A REMARK ON SINGULAR DUALS OF MOEBIUS MAPS

Fritz Schweiger
Department of Mathematics, Universität Salzburg, Salzburg, Austria
fritz.schweiger@plus.sbg.ac.at

Received: 7/19/23, Accepted: 1/29/24, Published: 2/19/24

Abstract

Let (B, T) be a fibred map. A standard method for the determination of the density of an invariant measure is provided by the theory of dual maps, a generalization of backward continued fractions. A dual map $\left(B^{\#}, T^{\#}\right)$ is called a natural dual if there is a differentiable map M with the property $M \circ T=T^{\#} \circ M$. In this paper we present the surprising result of a family of fibred maps (B, T) such that the set $B^{\#}$ of every natural dual is a one-point set.

1. Introduction

The search for invariant measures has seen a lot of publications, starting with [3] and through the years that followed (see, for example, [1] and [2]).

Let $T: B \rightarrow B$ be a map on the interval $B=[a, b]$ subject to the following conditions. There is a partition $a=x_{0}<x_{1}<\ldots<x_{N}=b$ such that the map T is injective on every interval $\left[x_{j}, x_{j+1}\right]$ and $T\left[x_{j}, x_{j+1}\right]=B,, 0 \leq j<N$ (a special case of a fibred system; see [7]). The inverse function $V_{j}: B \rightarrow\left[x_{j}, x_{j+1}\right]$ is called an inverse branch of T.

If there is a matrix

$$
V_{k}=\left(\begin{array}{cc}
a_{00}^{k} & a_{01}^{k} \\
a_{10}^{k} & a_{11}^{k}
\end{array}\right)
$$

which corresponds to a map

$$
V_{k} x=\frac{a_{10}^{k}+a_{11}^{k} x}{a_{00}^{k}+a_{01}^{k} x}
$$

then we call it a Moebius map (see [6]).
A Moebius map $T^{\#}: B^{\#} \rightarrow B^{\#}, B^{\#}:=\left[a^{\#}, b^{\#}\right]$, is called a dual map if its inverse branches are given by the transposed matrices $V_{k}^{\#}$, i.e.,

$$
V_{k}^{\#} y=\frac{a_{01}^{k}+a_{11}^{k} y}{a_{00}^{k}+a_{10}^{k} y}
$$

Then

$$
h(x)=\int_{B \#} \frac{d y}{(1+x y)^{2}}
$$

is the density of an invariant measure for (B, T) (see [7], [6]). If there exists a symmetric matrix M with the associated map

$$
M(t)=\frac{B+D t}{A+B t}
$$

such that

$$
M: B \rightarrow B^{\#} \text { and } M V_{k}=V_{k}^{\#} M
$$

for all k, then we call it a natural dual. If $B^{\#}$ shrinks to one point then the dual can be seen as a natural dual with a singular matrix M. We call it a singular dual (see [6] and [5]). If no suitable non-singular matrix M exists we call the dual an exceptional dual.

In this paper we consider Moebius maps which are constructed in the following way. Let $T:[0,1] \rightarrow[0,1]$ be a Moebius map with inverse branches defined by the matrices

$$
V_{\alpha}=\left(\begin{array}{cc}
1 & 2 \alpha-1 \\
0 & \alpha
\end{array}\right), 0<\alpha \leq 1, V_{\beta}=\left(\begin{array}{cc}
1 & 1-2 \beta \\
1 & -\beta
\end{array}\right), \beta<1
$$

and $S ;[0,1] \rightarrow[0,1]$ the Moebius maps with inverse branches defined by the matrices

$$
V_{\gamma}=\left(\begin{array}{cc}
2 & \gamma-1 \\
1 & -1
\end{array}\right),-1<\gamma, V_{\delta}=\left(\begin{array}{cc}
2 & \delta-1 \\
1 & -\delta
\end{array}\right), 0 \leq \delta
$$

Then we investigate the map defined by $(S \circ T) x=S(T x)$. Its inverse branches are given by the following matrices:

$$
\begin{gathered}
V_{\alpha \gamma}=V_{\alpha} V_{\gamma}=\left(\begin{array}{cc}
2 \alpha+1 & -2 \alpha+\gamma \\
\alpha & -\alpha
\end{array}\right) ; V_{\alpha \delta}=V_{\alpha} V_{\delta}=\left(\begin{array}{cc}
2 \alpha+1 & 2 \alpha \delta-1 \\
\alpha & \alpha \delta
\end{array}\right) \\
V_{\beta \gamma}=V_{\beta} V_{\gamma}=\left(\begin{array}{cc}
3-2 \beta & 2 \beta+\gamma-2 \\
2-\beta & \beta+\gamma-1
\end{array}\right) ; V_{\beta \delta}=V_{\beta} V_{\delta}=\left(\begin{array}{cc}
3-2 \beta & 2 \delta-2 \beta \delta-1 \\
2-\beta & \delta-\beta \delta-1
\end{array}\right) .
\end{gathered}
$$

If we suppose that our given system $(B, S \circ T)$ has a natural dual $\left(B^{\#},(S \circ T)^{\#}\right)$, then the four branches $V_{\alpha \gamma}^{\#}, V_{\alpha \delta}^{\#}, V_{\beta \gamma}^{\#}$, and $V_{\beta, \delta}^{\#}$ follow the same order as the four branches of $S \circ T$ if the map $M: B \rightarrow B^{\#}$ is increasing. They follow the reverse order if the map $M: B \rightarrow B^{\#}$ is decreasing.

We denote the fixed point of $V_{\beta \gamma}^{\#}$, which is one endpoint of $B^{\#}$, by η. Let $\xi=V_{\alpha \gamma}^{\#} \eta$ be the other endpoint of $B^{\#}$. The map $(S \circ T)^{\#}$ further satisfies the following equations:

$$
V_{\beta \gamma}^{\#} \xi=V_{\beta \delta}^{\#} \xi, \quad V_{\alpha \delta}^{\#} \xi=V_{\alpha \gamma}^{\#} \xi, \quad \text { and } V_{\beta \delta}^{\#} \eta=V_{\alpha \delta}^{\#} \eta
$$

The main result of this paper is the following result: if the given system $(B,(S \circ T))$ has a natural dual then it is a singular dual.

2. The Main Result

Lemma 1. The equation $\frac{-2+2 \beta+\gamma+(-1+\beta+\gamma) \eta}{3-2 \beta+(2-\beta)}=\eta$ has the solutions $\eta=-1$ and $\eta=\frac{-2+2 \beta+\gamma}{2-\beta}$.

Proof. It is easy to see that $\eta=-1$ and $\eta=\frac{-2+2 \beta+\gamma}{2-\beta}$ are the solutions of the corresponding quadratic equation.

Lemma 2. The case $\eta=-1$ cannot occur.
Proof. The equation $V_{\beta \delta}^{\#} \eta=V_{\alpha \delta}^{\#} \eta$ together with $\eta=-1$ leads to

$$
\delta=\frac{-1+\alpha \delta}{1+\alpha}
$$

Then $\delta=-1$, which is not an allowed value for δ.
Lemma 3. The central equations

$$
\alpha+\alpha \delta+\delta=\beta+\gamma+\beta \delta
$$

and

$$
\begin{aligned}
& \alpha^{2} \gamma+\alpha^{2} \gamma \delta+2 \alpha+\beta+\beta \gamma+2 \alpha^{2}+2 \alpha^{2} \delta+4 \alpha \delta+2 \alpha \gamma \delta \\
& \quad=2+\alpha \gamma^{2}+2 \gamma+2 \alpha \beta+\alpha \gamma+\alpha \beta \gamma+\alpha \beta \gamma \delta+2 \alpha \beta \delta
\end{aligned}
$$

hold.
Proof. We start with the proof of the first central equation. The equation $V_{\beta \gamma}^{\#} \xi=$ $V_{\beta \delta}^{\#} \xi$ shows that

$$
\xi=\frac{1-2 \beta+\gamma+2 \delta-\beta \delta}{\beta+\gamma-\delta+\beta \delta}
$$

The equation $V_{\alpha \delta}^{\#} \xi=V_{\alpha \gamma}^{\#} \xi$ gives the representation

$$
\xi=\frac{1-2 \alpha+\gamma-2 \alpha \delta}{\alpha+\alpha \delta}
$$

If we compare the two representations of ξ then there is value λ such that

$$
1-2 \beta+\gamma+2 \delta-\beta \delta=\lambda(1-2 \alpha+\gamma-2 \alpha \delta)
$$

and

$$
\beta+\gamma-\delta+\beta \delta=\lambda(\alpha+\alpha \delta)
$$

We multiply the second equation by 2 and add it to the first equation. Then

$$
1+\gamma=\lambda(1+\gamma)
$$

Hence $\lambda=1$ and the central equation can be deduced.
The proof of the second central equation follows. From $\eta=\frac{-2+2 \beta+\gamma}{2-\beta}$ and the equation $\xi=V_{\alpha \gamma}^{\#} \eta$ we calculate

$$
\xi=\frac{-2 \alpha+2 \gamma+\alpha \gamma-\beta \gamma}{2 \alpha+2-\beta+\alpha \gamma} .
$$

Then we have

$$
\xi=\frac{1-2 \alpha+\gamma-2 \alpha \delta}{\alpha+\alpha \delta}=\frac{-2 \alpha+2 \gamma-\alpha \gamma-\beta \gamma}{2 \alpha+2-\beta+\alpha \gamma}
$$

A tedious calculation leads to the second central equation.
It easy to write down solutions for the central equations. However, in all cases we find $\eta=\xi$. This leads to our main theorem.

Theorem 1. If $\left(B^{\#},(S \circ T)^{\#}\right)$ is a natural dual of $(B, S \circ T)$ then the dual map $\left(B^{\#},(S \circ T)^{\#}\right)$ is a singular dual.

Proof. We will reduce the second central equation to a shorter form by using the first central equation. From

$$
\begin{aligned}
& \alpha^{2} \gamma+\alpha^{2} \gamma \delta+2 \alpha+\beta+\beta \gamma+2 \alpha^{2}+2 \alpha^{2} \delta+4 \alpha \delta+2 \alpha \gamma \delta \\
& \quad=\alpha^{2} \gamma+\alpha^{2} \gamma \delta+2 \alpha+\beta+\beta \gamma+2 \alpha(\alpha+\delta+\alpha \delta)+2 \alpha \delta+2 \alpha \gamma \delta \\
& \quad=\alpha^{2} \gamma+\alpha^{2} \gamma \delta+2 \alpha+\beta+\beta \gamma+2 \alpha(\beta+\gamma+\beta \delta)+2 \alpha \delta+2 \alpha \gamma \delta \\
& \quad=2+\alpha \gamma^{2}+2 \gamma+2 \alpha \beta+\alpha \gamma+\alpha \beta \gamma+\alpha \beta \gamma \delta+2 \alpha \beta \delta
\end{aligned}
$$

we deduce

$$
\alpha^{2} \gamma+\alpha^{2} \gamma \delta+2 \alpha \gamma \delta+2 \alpha+\beta+\beta \gamma+\alpha \gamma+2 \alpha \delta=2+\alpha^{2} \gamma+2 \gamma+\alpha \beta \gamma \delta+\alpha \beta \gamma
$$

Then

$$
\begin{aligned}
& \alpha^{2} \gamma+\alpha^{2} \gamma \delta+2 \alpha \gamma \delta+2 \alpha+\beta+\beta \gamma+\alpha \gamma+2 \alpha \delta \\
& \quad=\alpha \gamma(\alpha+\alpha \delta+\delta)+\alpha \gamma \delta++2 \alpha+\beta+\beta \gamma+\alpha \gamma+2 \alpha \delta \\
& \quad=\alpha \gamma(\beta+\gamma+\beta \delta)+\alpha \gamma \delta++2 \alpha+\beta+\beta \gamma+\alpha \gamma+2 \alpha \delta \\
& \quad=2+\alpha^{2} \gamma+2 \gamma+2 \alpha \beta+\alpha \gamma+\alpha \beta \gamma \delta+\alpha \beta \gamma+2 \alpha \beta \delta
\end{aligned}
$$

Then we obtain our final result:

$$
\beta+\alpha \gamma \delta+2 \alpha+\beta \gamma+\alpha \gamma+2 \alpha \delta=2+2 \gamma
$$

Since

$$
\eta=\frac{-2+2 \beta+\gamma}{2-\beta}=-1+\frac{\beta+\gamma}{2-\beta}
$$

and

$$
\xi=\frac{1-2 \alpha+\gamma-2 \alpha \delta}{\alpha+\alpha \delta}=-1+\frac{1-\alpha+\gamma-\alpha \delta}{\alpha+\alpha \delta}
$$

we see that the equation $\xi=\eta$ is equivalent to

$$
\beta+\alpha \gamma \delta+2 \alpha+\beta \gamma+\alpha \gamma+2 \alpha \delta=2+2 \gamma
$$

Remark 1. The same result clearly applies to $T \circ S$. If μ denotes the invariant measure for $S \circ T$, then ν defined as $\nu(E)=\mu\left(T^{-1} E\right)$ is invariant for $T \circ S$.

Example 1. Let $\alpha=1, \beta=0, \gamma=2, \delta=\frac{1}{2}$. Then we have

$$
T x=\left\{\begin{array}{ll}
\frac{x}{1-x}, & 0 \leq x<\frac{1}{2} \\
\frac{1-x}{x}, & \frac{1}{2} \leq x \leq 1,
\end{array} \quad \text { and } \quad S x=\left\{\begin{array}{cl}
\frac{1-2 x}{1+x}, & 0 \leq x<\frac{1}{2} \\
\frac{-2+4 x}{1+x}, & \frac{1}{2} \leq x \leq 1
\end{array}\right.\right.
$$

Then $S \circ T$ has a singular dual on $B^{\#}=\{0\}$. The density of the invariant measure for $S \circ T$ is $h(x)=1$. The map $T \circ S$ also has a singular dual on $B^{\#}=\{1\}$ and the density of the invariant measure is $h(x)=\frac{1}{(1+x)^{2}}$.

Remark 2. Exceptional duals can be found for the configuration $V_{\beta \gamma}^{\#}, V_{\alpha \gamma}^{\#}, V_{\alpha \delta}^{\#}$, and $V_{\beta \delta}^{\#}$ or its reverse order. Again η is given by $V_{\beta \gamma}^{\#} \eta=\eta$, but $\xi=V_{\beta \delta}^{\#} \eta$.
Example 2. (1) If $\eta=-1$, an example is given by $\alpha=1, \beta=\gamma=\delta=0$ and $B^{\#}=[-1,0]$. (2) If $\eta=\frac{-2+2 \beta+\gamma}{2-\beta}$, an example is $\alpha=\frac{1}{2}, \beta=0, \gamma=\delta=2$ and $B^{\#}=[0,1]$.

3. A Further Result

One can try the following approach which is similar to the backward conditions in [4]. Let the matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

satisfy the conditions

$$
M V_{\alpha \gamma}=V_{\gamma \alpha}^{\#} M, M V_{\alpha \delta}=V_{\delta \alpha}^{\#} M, M V_{\beta \gamma}=V_{\gamma \beta}^{\#} M, M V_{\beta \delta}=V_{\delta \beta}^{\#} M
$$

Then we obtain the following result.
Theorem 2. If $B^{\#}=M B$, then $h(x)=\int_{B^{\#}} \frac{d y}{(1+x y)^{2}}$ is the density of the invariant measure for $S \circ T$. Furthermore $h=h(x)$ is the density for the map T and for the map S.

Proof. The first assertion is more or less obvious. The second assertion is more interesting. The matrix

$$
M_{1}=\left(\begin{array}{ll}
a_{1} & b_{1} \\
b_{1} & d_{1}
\end{array}\right)
$$

which satisfies

$$
M_{1} V_{\alpha}=V_{\alpha}^{\#} M_{1}, M_{1} V_{\beta}=V_{\beta}^{\#} M_{1}
$$

has the entries $a_{1}=1-\alpha, b_{1}=2 \alpha-1$, and $d_{1}=2-3 \alpha-\beta$.
From the equation $M V_{\alpha \gamma}=V_{\gamma \alpha}^{\#} M$, we find $a=1-\alpha, b=2 \alpha-1$, and $d=$ $(-2 \alpha+\gamma) a-(\alpha+2) b$. From $M V_{\beta \gamma}=V_{\gamma \beta}^{\#} M$, we find $a(2-2 \beta-\gamma)=b(\beta-2)$ and hence $\gamma-\alpha \gamma=2 \alpha-\beta$. This gives $d=2-3 \alpha-\beta$ and $M=M_{1}$.

To prove $M=M_{2}$, we apply the map $N(x)=1-x$ which exchanges the maps T and S.

References

[1] C. Kraaikamp and N. Langeveld, Invariant measures for continued fraction algorithms with finitely many digits, J. Math. Anal. Appl. 454 (2017), 106-126.
[2] O. Jenkinson and M. Pollicott, Ergodic properties of the Bolyai-Rényi expansion, Indag. Math. (N.S.) 11 (2000), 399-418
[3] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Hungar. 8 (1957), 477-493
[4] F. Schweiger, Invariant densities for composed piecewise fractional linear maps, Monats. Math. 194 (2021), 181-192
[5] F. Schweiger, Invariant measures of piecewise fractional linear maps and piecewise quadratic maps, Int. J. Number Theory 14 (2018), 1559-1572
[6] F. Schweiger, Differentiable equivalence of fractional linear maps, IMS Lecture Notes Monogr. Ser. 48 (2006), 237-247
[7] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford University Press, New York, 1995

