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Abstract

We give simple proofs that the basic facts concerning piecewise syndetic subsets of
N apply equally well to piecewise syndetic subsets of Nt, t ≥ 1. Some of these facts
apply also to piecewise syndetic subsets of NX for any infinite set X.

1. Introduction

We write N for the set of positive integers {1, 2, 3, . . . } and [0, d] for the interval

{0, 1, 2, . . . , d}. Let S be an infinite subset of N. If there exists d ∈ N such that

S + [0, d] contains an infinite interval, then S is syndetic. If there exists d ∈ N such

that S + [0, d] contains arbitrarily large finite intervals of N, then S is piecewise

syndetic. (As usual, S + [0, d] denotes the set {s + x : s ∈ S, x ∈ [0, d]}.) It is an

elementary fact (see for example [21]) that every piecewise syndetic set S contains

arbitrarily long arithmetic progressions.

We show that Fact 1 and Fact 2 below have natural extensions to Nt, t ≥ 1, and

that (after extending the definition of “piecewise syndetic”) Fact 1 extends also to

NX for any infinite set X.

Fact 1. The property of being piecewise syndetic is “partition regular;” that is, if

A1 ∪A2 ∪ · · · ∪Ar ⊆ N is piecewise syndetic then some Ai is piecewise syndetic.

In particular, if N is finitely colored, then some color class is piecewise syndetic.

This fact appears to have been first stated in [5], first proved explicitly in [6],

then discovered and proved independently by Hindman in [14], and proved again

by Furstenberg in [12]. (It is also mentioned in [13], [16], [20], and [21].) An

example showing that a set of positive upper density need not be piecewise syndetic

is given in [3], and is mentioned in [21]. A “canonical version” of Fact 1 (where N
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is colored with either finitely many colors or infinitely many colors) is given in [9].

An elementary proof (using van der Waerden’s theorem) that if S is a piecewise

syndetic subset of N then for each k ≥ 1 the set

{(a, d) : a, a+ d, a+ 2d, . . . , a+ kd ∈ S}

is piecewise syndetic in N2, is given in [2]. In [13] (p. 56) is a proof of the interesting

fact that if A,B are subsets of N with positive Banach density, then A + B is

piecewise syndetic. Other related work can be found in [8], [10], [11], and [22].

There are proofs of Facts 1 and 2 in [19].

To state Fact 2, we need the following definition.

Definition 1. For a finite subset S = {a1 < a2 < · · · < an} of N, the gap size of S

is

gs(S) = max{aj+1 − aj : 1 ≤ j ≤ n− 1}.

(If |S| = 1, we set gs(S) = 1.)

Fact 2. For all r ∈ N and f : N → N, there exists a (smallest) B(f ; r) ∈ N
such that if [1, B(f ; r)] is r-colored, there exists a monochromatic set S with |S| >
f(gs(S)).

(There is certainly no analogous result for monochromatic arithmetic progres-

sions. Jóseph Beck showed [1] in 1980 the existence of a 2-coloring of N for which

any monochromatic arithmetic progression S with gap size d has |S| ≤ (1+ε) log2 d,

for sufficiently large d. Similar results were proved in [7] and in [17].)

2. Extending Fact 1 to Nt.

Definition 2. Let t ∈ N. Any subset of Nt of the form a + [0,m− 1]t, where

a ∈ Nt,m ≥ 1, [0,m− 1]t = {(x1, x2, . . . , xt) : 0 ≤ xi ≤ m− 1, 1 ≤ i ≤ t},

is called a subcube of Nt of size mt.

Note that the word “size” here refers to cardinality. Thus, the subset [1, 1]+[0, 4]2

of N2 has size 52. The interval [10, 15] in N has size 6. A one-element subset of Nt

is a subcube of size 1.

Definition 3. For any t ≥ 1, if S is an infinite subset of Nt, we say that S is

piecewise syndetic if and only if for some d ∈ N, S+ [0, d]t contains arbitrarily large

(finite) subcubes of Nt.
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Note that for S ⊆ N, S is piecewise syndetic if and only if there exist d ∈ N and

arbitrarily long intervals M of N such that if [a, a + d] ⊂ M , then [a, a + d] ∩ S 6=
∅. (If d has this property then S + [0, d] contains arbitrarily long intervals. For

example, assume that S contains all multiples of 4. Then for any finite interval M ,

if [a, a+ 3] ⊂M then [a, a+ 3] ∩ S 6= ∅, and in fact S + [0, 3] will contain all of M

except possibly for the first 3 and last 3 elements of M .)

If S ⊆ N is not piecewise syndetic then the negation of the previous property

holds, i. e., for every d ∈ N there exists (a sufficiently large) d1 ∈ N such that every

interval [a, a+ d1] in N contains a subinterval E = [b, b+ d] such that E ∩ S = ∅.
For Nt, t ≥ 2, the same statements hold: If S ⊂ Nt, then S is piecewise syndetic

if and only if there exist d ∈ N and arbitrarily large subcubes M of Nt such that

every subcube of M of size dt meets S, and if S is not piecewise syndetic, then for

every d ∈ N there exists d1 ∈ N such that every subcube of Nt of size (d1)t contains

a subcube E of size dt such that E ∩ S = ∅.
The first statement (for t ≥ 2) is less obvious than in the case t = 1, so let us

illustrate it with an example for the case t = 2.

(In the next paragraph we write “subsquare” instead of “subcube” and “d × d
subsquare” for any set of the form (a, b) + [0, d− 1]2.)

Suppose S ⊆ N2 and S has the property that for some fixed d ∈ N there are

arbitrarily large subquares M of N2 such that every d× d subsquare of M meets S.

Now fix a large subsquare M of size say m2 such that every d× d subsquare of M

meets S. Let us assume, for convenience of visualizing, that m > 1000d and that

the subsquare M has its sides parallel to the x and y axes of a coordinate plane.

Consider the union, over all points (x, y) ∈ M ∩ S, of all the 2d × 2d subsquares

(x, y) + [0, 2d − 1]2. These subsquares evidently cover all of M except perhaps for

a vertical strip along the left side of M of width d, and a horizontal strip along the

bottom of M , of height d. This shows that S+ [0, 2d−1]2 contains arbitrarily large

subsquares, and hence S is piecewise syndetic.

The extension of Fact 1 to Nt has a simple proof.

Theorem 1. If r, t ∈ N, A ⊆ Nt, A is piecewise syndetic, and

A = A1 ∪A2 ∪ · · · ∪Ar,

then some Ai is piecewise syndetic.

Proof. (We follow here the wonderful proof of Theorem 1 (in the case t = 1) which

consists of the one-sentence statement in Chapter 14 of [15]: “One can verify combi-

natorially that the union of two sets which are not piecewise syndetic is not piecewise

syndetic.”)

Since A is piecewise syndetic, using induction on r it certainly suffices to show

that if B,C ⊆ Nt and each of B,C is not piecewise syndetic then B ∪ C is not

piecewise syndetic. Let d ∈ N be arbitrary. Since B is not piecewise syndetic,
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there exists d1 (which depends on d) such that every subcube of Nt of size (d1)t

contains a subcube of size dt which misses B. Since C is not piecewise syndetic,

there exists d2 (which depends on d1) such that every subcube of Nt of size (d2)t

contains a subcube of size (d1)t which misses C. Hence every subcube of Nt of size

(d2)t contains a subcube of Nt of size dt which misses B ∪ C. Since d2 exists for

every d ∈ N, B ∪ C is not piecewise syndetic.

3. Extending Fact 2 to Nt.

A version of Fact 2 for Nt requires a definition of the gap size of a finite subset S

of Nt. This is Definition 5 below, which requires Definition 4.

Definition 4. Let t ≥ 1 and let M be a subcube of Nt. Let d ∈ N and let S ⊆ Nt.

We say that S is d-dense in M if every subcube of M of size dt meets S.

The following definition is consistent with Definition 1 in the Introduction.

Definition 5. Let t ≥ 1, let S be a fixed finite subset of Nt, and let M be any

subcube of Nt which contains S. Let d(M) denote the smallest d ∈ N such that S

is d-dense in M . The minimum d(M), over all subcubes M of Nt which contain S,

is denoted by gs(S), and is called the gap size of S.

Theorem 2. Let r, t ∈ N and let f be any nondecreasing function from N to N.

Then there exists a (smallest) Bt(f ; r) ∈ N such that if [1, Bt(f ; r)]t is r-colored,

there exists a monochromatic set S such that |S| > f(gs(S)).

Let us first give a short proof that the negation of Theorem 2 implies the nega-

tion of Theorem 1. After that we give a more constructive proof.

Proof 1 of Theorem 2. Assume now that Theorem 2 is false. That is, there

are fixed r, t ∈ N and a nondecreasing function f : N → N such that for every

n ∈ N there is an r - coloring χn of [1, n]t such that whenever S ⊆ [1, n]t is

monochromatic with respect to χn, then |S| ≤ f(gs(S)). We now define a chain

of subsets L1 ⊇ L2 ⊇ L3 ⊇ · · · of {χ1, χ2, χ3, . . . } in the following way. This is

essentially an application of Kőnig’s infinity lemma [18].

Let Nt = {x1, x2, x3, . . . } be a fixed enumeration of the points of Nt.

Let L1 be an infinite subset of the set of colorings {χ1, χ2, χ3, . . . } such that all

of the colorings in L1 agree at x1. Let L2 be an infinite subset of L1 such that all

of the colorings in L2 agree on {x1, x2}. Continuing in this way, we obtain for each

u ≥ 1 an infinite set Lu of colorings (Lu is a subset of {χ1, χ2, χ3, . . . }), all of which

agree on the set {x1, x2, . . . , xu}.
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Now we define a coloring χ of Nt which will contradict Theorem 1. For each

u ≥ 1, choose hu ∈ Lu, and define the coloring χ by

χ(xu) = hu(xu), u ≥ 1.

By Theorem 1, some color class C of χ is piecewise syndetic, which means that

for some fixed d ∈ N, C+[0, d]t contains arbitrarily large (finite) subcubes M of Nt.

Then S = M ∩C is monochromatic with respect to χ and S is d-dense in M , hence

gs(S) ≤ d, so f(gs(S)) ≤ f(d). As |M | becomes large, so does |S| = |M∩C|. Let M

be contained in {x1, x2, . . . , xu} . Then χ restricted to {x1, x2, . . . , xu} is identical to

hu restricted to {x1, x2, . . . , xu}, so by the assumption on hu, |S| ≤ f(gs(S)) ≤ f(d),

contradicting Theorem 1, since d is fixed and S can be arbitrarily large.

The following lemmas are needed for our second proof of Theorem 2.

Lemma 1. Let t ≥ 1 be given and fixed throughout this Lemma and proof. Let

1 = m0 < m1 < m2 < · · · be any strictly increasing sequence of positive integers.

Then for each r ≥ 1, the following statement Sr holds:

Sr : Let M be any subcube of Nt of size (mr)t, and let an r-coloring of M be

given, with color classes C1, C2, . . . , Cr. Then there exist i ∈ N, with 1 ≤ i ≤ r, and

a subcube M ′ of M of size (mi)
t, such that Ci is mi−1 - dense in M ′. (That is,

every subcube of M ′ of size (mi−1)t meets the color class Ci.)

Proof. For r = 1, let M be any subcube of Nt of size (m1)t, and let M be 1-colored,

with color class C1. Then every subcube of M of size (m0)t meets C1.

Now let r ≥ 2 and assume that Sr−1 holds. Let M be any subcube of Nt of size

(mr)t, and let an r-coloring of M be given, with color classes C1, C2, . . . , Cr.

Case 1. If every subcube of M of size (mr−1)t meets Cr, then Sr holds by setting

i = r and M ′ = M , since then every size (mr−1)t subcube of M ′ meets Cr.

Case 2. There is a size (mr−1)t subcube M ′ of M which does not meet Cr. Now

we have an (r−1)-coloring of a size (mr−1)t subcube of Nt, and we are done by the

induction hypothesis.

Lemma 2. Given r, t ∈ N and f : N → N, there exists (a smallest) At(f ; r) ∈ N
such that if [1, At(f ; r)]t is r-colored, there exist d,m ∈ N, a color class C, and a

size mt subcube M of [1, At(f ; r)]t, such that C is d-dense in M and m > f(d).

Proof. Let r, t ∈ N and let f : N→ N be given. We apply Lemma 1 by defining

m0 = 1,m1 = 1 + f(m0),m2 = 1 + f(m1), . . . ,mr = 1 + f(mr−1).

We can now show that At(f ; r) ≤ mr. Let [1,mr]t be r-colored, with color classes

C1, . . . , Cr. By Lemma 1 there exists i, 1 ≤ i ≤ r, and a subcube M of [1,mr]t of size
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(mi)
t such that Ci is mi−1 - dense in M . Here M has size (mi)

t, and mi > f(mi−1),

so we can set m = mi, d = mi−1, C = Ci.

Proof 2 of Theorem 2. We apply Lemma 2 with the given r, t and the function

g : N→ N given by g(x) = xf(x) + x, and we show that

Bt(f ; r) ≤ At(g; r).

Let [1, At(g; r)]t be r-colored. By Lemma 2 there exist d,m ∈ N, a color class C,

and a size mt subcube M of [1, At(g; r)]t such that C is d-dense in M and m > g(d).

Let S = M ∩ C. Since S is monochromatic, there remains only to show that

|S| > f(gs(S)). We have that S is d-dense in M (since C is d-dense in M), so

d ≥ gs(S) by Definition 5. Since f is non-decreasing, f(d) ≥ f(gs(S)).

The subcube M of size mt contains [md ]t pairwise disjoint subcubes of size dt,

and each of these meets S. Finally, since m > g(d) = df(d) + d, we have

|S| ≥ ([
m

d
])t > ([

m

d
]− 1)t ≥ ([

df(d) + d

d
]− 1)t = (f(d))t ≥ f(d) ≥ f(gs(S)).

4. Replacing t by an Infinite Set X.

Perhaps it is of interest to note that some of these results extend to finite colorings

of NX , for any infinite set X. We outline this below, including some necessary

modifications of the definitions.

Definition 2̃. Let X be an infinite set. Any subset M of NX of the form

M = a + [0,m− 1]X , where a ∈ NX ,m ∈ N, is called a subcube of NX .

Of course, by Y X we mean {f : X → Y }.

Definition 3̃. Let X be an infinite set. A subset S of NX is called piecewise synde-

tic if for some d ∈ N, S+[0, d]X contains subcubes of NX of the form a+[0,m−1]X

for arbitrarily large m ∈ N.

Theorem 1̃. If r ∈ N, X is an infinite set, A ⊆ NX , A is piecewise syndetic, and

A = A1 ∪A2 ∪ · · · ∪Ar,

then some Ai is piecewise syndetic.
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Proof. The proof is the same as the proof of Theorem 1.

Definition 4̃. Let X be an infinite set and let M be a subcube of NX . Let d ∈ N
and let S ⊆ NX . We say that S is d-dense in M if every subcube of M of the form

b + [0, d− 1]X meets S.

Definition 5̃. Let X be an infinite set, let S be a fixed finite subset of NX , and let

M be any subcube of NX which contains S. Let d(M) denote the smallest d ∈ N
such that S is d-dense in M . The minimum of d(M), over all subcubes M of NX

which contain S, is denoted by gs(S) and is called the gap size of S.

It seems that Theorem 2 has no analogue in the context of NX . However, Lem-

mas 1 and 2 make perfect sense, with the same proofs, if they are re-stated in the

following way.

Lemma 1̃. Let X be a fixed infinite set. Let 1 = m0 < m1 < m2 < · · · be any

strictly increasing sequence of positive integers. Then for each r ≥ 1, the following

statement Sr holds:

Sr : Let M be any subcube of NX of the form a + [0,mr − 1]X , and let an r-

coloring of M be given, with color classes C1, C2, . . . , Cr. Then there exist i ∈ N,

with 1 ≤ i ≤ r, and a subcube M ′ of M of the form b + [0,mi − 1]X , such that Ci

is mi−1 - dense in M ′. (That is, every subcube of M ′ of the form c +[0,mi−1−1]X

meets the color class Ci.)

Lemma 2̃. Given r ∈ N and an infinite set X, and given f : N→ N, there exists (a

smallest) AX(f ; r) ∈ N such that if [1, AX(f ; r)]X is r-colored, there exist d,m ∈ N,
a color class C, and a subcube M of [1, AX(f ; r)]X of the form M = a + [0,m−1]X

such that C is d-dense in M and m > f(d).
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