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Abstract

Let (B, T ) be a fibred map. A standard method for the determination of the density
of an invariant measure is provided by the theory of dual maps, a generalization
of backward continued fractions. A dual map (B#, T#) is called a natural dual if
there is a differentiable map M with the property M ◦ T = T# ◦M . In this paper
we present the surprising result of a family of fibred maps (B, T ) such that the set
B# of every natural dual is a one-point set.

1. Introduction

The search for invariant measures has seen a lot of publications, starting with [3]

and through the years that followed (see, for example, [1] and [2]).

Let T : B → B be a map on the interval B = [a, b] subject to the following

conditions. There is a partition a = x0 < x1 < ... < xN = b such that the map T

is injective on every interval [xj , xj+1] and T [xj , xj+1] = B, , 0 ≤ j < N (a special

case of a fibred system; see [7]). The inverse function Vj : B → [xj , xj+1] is called

an inverse branch of T .

If there is a matrix

Vk =

(
ak00 ak01
ak10 ak11

)
which corresponds to a map

Vkx =
ak10 + ak11x

ak00 + ak01x
,

then we call it a Moebius map (see [6]).

A Moebius map T# : B# → B#, B# := [a#, b#], is called a dual map if its

inverse branches are given by the transposed matrices V #
k , i.e.,

V #
k y =

ak01 + ak11y

ak00 + ak10y
.
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Then

h(x) =

∫
B#

dy

(1 + xy)2

is the density of an invariant measure for (B, T ) (see [7], [6]). If there exists a

symmetric matrix M with the associated map

M(t) =
B +Dt

A+Bt

such that

M : B → B# andMVk = V #
k M

for all k, then we call it a natural dual. If B# shrinks to one point then the dual

can be seen as a natural dual with a singular matrix M . We call it a singular dual

(see [6] and [5]). If no suitable non-singular matrix M exists we call the dual an

exceptional dual.

In this paper we consider Moebius maps which are constructed in the following

way. Let T : [0, 1]→ [0, 1] be a Moebius map with inverse branches defined by the

matrices

Vα =

(
1 2α− 1
0 α

)
, 0 < α ≤ 1, Vβ =

(
1 1− 2β
1 −β

)
, β < 1

and S; [0, 1]→ [0, 1] the Moebius maps with inverse branches defined by the matrices

Vγ =

(
2 γ − 1
1 −1

)
, −1 < γ, Vδ =

(
2 δ − 1
1 −δ

)
, 0 ≤ δ.

Then we investigate the map defined by (S ◦T )x = S(Tx). Its inverse branches are

given by the following matrices:

Vαγ = VαVγ =

(
2α+ 1 −2α+ γ
α −α

)
; Vαδ = VαVδ =

(
2α+ 1 2αδ − 1
α αδ

)
;

Vβγ = VβVγ =

(
3− 2β 2β + γ − 2
2− β β + γ − 1

)
; Vβδ = VβVδ =

(
3− 2β 2δ − 2βδ − 1
2− β δ − βδ − 1

)
.

If we suppose that our given system (B,S ◦T ) has a natural dual (B#, (S ◦T )#),

then the four branches V #
αγ , V #

αδ, V
#
βγ , and V #

β,δ follow the same order as the four

branches of S ◦ T if the map M : B → B# is increasing. They follow the reverse

order if the map M : B → B# is decreasing.

We denote the fixed point of V #
βγ , which is one endpoint of B#, by η. Let

ξ = V #
αγη be the other endpoint of B#. The map (S ◦ T )# further satisfies the

following equations:

V #
βγξ = V #

βδξ, V #
αδξ = V #

αγξ, and V #
βδη = V #

αδη.

The main result of this paper is the following result: if the given system (B, (S ◦T ))

has a natural dual then it is a singular dual.
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2. The Main Result

Lemma 1. The equation −2+2β+γ+(−1+β+γ)η
3−2β+(2−β) = η has the solutions η = −1 and

η = −2+2β+γ
2−β .

Proof. It is easy to see that η = −1 and η = −2+2β+γ
2−β are the solutions of the

corresponding quadratic equation.

Lemma 2. The case η = −1 cannot occur.

Proof. The equation V #
βδη = V #

αδη together with η = −1 leads to

δ =
−1 + αδ

1 + α
.

Then δ = −1, which is not an allowed value for δ.

Lemma 3. The central equations

α+ αδ + δ = β + γ + βδ

and

α2γ + α2γδ + 2α+ β + βγ + 2α2 + 2α2δ + 4αδ + 2αγδ

= 2 + αγ2 + 2γ + 2αβ + αγ + αβγ + αβγδ + 2αβδ

hold.

Proof. We start with the proof of the first central equation. The equation V #
βγξ =

V #
βδξ shows that

ξ =
1− 2β + γ + 2δ − βδ

β + γ − δ + βδ
.

The equation V #
αδξ = V #

αγξ gives the representation

ξ =
1− 2α+ γ − 2αδ

α+ αδ
.

If we compare the two representations of ξ then there is value λ such that

1− 2β + γ + 2δ − βδ = λ(1− 2α+ γ − 2αδ)

and

β + γ − δ + βδ = λ(α+ αδ).

We multiply the second equation by 2 and add it to the first equation. Then

1 + γ = λ(1 + γ).
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Hence λ = 1 and the central equation can be deduced.

The proof of the second central equation follows. From η = −2+2β+γ
2−β and the

equation ξ = V #
αγη we calculate

ξ =
−2α+ 2γ + αγ − βγ

2α+ 2− β + αγ
.

Then we have

ξ =
1− 2α+ γ − 2αδ

α+ αδ
=
−2α+ 2γ − αγ − βγ

2α+ 2− β + αγ
.

A tedious calculation leads to the second central equation.

It easy to write down solutions for the central equations. However, in all cases

we find η = ξ. This leads to our main theorem.

Theorem 1. If (B#, (S ◦ T )#) is a natural dual of (B,S ◦ T ) then the dual map

(B#, (S ◦ T )#) is a singular dual.

Proof. We will reduce the second central equation to a shorter form by using the

first central equation. From

α2γ + α2γδ + 2α+ β + βγ + 2α2 + 2α2δ + 4αδ + 2αγδ

= α2γ + α2γδ + 2α+ β + βγ + 2α(α+ δ + αδ) + 2αδ + 2αγδ

= α2γ + α2γδ + 2α+ β + βγ + 2α(β + γ + βδ) + 2αδ + 2αγδ

= 2 + αγ2 + 2γ + 2αβ + αγ + αβγ + αβγδ + 2αβδ

we deduce

α2γ + α2γδ + 2αγδ + 2α+ β + βγ + αγ + 2αδ = 2 + α2γ + 2γ + αβγδ + αβγ.

Then

α2γ + α2γδ + 2αγδ + 2α+ β + βγ + αγ + 2αδ

= αγ(α+ αδ + δ) + αγδ + +2α+ β + βγ + αγ + 2αδ

= αγ(β + γ + βδ) + αγδ + +2α+ β + βγ + αγ + 2αδ

= 2 + α2γ + 2γ + 2αβ + αγ + αβγδ + αβγ + 2αβδ.

Then we obtain our final result:

β + αγδ + 2α+ βγ + αγ + 2αδ = 2 + 2γ.

Since

η =
−2 + 2β + γ

2− β
= −1 +

β + γ

2− β
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and

ξ =
1− 2α+ γ − 2αδ

α+ αδ
= −1 +

1− α+ γ − αδ
α+ αδ

,

we see that the equation ξ = η is equivalent to

β + αγδ + 2α+ βγ + αγ + 2αδ = 2 + 2γ.

Remark 1. The same result clearly applies to T ◦ S. If µ denotes the invariant

measure for S ◦ T , then ν defined as ν(E) = µ(T−1E) is invariant for T ◦ S.

Example 1. Let α = 1, β = 0, γ = 2 , δ = 1
2 . Then we have

Tx =


x

1− x
, 0 ≤ x < 1

2

1− x
x

, 1
2 ≤ x ≤ 1,

and Sx =


1− 2x

1 + x
, 0 ≤ x < 1

2

−2 + 4x

1 + x
, 1

2 ≤ x ≤ 1.

Then S ◦ T has a singular dual on B# = {0}. The density of the invariant measure

for S ◦T is h(x) = 1. The map T ◦S also has a singular dual on B# = {1} and the

density of the invariant measure is h(x) = 1
(1+x)2 .

Remark 2. Exceptional duals can be found for the configuration V #
βγ , V #

αγ , V #
αδ ,

and V #
βδ or its reverse order. Again η is given by V #

βγη = η, but ξ = V #
βδη.

Example 2. (1) If η = −1, an example is given by α = 1, β = γ = δ = 0 and

B# = [−1, 0]. (2) If η = −2+2β+γ
2−β , an example is α = 1

2 , β = 0, γ = δ = 2 and

B# = [0, 1].

3. A Further Result

One can try the following approach which is similar to the backward conditions in

[4]. Let the matrix

M =

(
a b
c d

)
satisfy the conditions

MVαγ = V #
γαM, MVαδ = V #

δαM,MVβγ = V #
γβM, MVβδ = V #

δβM.

Then we obtain the following result.

Theorem 2. If B# = MB, then h(x) =
∫
B#

dy
(1+xy)2 is the density of the invariant

measure for S ◦ T . Furthermore h = h(x) is the density for the map T and for the

map S.
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Proof. The first assertion is more or less obvious. The second assertion is more

interesting. The matrix

M1 =

(
a1 b1
b1 d1

)
,

which satisfies

M1Vα = V #
α M1, M1Vβ = V #

β M1,

has the entries a1 = 1− α, b1 = 2α− 1, and d1 = 2− 3α− β.

From the equation MVαγ = V #
γαM, we find a = 1 − α , b = 2α − 1, and d =

(−2α+ γ)a− (α+ 2)b. From MVβγ = V #
γβM, we find a(2− 2β − γ) = b(β − 2) and

hence γ − αγ = 2α− β. This gives d = 2− 3α− β and M = M1.

To prove M = M2, we apply the map N(x) = 1 − x which exchanges the maps

T and S.
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