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Abstract

This is the English version of the paper: Complejidad de los números naturales,

Gac. R. Soc. Mat. Esp. 3 (2000), 230–250. The complexity ‖n‖ of a natural

number n is the least number of 1’s needed to write an expression for n using only

the addition +, the product ∗, the unit 1, and parentheses ( ). We study its main

properties and end up formulating a set of conjectures. These conjectures are now

mainly resolved by the work of Harry Altman. We include an appendix explaining

these later results.

1. Introduction

Our purpose is to explore what seems to be a trivial question that may be under-

stood by high school students in their early teens, but with very deep relationships.

Lately we have been interested in one of the mathematical problems that the

author consider most important: the P
?
= NP problem. In this case the first

difficulty is to explain the problem to a professional mathematician, say to an expert

in analysis. This is not a minor issue, but the author think that the problem

P
?
= NP may be reformulated as an inequality. Hence to explain the question

adequately, so that it is understood by an expert in Analysis, such a reformulation

is maybe the first step in the solution of the problem. The question we shall discuss

here arose while trying to obtain this explanation.

We start with the main question: Given a natural number n, how many 1’s are

needed to write n? For example,

19 = 1 + (1 + 1)(1 + 1 + 1)(1 + 1 + 1)

so that nine 1’s suffice to write 19. We shall say that the complexity of 19 is less

than or equal to 9, and we shall write this as ‖19‖ ≤ 9. Of course, the complexity
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of 19 will be the number of 1’s in the most economical representation of 19. We

only admit expressions with sums and products.

The first values of the complexity function may be easily computed,

1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, . . . .

We see that this is not a monotonic sequence: 8 = ‖11‖ > ‖12‖ = 7.

When in our investigations we find any sequence of natural numbers, there is

something we must do: look in The On-Line Encyclopedia of Integer Sequences

(http://oeis.org) of Sloane and Plouffe [18]. In it we find this sequence and a

reference to a paper by Guy [13] where it is defined and analyzed.

2. Complexity of a Natural Number

We have defined the complexity as a function n 7→ ‖n‖ of N → N such that for

every pair of natural numbers m and n, we have

‖1‖ = 1, ‖m+ n‖ ≤ ‖m‖+ ‖n‖, ‖m · n‖ ≤ ‖m‖+ ‖n‖.

In fact, it is the largest function satisfying these conditions (see Propositon 2). To

prove this and other assertions it is useful to introduce the concept of expression.

Definition. (expression) An expression is a sequence of symbols. The allowed sym-

bols are x, +, ( ). Not every sequence of these symbols is an expression. Examples

of expressions are

(x + x), (x+(xx)), (x+((x+x)((x+(x+x))(x+(x+x))))).

The formal definition is inductive:

(a) The variable x is an expression.

(b) If A and B are expressions, then (A+B) and (AB) are also expressions.

(c) The only expressions are those obtained by repeated applications of rules (a)

and (b).

We define the value of an expression A as the number v(A) that results when replacing

x by 1. Again we use induction to define the value of an expression: v(x) = 1, and

if A and B are expressions then, v((A+B)) = v(A) + v(B) and v((AB)) = v(A)v(B).

Given an expression, we may define its complexity as the number of letters x it

contains. For example ‖(x+(xx))‖ = 3. Let E be the set of expressions. We may

translate the definition of the complexity of n as

‖n‖ = inf{‖A‖ : A ∈ E and v(A) = n}.

If we want to compute the value of ‖n‖ we may use the following proposition.
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Proposition 1. For each natural number n > 1,

‖n‖ = min
2≤d≤

√
n, d|n

1≤j≤n/2

{‖d‖+ ‖n/d‖, ‖j‖+ ‖n− j‖} .

Proof. Let E be an optimal expression for n, i.e., one that gives its complexity

‖n‖ = ‖E‖. As an expression that is not x, we will have E=(A+B), or E=(AB). Let

a = v(A) and b = v(B). Then either n = a + b and ‖n‖ = ‖a‖ + ‖b‖ or n = ab

and ‖n‖ = ‖a‖ + ‖b‖. In the first case, if j is the least of a and b, we will have

1 ≤ j ≤ n/2, and in the second case, if d is the least of a and b, then d will be a

divisor of n with 2 ≤ d ≤
√
n. Of course for the reasoning to be valid we must check

that if E is an optimal expression for n, then A and B must be optimal expressions

for a and b, respectively. We leave this check to the reader.

Using the above proposition and the mathematical software Mathematica, we

have computed the values of ‖n‖ for 1 ≤ n ≤ 200 000.

3. Bounds

Proposition 2. Let P : N→ R be a function satisfying

P (1) = 1, P (n+m) ≤ P (n) + P (m), P (n ·m) ≤ P (n) + P (m).

Then for each n ∈ N we have P (n) ≤ ‖n‖.

Proof. It is easy to see by induction that for each expression A, we have P (v(A)) ≤
‖A‖. It is true for A = x, and, if it is true for A and B, then it is true for (A+B) and

(AB). For example, for the product we have

P
(
v((AB))

)
= P (v(A)v(B)) ≤ P (v(A)) + P (v(B)) ≤ ‖A‖+ ‖B‖ = ‖(AB)‖,

and a similar argument is valid for the sum. (Observe that by the definition of v

we have v((A+B)) = v(A) + v(B) and v((AB)) = v(A)v(B).)

Now in P (v(A)) ≤ ‖A‖ we take the minimum over all expressions A such that

n = v(A). In this way we get P (n) ≤ ‖n‖.

Corollary 1. For each natural number n we have log2(1 + n) ≤ ‖n‖.

Proof. It is sufficient to check the properties of P (n) = log2(1 + n).

Later, in Corollary 3, we will obtain a better inequality.
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3.1. Upper Bounds

Now we get an upper bound. To this end we define a new function L : N→ N.

Definition 1. We define the function L inductively:

(a) Let L(1) = 1.

(b) If p is a prime number, then L(p) = 1 + L(p− 1).

(c) If n = p1p2 · · · pk is a product of prime numbers (which may be repeated),

then L(p1p2 · · · pk) = L(p1) + L(p2) + · · ·+ L(pk).

It is clear from this definition that if n = ab with a and b ≥ 2, then we will have

L(ab) = L(a) + L(b).

Proposition 3. For each n ∈ N we have

‖n‖ ≤ L(n).

Proof. We may prove this by induction. For n = 1 we have ‖1‖ = L(1) = 1. Assume

that ‖k‖ ≤ L(k) for each k < n. There are two possibilities. If n = p is a prime

number

‖p‖ ≤ ‖p− 1‖+ ‖1‖ = ‖p− 1‖+ 1 ≤ L(p− 1) + 1 = L(p).

If n is composite n = ab with a and b > 2,

‖n‖ ≤ ‖a‖+ ‖b‖ ≤ L(a) + L(b) = L(ab) = L(n).

Proposition 4. For each n ≥ 2 we have

L(n) ≤ 3

log 2
(log n).

Proof. Since L(2) = 2 and L(3) = 3 the result is true for n = 2 and n = 3.

Assume now that n > 3 and that the Proposition is true for all natural numbers

strictly less than n.

If n = p is a prime number we have

L(p) = 1 + L(p− 1) = 1 + 2 + L
(p− 1

2

)
≤ 3 +

3

log 2
log
(p− 1

2

)
.

We want this to be

L(p) ≤ 3

log 2
(log p).

Hence we must check that

3 ≤ 3

log 2
log
( 2p

p− 1

)
,
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which is easily proved for p ≥ 3.

If n = ab with a and b ≥ 2, we have

L(ab) = L(a) + L(b) ≤ 3

log 2
(log a) +

3

log 2
(log b) =

3

log 2
(log ab).

Figure 1: Bad Factors. (The lower left corner dot is at (1, 1)).

Remark 1. We do not know if the constant 3/ log 2 in the above theorem is optimal.

The proof makes one suspect that the quotient L(n)/ log nmay be large when n = pk
is a prime such that there exists a sequence of primes (pj)

k
j=1 with pj+1 = 2pj + 1.

For example, 89, 179, 359, 719, 1439, 2879 is such a sequence of prime numbers,
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and the maximum value of the quotient L(n)/ log n that we know is

L(2879)

log 2879
= 3.766384578 · · · < 4.328085123 · · · = 3

log 2
.

The main difference between the two functions L(·) and ‖ · ‖ is that L(·) is additive

and ‖ · ‖ is not. For each pair of numbers n and m greater than 1 we have L(mn) =

L(m) + L(n). On the other hand there exist pairs n, m of numbers greater than 1

and such that ‖mn‖ < ‖m‖ + ‖n‖. In such a case we shall say that n ·m is a bad

factorization.

In Figure 1 we put a dot at each point (n,m) such that n·m is a bad factorization.

The figure contains all the factors n and m ≤ 60.

The product 1 · n is always a bad factorization. In Figure 3.1 we see some

other surprising regularities. There are some conspicuous (vertical and horizontal)

aligned points. Especially note the verticals at n = 23, 41, 59, which deserve an

explanation.

These numbers, we may call them bad factors, appear to have great complexity.

We define the number with great complexity nk as the number nk that is the least

solution to ‖n‖ = k. The first values of this sequence are

1, 2, 3, 4, 5, 7, 10, 11, 17, 22, 23, 41, 47, 59,

89, 107, 167, 179, 263, 347, 467, 683, 719, 1223,

1438, 1439, 2879, 3767, 4283, 6299, 10079, 11807,

15287, 21599, 33599, . . . .

This sequence appears in [18] OEIS:A005520. In this way we find the reference to

Rawsthorne [17].

4. Mean Values

There is another proof of ‖n‖ ≤ 3 log n/ log 2. We observe that if we write n in

binary n =
∑k−1
j=0 εj2

j + 2k we have a means to express n:

n = ε0 + 2(ε1 + 2(ε2 + · · ·+ 2(εk−2 + 2(εk−1 + 2)) · · · )).

If we substitute each 2 by 1 + 1 and observe that each εj is equal to 0 or 1, we have

an expression for n that uses at most 2k + k ones, and where k is determined by

2k ≤ n < 2k+1. It follows that ‖n‖ ≤ 3 log n/ log 2.

The above reasoning proves that the function L2(n) = 2k + ε0 + ε1 + · · ·+ εk−1
is another upper bound for ‖n‖. The relationship between L2(n) and L(n) is not

very simple. Amongst the first 1000 numbers we generally have L(n) ≤ L2(n) but
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this inequality has exceptions. The first one is L2(161) = 16 < 17 = L(161). In

this range the difference is small.

The function L2(n) allows us to obtain information about ‖ · ‖. Consider the

numbers n that in binary take the form 1εk−1 · · · ε0, i.e., numbers than in binary

have k + 1 digits. By the above expression we have

‖n‖ ≤ 2k + ε0 + · · ·+ εk−1.

We may suppose that the εk are independent random variables with mean 1/2. The

inequality of Chernoff (see [11] or [1] for a simple exposition) says that

P
(∣∣∣∑ εj − k/2

∣∣∣ < x
√
k
)
≥ 1− 2e−2x

2

.

It follows that P(‖n‖ ≤ 2k + k/2 + x
√
k) ≥ 1 − 2e−2x

2

, and taking x =
√

log k we

get

P
(
‖n‖ > 5k/2 +

√
k log k

)
≤ 2k−2.

Hence between the 2k values of n with 2k ≤ n < 2k+1 at most (2/k2)2k satisfy

‖n‖ > 5k/2 +
√
k log k. The other ones, most of them, satisfy

‖n‖ ≤ 5k

2
+
√
k log k =

5

2

log n

log 2
+O(

√
log n log log n).

Therefore, for almost all large values of n we have

‖n‖ ≤ 5

2

log n

log 2
+O(

√
log n log log n).

The upper bound L(n) is very good for small values of n. For example for the

first 220 values of n, L(n) = ‖n‖, except for the values in the following table.

n ‖n‖ L(n)

46 12 13
47 13 14
55 12 13
82 13 14
83 14 15
92 14 15
94 15 16
110 14 15

n ‖n‖ L(n)

115 15 16
118 15 16
121 15 16
138 15 16
139 16 17
141 16 17
145 15 16
161 16 17

n ‖n‖ L(n)

164 15 16
165 15 16
166 16 17
167 17 18
184 16 17
188 17 18
217 16 17
220 16 17

In these cases the bound L2(n) is equal or greater than L(n), except for the case

n = 161.

The two functions L(n) and ‖n‖ coincide in 771 values of n in the range 1 ≤ n ≤
1000, the difference being equal to 1 for the 229 other values in this range with a

few exceptions.
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5. Particular Values

Numbers with Small Complexity. A good lower bound for ‖n‖ is obtained from

the knowledge of the largest number we may write with m ones. That is, given m,

we want to find which is the largest natural number N with ‖N‖ = m. The answer

roughly is that we must group the m ones in groups of three and multiply them.

To show this we define the concept of extremal expression. Let Mm be an expression

with ‖Mm‖ = m (that is Mm is formed with m symbols x and the operations of sum

and product), and such that its value v(Mm) is the maximum of all the expression

with m ones, i.e.,

N = v(Mm) = sup
‖A‖=m

v(A).

We say that such an expression Mm is extremal.

In the above situation ‖N‖ = m. In fact, since N = v(Mm) and ‖Mm‖ = m, we

have ‖N‖ ≤ m. Assume, by contradiction, that ‖N‖ < m. Then there will exist

an expression B such that v(B) = N and ‖B‖ = ‖N‖ < m. Let d be such that

m = d + ‖B‖. We may construct an expression C such that C = B + x + · · · + x

and such that ‖C‖ = ‖B‖ + d = m and v(C) = v(B) + d > N . This contradicts the

definition of Mm.

It is easy to see that the following expressions are extremal

M1 = x, M2 = (x + x), M3 = (x + (x+x)),

M4 = (x+x)(x+x), M5 = (x+(x+x))(x+x), . . . .

We see that given m, the extremal expression Mm is not unique. For example, for

m = 4 the expression M4 = (x+(x+(x+x))) is another possibility.

We shall use here a notation that is not very precise. For example, we shall write

Ma3M2 to denote any expression having this form, not defining how the product is

constructed from its factors. So, M43 denotes any of the expressions ((M3M3)(M3M3)),

(M3(M3(M3M3))) or any other form of grouping the factors.

Proposition 5. Let M2 = (x + x), M3 = (x + (x+x)) and M4 = (x+x)(x+x). For

n > 1, the expressions

Mn =


M k3 if n = 3k,

M k−13 M4 if n = 3k + 1,

M k3 M2 if n = 3k + 2,

are extremal.

Proof. We may check the proposition for n = 2, 3 and 4 directly.

We assume the assertion is true for all s < n and try to prove it for n ≥ 5.

Certainly there is one extremal expression K with ‖K‖ = n. Then there are two
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expressions A and B such that K = (A + B) or K = (AB). A and B are extremal

expressions because K is extremal. We may replace A and B by extremal expressions

of the same complexity and value, and the resulting expression K′ will also be

extremal. Hence, without loss of generality, we may assume, using the induction

hypothesis, that A and B are of the form given in the proposition or that A = x and

B is as in the proposition.

The case K = (A + B) is only possible if v(A) or v(B) = 1, because, in other

cases, the expression (AB) contradicts the extremality of K. But K = (x + Mk3),

K = (x + Mk−13 M4), or K = (x + Mk3M2) are impossible with n ≥ 5. These expressions

are clearly not extremal. Compare with M k−13 M4, M k3 M2 or M k+1
3 , respectively.

Therefore K = (AB) where A and B are like those in the proposition. Some of

the combinations are not possible: for example A = M k3 M2 and B = M
j−1
3 M4 are not

possible since M
k+j−1
3 M4M2 is improved by M

k+j+1
3 and K will not be extremal. A

case by case analysis proves that K is one of the three forms in the proposition.

Corollary 2. For a = 0, 1, or 2 and all b ∈ N we have

‖2a3b‖ = 2a+ 3b, a = 0, 1, 2.

All natural numbers n > 1 may be written in a unique way as n = 2a+ 3b with

a = 0, 1 or 2. In this case 2a3b is the greatest number m with ‖m‖ = n. Hence

m > 2a3b implies ‖m‖ > 2a+ 3b.

We define g by

g(n) =


3a if n ∈ [3a, 3a + 3a−1),

3a+ 1 if n ∈ [3a + 3a−1, 2 · 3a),

3a+ 2 if n ∈ [2 · 3a, 3a+1),

we then have g(n) ≤ ‖n‖ for each n.

Corollary 3. For any n ≥ 2 we have

3
log n

log 3
≤ ‖n‖ ≤ L(n) ≤ 3

log n

log 2
.

Proof. We only need to prove the first inequality. If n = 3a, we see directly that

the inequality is true. If x ∈ (3a, 3a + 3a−1], we have ‖x‖ ≥ 3a+ 1. Then

‖x‖ ≥ ‖3a‖+ 1 = 3a+ 1 ≥ 3
log(4 · 3a−1)

log 3
≥ 3

log x

log 3
.

Similarly, for x ∈ (4 · 3a−1, 2 · 3a] we have

‖x‖ ≥ ‖4 · 3a−1‖+ 1 ≥ 3a+ 2 ≥ 3
log(2 · 3a)

log 3
.

Finally, for x ∈
(
2 · 3a, 3a+1

]
, we only need to check that

‖x‖ ≥ ‖2 · 3a‖+ 1 = 3a+ 3 ≥ 3
log(3a+1)

log 3
.
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6. The Problem P
?
= NP and the Complexity of the Natural Numbers

Before explaining the problem we must describe the classes P and NP. Consider a

finite alphabet A, and let A∗ be the set of words, that is, the set of finite sequences

of elements of A.

We call a subset S ⊂ A∗ a language . We say that S is in the class P if there

is an algorithm T and a polynomial p(t) such that with a word x as input, T gives

an output T (x), such that T (x) = 1 if x ∈ S and T (x) = 0 if x /∈ S. Also, T gives

the output T (x) in a time bounded by p(|x|) (here |x| denotes the length of the

word x). We then say that T is a polynomial algorithm. In a few words we may say

that P is the class of languages recognizable in polynomial time. It is important

to notice that this concept is very stable with respect to the diverse definitions of

what is an algorithm, how we compute the “time” that the algorithm T takes to

give the output, or even if we consider the same language in a different alphabet

(as when we consider a set of natural numbers written in different basis). In other

words, the concept does not change if we give proper definitions of these concepts.

The class NP consists of the languages recognized by non deterministic poly-

nomial algorithms. That is S ⊂ A∗ is in NP if there exists an algorithm T and

a polynomial p(x) such that for each x ∈ S there is y ∈ A∗ with |y| ≤ p(|x|) and

such that with the input (x, y) the algorithm gives the output T (x, y) = 1 in time

bounded by p(|x|). On the other hand, if x /∈ S we have T (x, y) = 0 for all y with

|y| ≤ p(|x|).
We say that in this case T is a non-deterministic algorithm since to obtain x ∈ S

we must first choose y. If we know which y to use, then this process is fast, but if

we do not know y, we may try each possible y, but this will need a time greater

than or equal to |A|p(|x|) which in practice is impossible.

Again, the class NP is very stable with respect to possible changes in the defi-

nitions. Also many practical problems are in this class.

It is easy to check that P ⊂ NP. The question is whether these two classes are

the same. To understand a bit more of the difficulty, observe the following.

Our experience as mathematicians teaches us that to understand a proof, or

better yet, to check the correctness of a proof, is a task of type P. That is, the time

needed is proportional to the length of the proof.

On the other hand, to determine if a conjecture x is a Theorem we need first to

write the proof y and then to apply the above procedure to check the correctness

of the pair (x, y). The set of all theorems is not in the class NP since we know

the length of the proof |y| is not bounded by the length of the theorem x, that is,

|y| 6≤ p(|x|). But for each polynomial p(t), the following set is in NP:

Tp = {x : x is a theorem with a proof of length ≤ p(|x|)}.

Maybe someone finds these definitions rather vague, but the formal logic allows one
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to make things precise.

If P = NP and the proof were sufficiently constructive (technically, that we can

find a polynomial algorithm for an NP-complete problem), then there would exist

a polynomial algorithm that would allow us not only to decide if x ∈ Tp, but also

to find in this case a proof for x in polynomial time. The mathematicians would

not be needed any more.

When one recalls the achievements of the 20th century – proof of Fermat’s the-

orem, classification of finite simple groups, pointwise convergence of Fourier series

of function in Lp, Riemann’s hypothesis for algebraic varieties over fields of char-

acteristic p, independence of continuum hypothesis, and many more – one gets the

impression that there exists an algorithm to decide x ∈ Tp by searching directly

for a proof, not by trial and error. This algorithm consists of taking promising

students, giving them the possibility to travel and speak with specialists on the

topic in question, letting them try to solve analogous questions, study the solution

of related problems, and so on . . . .

7. Connection of the Complexity of Natural Numbers and the Problem

P
?
= NP

Consider the assertion ‖4787‖ = 28. We may decompose it in two parts. The first,

‖4787‖ ≤ 28, has a very easy proof:

4787 = 2 + 3(2 + 32)(1 + 2432). (?)

The other part of the assertion ‖4787‖ ≥ 28, has a much more laborious proof. At

present we do not know any way, other than computing the values of ‖n‖ for all

n ≤ 4787, a task that, on a personal computer, took several hours. Of course this

does not imply that it is easy to find a proof as in (?).

Consider the sets

A = {(n, c) ∈ N2 : ‖n‖ ≤ c}, B = {(n, c) ∈ N2 : ‖n‖ > c}.

The fact, as we have remarked, that if (n, c) ∈ A, then there is a relatively short

proof of it, shows us that A is in the class NP.

Roughly, a set A is in NP, if to prove that x ∈ A an exhaustive search is required.

This search in principle is exponential in the size of x. Nevertheless, once the proof

has been found, it is easily recognized. Easily meaning in polynomial time with

respect to the size of x. Complete information may be found in the book [12].

These problems bring to mind the one of finding a needle in a haystack. Once we

have found the needle there is no doubt that the task is done, but at first it appears

unreachable since the straw is so similar to the needle that we do not see any means

other than search methodically.
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The core of the problem P
?
= NP is whether in situations where there exists a

short proof, there is always a direct path to find it. If P = NP, then there is always

a direct path to the proof without hesitations. At first sight this appears a wild

assumption, but the rigorous proof of P 6= NP eludes us still after twenty seven

years of study.

Recently Microsoft has funded an investigation center and has contracted Michael

Friedman (Fields medal in 1986). Friedman has the intention of trying to solve the

question P
?
= NP. Microsoft will invest 2.6 million dollars each year in this program.

It appears that P = NP is false, but not all is so simple. Sometimes tasks that

appear to need an exhaustive search have been proved simple. We shall give an

example.

Let C ⊂ N be the set of composite numbers. At first sight it appears that the

only means to prove that n is composite is to divide n by each number m ≤
√
n

and check if some remainder equals 0. The size of n is of the order of the number

of digits needed to write it, i.e., of the order log n. The number of needed checks

maybe
√
n = e(logn)/2, which grows exponentially with log n. And if really n is

composite there is a short proof: to exhibit a proper divisor d of n. That is C is in

the class NP.

But it is not so difficult to decide whether n is composite. If n is prime and b is

prime with n we have bn−1 ≡ 1 (mod n). An idea somewhat more elaborate: if n is

a prime and n−1 = 2st, then in the sequence of the rests of bt, b2t, . . . , b2
st modulo

n, the last different from 1 must be −1. In the other case it is certain that n is

composite. This is the famous Miller-Rabin test. It is known that if the generalized

Riemann hypothesis is true, then if n is composite, the test of Miller-Rabin is not

satisfied for some b < 2(log n)2. Hence, under the mentioned hypothesis, we have

a fast algorithm (polynomial) to decide whether n is composite: to do the test of

Miller-Rabin for all b < 2(log n)2.
Another incentive to pose the problem P

?
= NP is the existence of NP-complete

problems. That is, sets B ⊂ N such that B is in the class NP and, for which from

B ∈ P it follows that P = NP.

Since Euclid’s times, mathematicians have had a clear concept of an algorithm.

Turing goes a step further, and by an effort of introspection, gives us a precise

definition. Turing’s mental image is that of a mathematician, notebook in hand,

computing. By abstracting the procedure, Turing created the idea of a modern

computer. Starting from Turing’s definitions, it is possible to quantify the time a

computer will spend on a given task, giving a precise definition of the classes P and

NP.

The first connection of the complexity of the natural numbers with the problem

P
?
= NP is the fact that P = NP implies the existence of a fast algorithm to

compute ‖n‖. There will be constants C and k ∈ N and an algorithm that will

compute ‖n‖ in time less than or equal to C(log n)k.
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8. Complexity of Boolean Functions

There is another connection, this time structural, between the complexity of natural

numbers and the problem P
?
= NP. To explain this connection we must define a

related concept, that of the complexity of a Boolean function.

The set {0, 1} is a field when we consider the composition laws sum and product

modulo 2. For each number n let Fn be the set of functions f : {0, 1}n → {0, 1}.
The set Fn is a ring if we take sum and product with respect to the field in the

image {0, 1}.
For example, consider the constant functions 1, 0 and the components πj defined

by πj(x) = πj(x1, x2, . . . , xn) = xj . The ring Fn is generated by these functions,

i.e., we may write any function f ∈ Fn as a polynomial of the above functions. To

see this, given ε = (ε1, . . . , εn) ∈ {0, 1}n, we define the function fε =
∏
j(δj + πj),

where, for each j, δj = 1 + εj . Then fε(x) = 0, except for x = ε. Hence, any

function g may be written

g =
∑
ε∈S

fε,

where S is the set of ε such that g(ε) = 1.

As in the case of the natural numbers, we may define the complexity of the

elements of Fn. It will be the greatest function f 7→ ‖f‖ such that

‖0‖ = ‖1‖ = 0, ‖πj‖ = 1, ‖f + g‖ ≤ ‖f‖+ ‖g‖, ‖fg‖ ≤ ‖f‖+ ‖g‖.

For any θ ∈ (0, 1), most of the elements of Fn have complexity greater than or

equal to 2θn. The proof of this result is done by counting how many elements have

complexity k, say ak. It is easy to see that a0 = 2, a1 = 2n. From f and g with

‖f‖ = j and ‖g‖ = k − j we get, at most, four elements with complexity less than

or equal to k. They are f + g, fg, 1 + f + g, 1 + fg. With these observations we

get ak ≤ 4(a1ak−1 + a2ak−2 + · · · + ak−1a1). It follows that ak ≤ Ak, where Ak is

defined by

A0 = 2, A1 = 2n, Ak = 4

k−1∑
j=1

AjAk−j .

From this definition we get
∞∑
k=0

Akx
k =

17−
√

1− 32nx

8
, Ak =

1

2(2k − 2)

(
2k − 2

k

)
(8n)k.

Hence

ak ≤ Ak ∼
25k

8
√

2πk3/2
nk.

Therefore, for x large,
x∑
k=0

Ak ≤ c
x∑
k=0

(32n)k ≤ c′(32n)x ≤ AeBx logn,
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and hence if x < 2θn, with 0 < θ < 1, we get

x∑
k=0

Ak � card(Fn) = 22
n

,

proving our assertion.

Each construction of f(x1, . . . , xn) as a polynomial allows one to prove an asser-

tion of type ‖f‖ ≤ a. But from the polynomial expression we may get something

more practical: a circuit that allows to compute f(x1, . . . , xn) starting from the

inputs xj .

As in the case of natural numbers, it is difficult to prove inequalities of type

‖f‖ > a. In fact the situation is surprising: we have seen that in the set of functions

with n variables, the complexity is usually larger than 2θn. Hence one would expect

to have an easy task in defining a sequence of functions (fn), where fn depends on

n variables and such that ‖fn‖ > 2θn. On the contrary it has only been achieved

that ‖fn‖ > p(n), where p is a polynomial of small degree (see [19], [14]). The

problem here is not to prove that there exist sequences with ‖fn‖ > 2θn, which,

as we have seen is easy, but to define explicitly a concrete sequence of functions

for which this is so. When we speak of “define explicitly” we refer to a technical

concept that needs some explanation. We must exclude easy solutions such as let

fn the first function of n variables with maximum complexity. We say that (fn) is

given explicitly if there is an algorithm that computes the value of fn(x1, . . . , xn)

in a reasonable time.

The problem P
?
= NP induces one to consider a special sequence of Boolean

functions. Let a be a natural number and consider n =
(
a
2

)
the number of pairs.

Our variables will be

x12, x13, x23, x14, x24, x34, . . . , x1a, x2a, · · · , xa−1 a.

In this way, each set of values of these variables in {0, 1}n may be seen as a graph

with a vertices, and where xjk = 1 if and only if the vertices j and k are connected

by an edge of the graph. For each b ≤ a, let fab (x12, . . . , xa−1 a) be the function

that is equal to 1 if and only if there is a set of b vertices such that all of them are

connected in the graph.

It is plausible that ‖fab ‖ ≥
(
a
b

)
, since to compute the value of fab in a given graph

we need to check each set of b vertices. It can be shown that, if this is so, then

P 6= NP. In this way, to prove ‖fab ‖ ≥
(
a
b

)
, may be, the most promising path to

solve the P
?
= NP question.

In the case of the complexity of natural numbers, an analogous question is the

following. Posed by Guy [13]:
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Problem 1. Is there a sequence of natural numbers (an) such that

lim
n→∞

‖an‖
log an

>
3

log 3
? (1)

A good candidate is the sequence 2n. All computed values satisfy ‖2n‖ = 2n.

Selfridge asks (see [13]) whether there exists any n with ‖2n‖ < 2n.

If for some n and k we would have 2n = 3k (which is clearly impossible), the

second expression would give us ‖2n‖ < 2n. Of course the advantage would be

greater for big n than for small n. Although the above is impossible, maybe another

type of equality would yield ‖2n‖ < 2n. For example, if for some n, 2n written in

base 3 has small digits. Again, this is unlikely but not impossible. Also, there may

exist another type of expression for 2n. The question here is whether a number

of the form (1 + 1)(1 + 1) · · · (1 + 1) may be written in some way with fewer 1’s.

We almost have a trivial example 4 = (1 + 1)(1 + 1) = 1 + 1 + 1 + 1. Here we

have the same number of 1’s so that we call it an almost-example. Maybe there are

non-trivial almost-examples, for example

227 = 1 + (1 + 2 · 3)(1 + 23 · 32)(1 + 29 · 33(1 + 2 · 32)).

If we replace each 2 by 1 + 1 and each 3 by 1 + 1 + 1 we get an expression for 227

with 57 ones, in which the multiplicative structure of 227 is not used.

The above equality proves that ‖227 − 1‖ ≤ 56. In spite of an intense search

we have not found an n > 2 such that ‖2n − 1‖ < 2n − 1, but we think this may

happen.

The evidence appears to be in favor of the existence of a sequence that satisfies

(1). For example, we may look at Figure 2. There we have put a little disk with

center at each point (n, ‖n‖) with 1 ≤ n ≤ 2000 and also we have drawn the smooth

curves that bound ‖n‖, i.e., 3(log t)/ log 3 and 3(log t)/ log 2, and also the curve

5 log t/2 log 2. The points overlap and we see some lines parallel to the x-axis. We see

that the upper bound appears to be bad and that apparently ‖n‖ ≤ 5 log n/2 log 2,

whereas in reality we have only proved that this inequality is true for almost all

n ∈ N.

500 1000 1500 2000

15

20

25

30

Figure 2: Graph of ‖n‖.
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But this figure says nothing about the limit lim ‖n‖/ log n, in which we are interested

in. We only see that for the first 2000 values of n this sequence is bounded by the

limits 5/2 log 2 and 3/ log 3.

9. Conjectures

We have computed, using Proposition 1, the complexity of the first 200 000 natural

numbers. Looking at these numbers, one sees many regularities. We will call them

conjectures about the behavior of the function ‖ · ‖, although we do not have much

confidence that they persist for larger numbers.

The following conjectures were derived from tables such as Table 1. In this table

we have written in columns the numbers with complexity 3n (n = 1, 2, . . . , 8),

written in base 3 and in decreasing order.

The first observation ‖3n‖ = 3 + ‖n‖ is wrong. For example, ‖107‖ = 16 and

‖321‖ = ‖1 + 265‖ = 18. But the following conjectures seem to be true.

3 6 9 12 15 18 21 24

10 100 1000 10000 100000 1000000 10000000 100000000
22 220 2200 22000 220000 2200000 22000000
21 210 2101 21010 210100 2101000 21010000

202 2100 21000 210000 2100000 21000000
201 2020 20200 202000 2020000 20200000
122 2010 20100 201000 2010000 20100000

2002 20020 200222 2002220 20022200
2001 20010 200200 2002000 20020000
1221 20002 200100 2001000 20010000
1220 20001 200020 2000200 20002000
1212 12221 200010 2000100 20001000
1211 12210 200002 2000020 20000200
1201 12200 200001 2000010 20000100
1122 12122 122210 2000002 20000020
1121 12120 122100 2000001 20000010
1112 12111 122000 1222100 20000002

12110 121220 1221000 20000001
12102 121200 1220000 12221000
12101 121121 1212200 12210000
12012 121110 1212000 12200000
12010 121100 1211210 12122000
12001 121022 1211100 12121201
11221 121020 1211000 12120000

Table 1: Numbers with complexity 3n written in base 3
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Conjecture 1. For each natural number n, there is an integer a ≥ 0 such that

‖3jn‖ = 3(j − a) + ‖3an‖ for each natural number j ≥ a.

Let us define the set A = {n ∈ N : ‖3jn‖ = 3j + ‖n‖ for all j}1.

Conjecture 2. For each pair of natural numbers p and q, there exists a ≥ 0 such

that, for j ≥ a, we have ‖p(q3j + 1)‖ = 3j + 1 + ‖p‖+ ‖q‖.

The main observation in Table 1 is that the greatest numbers with complexity

3n are those natural numbers contained in the sequence (3nan), where an is given

by

1,
2(3 + 1)

32
,

26

34
,

2 · 3 + 1

32
,

2(32 + 1)

33
,

2 · 32 + 1

33
,

29

36
,

2(33 + 1)

34
,

2 · 33 + 1

34
, . . . ,

2(3k + 1)

3k+1
,

2 · 3k + 1

3k+1
, . . . .

Conjecture 3. There exist three transfinite sequences (aα)α<ξ, (bα)α<ξ, (cα)α<ξ of

rational numbers, such that the (greatest) numbers of complexity 3n (respectively

3n + 1, 3n + 2) are the (first) natural numbers contained in the sequence (3naα),

(resp. (3nbα), (3ncα)).

The ordinal ξ is an infinite numerable ordinal such that ωξ = ξ.

These sequences start in the following way:

(aα), 1,
8

9
,

64

81
,

7

9
,

20

27
, · · · → 2

3

160

243
,

52

81
, · · · → 16

27

1280

2187
,

140

243
, · · · → 5

9
. . .

(bα),
4

3
,

32

27
,

10

9
,

256

243
,

28

27
, · · · → 1

80

81
,

26

27
, . . . → 8

9

640

729
,

70

81
, · · · → 64

81
. . .

(cα), 2,
16

9
,

5

3
,

128

81
,

14

9
, · · · → 4

3

320

243
,

35

27
, · · · → 32

27

95

81
,

2560

2187
, · · · → 10

9
. . .

where the dots indicate infinite sequences, and where the indicated limits are not

terms of the sequences.

Conjecture 4. The three sequences are decreasing. The denominators of each

term aα, bα or cα are powers of 3.

Conjecture 5. The numbers of the sequence (aα) are the numbers of the set{ n

3‖n‖/3
: ‖n‖ ≡ 0 mod 3 and n ∈ A

}
,

ordered decreasingly.

1With the notation that was introduced after this was published, A is the set of stable numbers.
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Conjecture 6. The numbers of the sequence (bα) are the numbers of the set{ n

3(‖n‖−1)/3
: ‖n‖ ≡ 1 mod 3 and n ∈ A

}
,

ordered decreasingly.

Conjecture 7. The numbers of the sequence (cα) are the numbers of the set{ n

3(‖n‖−2)/3
: ‖n‖ ≡ 2 mod 3 and n ∈ A

}
,

ordered decreasingly.

The following conjectures are more doubtful. They are only based on a few cases.

Conjecture 8. For all ordinals β < ξ we have

lim
n→∞

aωβ+n = cβ/3, lim
n→∞

bωβ+n = aβ , lim
n→∞

cωβ+n = bβ .

This is the basis of the assertion about the value of ξ, which appears to be at

least ξ = ωω, since this is the least solution of ωξ = ξ.

The following assertions, along with conjecture 8, allow us to predict, with some

accuracy, the values of the transfinite sequences.

Conjecture 9. The numbers of the sequence bωβ+n that converges to aβ = b/3a

(with ‖b‖ = 3a) are numbers from the sequences

p(q3j + 1)

3a+j
, where b = pq, and, ‖p(q3j + 1)‖ = 3a+ 3j + 1,

and those sporadic terms of the sequence 23j+2/32j+1 contained between supγ<β aγ
and aβ .

Conjecture 10. The numbers of the sequence cωβ+n that converges to bβ = b/3a

(with ‖b‖ = 3a+ 1) are numbers from the sequences

p(q3j + 1)

3a+j
, where b = pq, and, ‖p(q3j + 1)‖ = 3a+ 3j + 2,

and those sporadic terms of the sequence 23j+1/32j contained between supγ<β bγ
and bβ .

Conjecture 11. The numbers of the sequence aωβ+n that converges to cβ/3 = b/3a

(with ‖b‖ = 3a− 1) are numbers from the sequences

p(q3j + 1)

3a+j
, where b = pq, and, ‖p(q3j + 1)‖ = 3a+ 3j,

and those sporadic terms of the sequence 23j/32j contained between supγ<β
1
3cγ

and 1
3cβ .
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In Conjecture 9, 10 and 11 we observe that some terms come from subsequent

sequences. For example, the term cω = 320/243 is the term corresponding to j = 0

of the sequence 26(4 · 3j + 1)/3j+5, that converges to b3 = 256/243.

The above conjectures allow one to predict, for example, the 200 largest numbers

with complexity 30.

The numbers with complexity 14 divided by 81, are

c0 = 162/81, c1 = 144/81, c2 = 135/81, c3 = 128/81, c4 = 126/81,
c5 = 120/81, c6 = 117/81, c7 = 114/81, c9 = 112/81, c10 = 111/81,
c11 = 110/81, c13 = 109/81, cω+1 = 105/81, cω+2 = 104/81, cω+3 = 102/81,

cω+6 = 100/81, cω+8 = 99/81, cω+10 = 98/81, cω+14 = 97/81, cω2 = 95/81,
cω2+3 = 93/81, cω2+5 = 92/81, cω2+8 = 91/81, cω3+4 = 88/81, cω3+7 = 87/81,
cω3+15 = 86/81, cω4+2 = 85/81, cω5+1 = 83/81, cω2+ω+2 = 79/81,

cω2+ω2+3 = 77/81,

and
71

81
,

69

81
,

67

81
,

59

81
.

For the last four numbers we do not have enough data to know the corresponding

ordinal.
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Addendum to: Complexity of Natural Numbers

A1. Introduction

This addendum describes the current status of eleven conjectures posed in the paper:

Complejidad de los numeros naturales, Gac. R. Soc. Mat. Esp. 3 (2000), 230–250,

whose English translation is given above.

The complexity ‖n‖ of a natural number n is the least number of 1’s needed to

write an expression for n in the language using the addition +, the product ∗, the

unit 1 and parentheses as the only symbols. So ‖9‖ = 6 since 9 = (1+1+1)∗(1+1+1)

and there is no other expression for 9 with less than 6 unit symbols. Richard Guy

popularized several problems on this concept, such as asking if ‖2n‖ = 2n for all

n ≥ 1.

Frequently we have ‖3n‖ = ‖n‖+ 3. Therefore, it is natural to think about the

fractions n/3b‖n‖/3c that remain invariant when we change n to 3n and ‖3n‖ =

‖n‖+ 3. A number is called stable when ‖n3k‖ = ‖n‖+ 3k for all k ≥ 1. In [9] we

made some conjectures about these fractions.

As a young man, the author lived isolated from other mathematicians and was

always eager to learn about open problems. When in 2000, as a professional math-

ematician, we published a paper [9] in the ‘Gaceta’ in Spanish full of conjectures.

In writing the Gaceta paper the authr was thinking of a young person looking for
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a topic to research. We wanted to provide a fruitful topic. We was not interested

in asking fully accurate questions, but left to this young person the formulation of

correct statements. We knew that what we wrote was not exactly true, but the

author was sure that we were directing this young audience to a rich topic.

These objectives were amply met when Harry Altman and Joshua Zelinsky sub-

mitted a paper [8] to Integers in late 2011, resolving some of the conjectures. In

particular they showed that for each m ≥ 1 there is some a ≥ 0 such that n = m3a

is stable. In 2015 Altman [2] resolved more of them. We ended up later collab-

orating with Altman on [7] in which we reformulate and resolve the rest of our

conjectures. In the remainder of this addendum we summarize the current status

of these conjectures. Most of them are true after some reformulation and have been

proved.

A2. State of the Conjectures

The main contribution of Altman and Zelinsky [8] is the definition of the defect

δ(n) := ‖n‖ − 3 log3 n, and their proof that for any x > 0 the set

Ax = {n ∈ N : δ(n) < x}

has a simple alternate description that can be computed efficiently.

A2.1. Conjecture 1

(True). A number n is called stable if ‖3kn‖ = ‖n‖+3k for all k ≥ 0. The conjecture

says that for any natural number n there is K such that n3K is stable.

Conjecture 1 is proved in [8, Theorem 13]. The stable complexity of n is then

defined by ‖n‖st := ‖3Kn‖ − 3K, and the stable defect is defined by δst(n) :=

‖n‖st − 3 log3 n.

A2.2. Conjecture 2

(True after reformulation). The Conjecture states that ‖p(q3j + 1)‖ = ‖p‖+ ‖q‖+

3j+1. This is true under the extra hypotheses that pq is stable and ‖pq‖ = ‖p‖+‖q‖.
The revised statement is proved in [7, Theorem 1.18]. The two extra conditions

were not mentioned in the original statement of Conjecture 2. In [7, Theorem 1.20]

another version of Conjecture 2 is proved under the extra hypotheses that pq is

stable and ‖pq‖+ 1 = ‖p‖+ ‖q‖.
Without extra hypotheses, in [7] the counterexample p = 2, q = 1094 is men-

tioned, where

‖2 · 1094‖ = ‖37 + 1‖ = 22 < ‖2‖+ ‖1094‖ = 24.
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And we have ‖2(1094 · 3k + 1)‖ = ‖2188 · 3k + 2‖ ≤ 24 + 3k, instead of ‖2(1094 ·
3k + 1)‖ = 25 + 3k.

A2.3. Conjecture 3

(Partly true; false as stated). Three sets are defined in Conjectures 5, 6 and 7.

These sets are well-ordered, which is proved in [2, Theorem A.5]. However a main

assertion of Conjecture 3, that the (largest) numbers of complexity 3n+u are exactly

the first natural numbers contained in these sequences when its terms are multiplied

by 3n is not true, because the numbers in these sequences are not all stable.

We may reformulate Conjecture 3, by stating that the stable numbers of com-

plexity 3n + u are equal to the stable numbers in these sequences when its terms

are multiplied by 3n. But then this revised conjecture is almost tautological.

With good will, we could say that the well-ordering part in Conjecture 3 is true

but not the rest.

A2.4. Conjectures 4, 5, 6, 7

All these conjectures are true. Conjecture 4 is true by definition if we take the

definition in Conjectures 5, 6 and 7 of the sequences. The three defined sets are

Su :=
{ n

3k
: n stable and ‖n‖ = 3k + u

}
, u ∈ {0, 1, 2}. (1)

Conjectures 3 and 4 together state that the sets Su are each well-ordered by the

reverse of the usual order of R.

Conjectures 5, 6, and 7 are proved in [2, Theorem A.5].

We may summarize as follows. Conjecture 3 says that there are certain sequences

with two properties: well-ordering and representation of certain numbers. The

second part is not true. Conjectures 5, 6 and 7 define some sequences and say that

they coincide with those of Conjecture 3. The property of well-ordering predicted

in Conjecture 3 is fulfilled by the sequences defined in Conjectures 5, 6 and 7.

There is a change of language between this paper [9] and that used in the subse-

quent papers [8], [2], and [7]. The conjectures in [9] speak of the sets Su defined in

(1); the later papers refer to the sets

Du
st := {δst(n) : n stable number with ‖n‖st ≡ u (mod 3)}.

The map x 7→ u− 3 log3 x maps Su into Du
st. To prove this, consider an element

n
3k
∈ Su with n stable and ‖n‖st = 3k + u; then

u− 3 log3

n

3k
= 3k + u− 3 log3 n = δst(n) ∈ Du

st.

This map is clearly bijective between these two sets. This map reverses the or-

der (it is strictly decreasing). Therefore it is an isomorphism of well-ordered sets.



INTEGERS: 24 (2024) 23

Therefore, for any ordinal 0 ≤ α < ωω and any u ∈ {0, 1, 2}, we have the follow-

ing relationship, between the α-th element Su[α] = n
3`

of Su and the α-th element

Du
st[α] = δst(n) of Du

st

u− 3 log3 Su[α] = Du
st[α].

This relationship will make translation easy in what follows.

A2.5. Conjecture 8

This conjecture is true. The sets Su are well-ordered by x 4 y if and only if x > y.

For a well-ordered set L and an ordinal α we denote by L[α] the element of L in

position α. With this notation, Conjecture 8, asserts that

lim
n→∞

S0[ωα+ n] = S2[α]/3, lim
n→∞

S1[ωα+ n] = S0[α], (2)

lim
n→∞

S2[ωα+ n] = S1[α]. (3)

Conjecture 8 is proved in [7, Thmeorem 5.1]. (The change of language in the

corollary offers no serious difficulty).

A2.6. Conjectures 9, 10, and 11

These conjectures are true after reformulation. Theorem 5.3 in [7] gives the true

version of these conjectures. We may state it in our language as the following.

Theorem 1. For any ordinal β < ωω, let Su[β] = n
3k

with ‖n‖st = 3k+u; then the

two sets

{Su+1[ωβ + r] : r ∈ Z≥0},{b(a3r + 1)

3r+k+ε
: n = ab, ‖n‖st = ‖a‖st + ‖b‖st, r ∈ Z≥0

}
have a finite symmetric difference. (Here we take u + 1 (mod 3) and ε = 0 for

u = 0, 1 and ε = 1 for u = 2).

The conditions on n = ab, with a and b in the second set, were not correct in

the statement of Conjectures 9, 10 and 11. Conjectures 9, 10 and 11 speak of the

difference between the two sets as consisting of the fractions corresponding to powers

of 2. This is not true; there are powers of two, but for example S0(ω2) = 1280
2187 is a

counterexample not of this form already appearing in the Gaceta paper!

A2.7. Table

We include a table summarizing the situation.
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Conjecture Truth value Solution found in

1 True [8, Theorem 13]
2 True (re-stated) [7, Theorem 1.18 and 1.20]

3(wo), 4, 5, 6, 7 True [2]
3(r) False

8 True [7, Theorem 5.1]
9, 10, 11 main part True (re-stated) [7, Theorem 5.3]
9, 10, 11 sporadics False

Table 2: Gaceta conjectures

In [10] we give a new interpretation of the conjectures as asserting the existence of

a surprising object encoding these properties, which we call an arithmetic compact

set.


