$

for all k, then we call it a *natural dual*. If $B^{\#}$ shrinks to one point then the dual can be seen as a natural dual with a singular matrix M. We call it a *singular dual* (see [6] and [5]). If no suitable non-singular matrix M exists we call the dual an *exceptional dual*.

In this paper we consider Moebius maps which are constructed in the following way. Let $T : [0,1] \to [0,1]$ be a Moebius map with inverse branches defined by the matrices

$$V_{\alpha} = \begin{pmatrix} 1 & 2\alpha - 1 \\ 0 & \alpha \end{pmatrix}, \ 0 < \alpha \le 1, \ V_{\beta} = \begin{pmatrix} 1 & 1 - 2\beta \\ 1 & -\beta \end{pmatrix}, \ \beta < 1$$

and $S; [0,1] \rightarrow [0,1]$ the Moebius maps with inverse branches defined by the matrices

$$V_{\gamma} = \begin{pmatrix} 2 & \gamma - 1 \\ 1 & -1 \end{pmatrix}, -1 < \gamma, V_{\delta} = \begin{pmatrix} 2 & \delta - 1 \\ 1 & -\delta \end{pmatrix}, 0 \le \delta.$$

Then we investigate the map defined by $(S \circ T)x = S(Tx)$. Its inverse branches are given by the following matrices:

$$V_{\alpha\gamma} = V_{\alpha}V_{\gamma} = \begin{pmatrix} 2\alpha + 1 & -2\alpha + \gamma \\ \alpha & -\alpha \end{pmatrix}; V_{\alpha\delta} = V_{\alpha}V_{\delta} = \begin{pmatrix} 2\alpha + 1 & 2\alpha\delta - 1 \\ \alpha & \alpha\delta \end{pmatrix};$$
$$V_{\beta\gamma} = V_{\beta}V_{\gamma} = \begin{pmatrix} 3 - 2\beta & 2\beta + \gamma - 2 \\ 2 - \beta & \beta + \gamma - 1 \end{pmatrix}; V_{\beta\delta} = V_{\beta}V_{\delta} = \begin{pmatrix} 3 - 2\beta & 2\delta - 2\beta\delta - 1 \\ 2 - \beta & \delta - \beta\delta - 1 \end{pmatrix}.$$

If we suppose that our given system $(B, S \circ T)$ has a natural dual $(B^{\#}, (S \circ T)^{\#})$, then the four branches $V_{\alpha\gamma}^{\#}, V_{\alpha\delta}^{\#}, V_{\beta\gamma}^{\#}$, and $V_{\beta,\delta}^{\#}$ follow the same order as the four branches of $S \circ T$ if the map $M : B \to B^{\#}$ is increasing. They follow the reverse order if the map $M : B \to B^{\#}$ is decreasing.

We denote the fixed point of $V_{\beta\gamma}^{\#}$, which is one endpoint of $B^{\#}$, by η . Let $\xi = V_{\alpha\gamma}^{\#}\eta$ be the other endpoint of $B^{\#}$. The map $(S \circ T)^{\#}$ further satisfies the following equations:

$$V^{\#}_{\beta\gamma}\xi = V^{\#}_{\beta\delta}\xi, \quad V^{\#}_{\alpha\delta}\xi = V^{\#}_{\alpha\gamma}\xi, \quad \text{and} \ V^{\#}_{\beta\delta}\eta = V^{\#}_{\alpha\delta}\eta.$$

The main result of this paper is the following result: if the given system $(B, (S \circ T))$ has a natural dual then it is a singular dual.

2. The Main Result

Lemma 1. The equation $\frac{-2+2\beta+\gamma+(-1+\beta+\gamma)\eta}{3-2\beta+(2-\beta)} = \eta$ has the solutions $\eta = -1$ and $\eta = \frac{-2+2\beta+\gamma}{2-\beta}$.

Proof. It is easy to see that $\eta = -1$ and $\eta = \frac{-2+2\beta+\gamma}{2-\beta}$ are the solutions of the corresponding quadratic equation.

Lemma 2. The case $\eta = -1$ cannot occur.

Proof. The equation $V_{\beta\delta}^{\#}\eta = V_{\alpha\delta}^{\#}\eta$ together with $\eta = -1$ leads to

$$\delta = \frac{-1 + \alpha \delta}{1 + \alpha}.$$

Then $\delta = -1$, which is not an allowed value for δ .

Lemma 3. The central equations

$$\alpha + \alpha\delta + \delta = \beta + \gamma + \beta\delta$$

and

$$\alpha^{2}\gamma + \alpha^{2}\gamma\delta + 2\alpha + \beta + \beta\gamma + 2\alpha^{2} + 2\alpha^{2}\delta + 4\alpha\delta + 2\alpha\gamma\delta$$
$$= 2 + \alpha\gamma^{2} + 2\gamma + 2\alpha\beta + \alpha\gamma + \alpha\beta\gamma + \alpha\beta\gamma\delta + 2\alpha\beta\delta$$

hold.

Proof. We start with the proof of the first central equation. The equation $V_{\beta\gamma}^{\#}\xi = V_{\beta\delta}^{\#}\xi$ shows that

$$\xi = \frac{1 - 2\beta + \gamma + 2\delta - \beta\delta}{\beta + \gamma - \delta + \beta\delta}$$

The equation $V^{\#}_{\alpha\delta}\xi = V^{\#}_{\alpha\gamma}\xi$ gives the representation

$$\xi = \frac{1 - 2\alpha + \gamma - 2\alpha\delta}{\alpha + \alpha\delta}$$

If we compare the two representations of ξ then there is value λ such that

$$1 - 2\beta + \gamma + 2\delta - \beta\delta = \lambda(1 - 2\alpha + \gamma - 2\alpha\delta)$$

and

$$\beta + \gamma - \delta + \beta \delta = \lambda(\alpha + \alpha \delta).$$

We multiply the second equation by 2 and add it to the first equation. Then

$$1 + \gamma = \lambda(1 + \gamma)$$

Hence $\lambda = 1$ and the central equation can be deduced.

The proof of the second central equation follows. From $\eta = \frac{-2+2\beta+\gamma}{2-\beta}$ and the equation $\xi = V_{\alpha\gamma}^{\#}\eta$ we calculate

$$\xi = \frac{-2\alpha + 2\gamma + \alpha\gamma - \beta\gamma}{2\alpha + 2 - \beta + \alpha\gamma}.$$

Then we have

$$\xi = \frac{1 - 2\alpha + \gamma - 2\alpha\delta}{\alpha + \alpha\delta} = \frac{-2\alpha + 2\gamma - \alpha\gamma - \beta\gamma}{2\alpha + 2 - \beta + \alpha\gamma},$$

A tedious calculation leads to the second central equation.

It easy to write down solutions for the central equations. However, in all cases we find $\eta = \xi$. This leads to our main theorem.

Theorem 1. If $(B^{\#}, (S \circ T)^{\#})$ is a natural dual of $(B, S \circ T)$ then the dual map $(B^{\#}, (S \circ T)^{\#})$ is a singular dual.

Proof. We will reduce the second central equation to a shorter form by using the first central equation. From

$$\begin{aligned} \alpha^2 \gamma + \alpha^2 \gamma \delta + 2\alpha + \beta + \beta \gamma + 2\alpha^2 + 2\alpha^2 \delta + 4\alpha \delta + 2\alpha \gamma \delta \\ &= \alpha^2 \gamma + \alpha^2 \gamma \delta + 2\alpha + \beta + \beta \gamma + 2\alpha (\alpha + \delta + \alpha \delta) + 2\alpha \delta + 2\alpha \gamma \delta \\ &= \alpha^2 \gamma + \alpha^2 \gamma \delta + 2\alpha + \beta + \beta \gamma + 2\alpha (\beta + \gamma + \beta \delta) + 2\alpha \delta + 2\alpha \gamma \delta \\ &= 2 + \alpha \gamma^2 + 2\gamma + 2\alpha \beta + \alpha \gamma + \alpha \beta \gamma + \alpha \beta \gamma \delta + 2\alpha \beta \delta \end{aligned}$$

we deduce

$$\alpha^2\gamma + \alpha^2\gamma\delta + 2\alpha\gamma\delta + 2\alpha + \beta + \beta\gamma + \alpha\gamma + 2\alpha\delta = 2 + \alpha^2\gamma + 2\gamma + \alpha\beta\gamma\delta + \alpha\beta\gamma.$$

Then

$$\alpha^{2}\gamma + \alpha^{2}\gamma\delta + 2\alpha\gamma\delta + 2\alpha + \beta + \beta\gamma + \alpha\gamma + 2\alpha\delta$$

= $\alpha\gamma(\alpha + \alpha\delta + \delta) + \alpha\gamma\delta + +2\alpha + \beta + \beta\gamma + \alpha\gamma + 2\alpha\delta$
= $\alpha\gamma(\beta + \gamma + \beta\delta) + \alpha\gamma\delta + +2\alpha + \beta + \beta\gamma + \alpha\gamma + 2\alpha\delta$
= $2 + \alpha^{2}\gamma + 2\gamma + 2\alpha\beta + \alpha\gamma + \alpha\beta\gamma\delta + \alpha\beta\gamma + 2\alpha\beta\delta$.

Then we obtain our final result:

$$\beta + \alpha\gamma\delta + 2\alpha + \beta\gamma + \alpha\gamma + 2\alpha\delta = 2 + 2\gamma.$$

Since

$$\eta = \frac{-2+2\beta+\gamma}{2-\beta} = -1 + \frac{\beta+\gamma}{2-\beta}$$

and

$$\xi = \frac{1 - 2\alpha + \gamma - 2\alpha\delta}{\alpha + \alpha\delta} = -1 + \frac{1 - \alpha + \gamma - \alpha\delta}{\alpha + \alpha\delta},$$

we see that the equation $\xi = \eta$ is equivalent to

$$\beta + \alpha\gamma\delta + 2\alpha + \beta\gamma + \alpha\gamma + 2\alpha\delta = 2 + 2\gamma.$$

Remark 1. The same result clearly applies to $T \circ S$. If μ denotes the invariant measure for $S \circ T$, then ν defined as $\nu(E) = \mu(T^{-1}E)$ is invariant for $T \circ S$.

Example 1. Let $\alpha = 1, \beta = 0, \gamma = 2, \delta = \frac{1}{2}$. Then we have

$$Tx = \begin{cases} \frac{x}{1-x}, & 0 \le x < \frac{1}{2} \\ \frac{1-x}{x}, & \frac{1}{2} \le x \le 1, \end{cases} \quad \text{and} \quad Sx = \begin{cases} \frac{1-2x}{1+x}, & 0 \le x < \frac{1}{2} \\ \frac{-2+4x}{1+x}, & \frac{1}{2} \le x \le 1. \end{cases}$$

Then $S \circ T$ has a singular dual on $B^{\#} = \{0\}$. The density of the invariant measure for $S \circ T$ is h(x) = 1. The map $T \circ S$ also has a singular dual on $B^{\#} = \{1\}$ and the density of the invariant measure is $h(x) = \frac{1}{(1+x)^2}$.

Remark 2. Exceptional duals can be found for the configuration $V_{\beta\gamma}^{\#}$, $V_{\alpha\gamma}^{\#}$, $V_{\alpha\delta}^{\#}$, and $V_{\beta\delta}^{\#}$ or its reverse order. Again η is given by $V_{\beta\gamma}^{\#}\eta = \eta$, but $\xi = V_{\beta\delta}^{\#}\eta$.

Example 2. (1) If $\eta = -1$, an example is given by $\alpha = 1$, $\beta = \gamma = \delta = 0$ and $B^{\#} = [-1,0]$. (2) If $\eta = \frac{-2+2\beta+\gamma}{2-\beta}$, an example is $\alpha = \frac{1}{2}$, $\beta = 0$, $\gamma = \delta = 2$ and $B^{\#} = [0,1]$.

3. A Further Result

One can try the following approach which is similar to the *backward conditions* in [4]. Let the matrix

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

satisfy the conditions

$$MV_{\alpha\gamma} = V_{\gamma\alpha}^{\#}M, \ MV_{\alpha\delta} = V_{\delta\alpha}^{\#}M, \ MV_{\beta\gamma} = V_{\gamma\beta}^{\#}M, \ MV_{\beta\delta} = V_{\delta\beta}^{\#}M.$$

Then we obtain the following result.

Theorem 2. If $B^{\#} = MB$, then $h(x) = \int_{B^{\#}} \frac{dy}{(1+xy)^2}$ is the density of the invariant measure for $S \circ T$. Furthermore h = h(x) is the density for the map T and for the map S.

INTEGERS: 24 (2024)

Proof. The first assertion is more or less obvious. The second assertion is more interesting. The matrix

$$M_1 = \left(\begin{array}{cc} a_1 & b_1 \\ b_1 & d_1 \end{array}\right),$$

which satisfies

$$M_1 V_{\alpha} = V_{\alpha}^{\#} M_1, \ M_1 V_{\beta} = V_{\beta}^{\#} M_1,$$

has the entries $a_1 = 1 - \alpha$, $b_1 = 2\alpha - 1$, and $d_1 = 2 - 3\alpha - \beta$.

From the equation $MV_{\alpha\gamma} = V_{\gamma\alpha}^{\#}M$, we find $a = 1 - \alpha$, $b = 2\alpha - 1$, and $d = (-2\alpha + \gamma)a - (\alpha + 2)b$. From $MV_{\beta\gamma} = V_{\gamma\beta}^{\#}M$, we find $a(2 - 2\beta - \gamma) = b(\beta - 2)$ and hence $\gamma - \alpha\gamma = 2\alpha - \beta$. This gives $d = 2 - 3\alpha - \beta$ and $M = M_1$.

To prove $M = M_2$, we apply the map N(x) = 1 - x which exchanges the maps T and S.

References

- C. Kraaikamp and N. Langeveld, Invariant measures for continued fraction algorithms with finitely many digits, J. Math. Anal. Appl. 454 (2017), 106-126.
- [2] O. Jenkinson and M. Pollicott, Ergodic properties of the Bolyai-Rényi expansion, Indag. Math. (N.S.) 11 (2000), 399–418
- [3] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Hungar. 8 (1957), 477–493
- [4] F. Schweiger, Invariant densities for composed piecewise fractional linear maps, Monats. Math. 194 (2021), 181-192
- [5] F. Schweiger, Invariant measures of piecewise fractional linear maps and piecewise quadratic maps, Int. J. Number Theory 14 (2018), 1559-1572
- [6] F. Schweiger, Differentiable equivalence of fractional linear maps, IMS Lecture Notes Monogr. Ser. 48 (2006), 237-247
- [7] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford University Press, New York, 1995