PIECEWISE SYNDETIC SETS IN \mathbb{N}^{t} AND \mathbb{N}^{X}

Tom C. Brown
Department of Mathematics, Simon Fraser University, Burnaby, British
Columbia, Canada
tbrown@sfu.ca

Received: 4/18/23, Accepted: 12/15/23, Published: 1/2/24

Abstract

We give simple proofs that the basic facts concerning piecewise syndetic subsets of \mathbb{N} apply equally well to piecewise syndetic subsets of $\mathbb{N}^{t}, t \geq 1$. Some of these facts apply also to piecewise syndetic subsets of \mathbb{N}^{X} for any infinite set X.

1. Introduction

We write \mathbb{N} for the set of positive integers $\{1,2,3, \ldots\}$ and $[0, d]$ for the interval $\{0,1,2, \ldots, d\}$. Let S be an infinite subset of \mathbb{N}. If there exists $d \in \mathbb{N}$ such that $S+[0, d]$ contains an infinite interval, then S is syndetic. If there exists $d \in \mathbb{N}$ such that $S+[0, d]$ contains arbitrarily large finite intervals of \mathbb{N}, then S is piecewise syndetic. (As usual, $S+[0, d]$ denotes the set $\{s+x: s \in S, x \in[0, d]\}$.) It is an elementary fact (see for example [21]) that every piecewise syndetic set S contains arbitrarily long arithmetic progressions.

We show that Fact 1 and Fact 2 below have natural extensions to $\mathbb{N}^{t}, t \geq 1$, and that (after extending the definition of "piecewise syndetic") Fact 1 extends also to \mathbb{N}^{X} for any infinite set X.

Fact 1. The property of being piecewise syndetic is "partition regular;" that is, if $A_{1} \cup A_{2} \cup \cdots \cup A_{r} \subseteq \mathbb{N}$ is piecewise syndetic then some A_{i} is piecewise syndetic.

In particular, if \mathbb{N} is finitely colored, then some color class is piecewise syndetic. This fact appears to have been first stated in [5], first proved explicitly in [6], then discovered and proved independently by Hindman in [14], and proved again by Furstenberg in [12]. (It is also mentioned in [13], [16], [20], and [21].) An example showing that a set of positive upper density need not be piecewise syndetic is given in [3], and is mentioned in [21]. A "canonical version" of Fact 1 (where \mathbb{N}

[^0]is colored with either finitely many colors or infinitely many colors) is given in [9]. An elementary proof (using van der Waerden's theorem) that if S is a piecewise syndetic subset of \mathbb{N} then for each $k \geq 1$ the set
$$
\{(a, d): a, a+d, a+2 d, \ldots, a+k d \in S\}
$$
is piecewise syndetic in \mathbb{N}^{2}, is given in [2]. In [13] (p. 56) is a proof of the interesting fact that if A, B are subsets of \mathbb{N} with positive Banach density, then $A+B$ is piecewise syndetic. Other related work can be found in [8], [10], [11], and [22]. There are proofs of Facts 1 and 2 in [19].

To state Fact 2, we need the following definition.
Definition 1. For a finite subset $S=\left\{a_{1}<a_{2}<\cdots<a_{n}\right\}$ of \mathbb{N}, the gap size of S is

$$
g s(S)=\max \left\{a_{j+1}-a_{j}: 1 \leq j \leq n-1\right\}
$$

(If $|S|=1$, we set $g s(S)=1$.)
Fact 2. For all $r \in \mathbb{N}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$, there exists a (smallest) $B(f ; r) \in \mathbb{N}$ such that if $[1, B(f ; r)]$ is r-colored, there exists a monochromatic set S with $|S|>$ $f(g s(S))$.
(There is certainly no analogous result for monochromatic arithmetic progressions. Jóseph Beck showed [1] in 1980 the existence of a 2-coloring of \mathbb{N} for which any monochromatic arithmetic progression S with gap size d has $|S| \leq(1+\epsilon) \log _{2} d$, for sufficiently large d. Similar results were proved in [7] and in [17].)

2. Extending Fact 1 to \mathbb{N}^{t}.

Definition 2. Let $t \in \mathbb{N}$. Any subset of \mathbb{N}^{t} of the form $\mathbf{a}+[0, m-1]^{t}$, where

$$
\mathbf{a} \in \mathbb{N}^{t}, m \geq 1,[0, m-1]^{t}=\left\{\left(x_{1}, x_{2}, \ldots, x_{t}\right): 0 \leq x_{i} \leq m-1,1 \leq i \leq t\right\}
$$

is called a subcube of \mathbb{N}^{t} of size m^{t}.
Note that the word "size" here refers to cardinality. Thus, the subset $[1,1]+[0,4]^{2}$ of \mathbb{N}^{2} has size 5^{2}. The interval $[10,15]$ in \mathbb{N} has size 6 . A one-element subset of \mathbb{N}^{t} is a subcube of size 1 .

Definition 3. For any $t \geq 1$, if S is an infinite subset of \mathbb{N}^{t}, we say that S is piecewise syndetic if and only if for some $d \in \mathbb{N}, S+[0, d]^{t}$ contains arbitrarily large (finite) subcubes of \mathbb{N}^{t}.

Note that for $S \subseteq \mathbb{N}, S$ is piecewise syndetic if and only if there exist $d \in \mathbb{N}$ and arbitrarily long intervals M of \mathbb{N} such that if $[a, a+d] \subset M$, then $[a, a+d] \cap S \neq$ \emptyset. (If d has this property then $S+[0, d]$ contains arbitrarily long intervals. For example, assume that S contains all multiples of 4 . Then for any finite interval M, if $[a, a+3] \subset M$ then $[a, a+3] \cap S \neq \emptyset$, and in fact $S+[0,3]$ will contain all of M except possibly for the first 3 and last 3 elements of M.)

If $S \subseteq \mathbb{N}$ is not piecewise syndetic then the negation of the previous property holds, i. e., for every $d \in \mathbb{N}$ there exists (a sufficiently large) $d_{1} \in \mathbb{N}$ such that every interval $\left[a, a+d_{1}\right]$ in \mathbb{N} contains a subinterval $E=[b, b+d]$ such that $E \cap S=\emptyset$.

For $\mathbb{N}^{t}, t \geq 2$, the same statements hold: If $S \subset \mathbb{N}^{t}$, then S is piecewise syndetic if and only if there exist $d \in \mathbb{N}$ and arbitrarily large subcubes M of \mathbb{N}^{t} such that every subcube of M of size d^{t} meets S, and if S is not piecewise syndetic, then for every $d \in \mathbb{N}$ there exists $d_{1} \in \mathbb{N}$ such that every subcube of \mathbb{N}^{t} of size $\left(d_{1}\right)^{t}$ contains a subcube E of size d^{t} such that $E \cap S=\emptyset$.

The first statement (for $t \geq 2$) is less obvious than in the case $t=1$, so let us illustrate it with an example for the case $t=2$.
(In the next paragraph we write "subsquare" instead of "subcube" and " $d \times d$ subsquare" for any set of the form $(a, b)+[0, d-1]^{2}$.)

Suppose $S \subseteq \mathbb{N}^{2}$ and S has the property that for some fixed $d \in \mathbb{N}$ there are arbitrarily large subquares M of \mathbb{N}^{2} such that every $d \times d$ subsquare of M meets S. Now fix a large subsquare M of size say m^{2} such that every $d \times d$ subsquare of M meets S. Let us assume, for convenience of visualizing, that $m>1000 d$ and that the subsquare M has its sides parallel to the x and y axes of a coordinate plane. Consider the union, over all points $(x, y) \in M \cap S$, of all the $2 d \times 2 d$ subsquares $(x, y)+[0,2 d-1]^{2}$. These subsquares evidently cover all of M except perhaps for a vertical strip along the left side of M of width d, and a horizontal strip along the bottom of M, of height d. This shows that $S+[0,2 d-1]^{2}$ contains arbitrarily large subsquares, and hence S is piecewise syndetic.

The extension of Fact 1 to \mathbb{N}^{t} has a simple proof.
Theorem 1. If $r, t \in \mathbb{N}, A \subseteq \mathbb{N}^{t}, A$ is piecewise syndetic, and

$$
A=A_{1} \cup A_{2} \cup \cdots \cup A_{r}
$$

then some A_{i} is piecewise syndetic.
Proof. (We follow here the wonderful proof of Theorem 1 (in the case $t=1$) which consists of the one-sentence statement in Chapter 14 of [15]: "One can verify combinatorially that the union of two sets which are not piecewise syndetic is not piecewise syndetic.")

Since A is piecewise syndetic, using induction on r it certainly suffices to show that if $B, C \subseteq \mathbb{N}^{t}$ and each of B, C is not piecewise syndetic then $B \cup C$ is not piecewise syndetic. Let $d \in \mathbb{N}$ be arbitrary. Since B is not piecewise syndetic,
there exists d_{1} (which depends on d) such that every subcube of \mathbb{N}^{t} of size $\left(d_{1}\right)^{t}$ contains a subcube of size d^{t} which misses B. Since C is not piecewise syndetic, there exists d_{2} (which depends on d_{1}) such that every subcube of \mathbb{N}^{t} of size $\left(d_{2}\right)^{t}$ contains a subcube of size $\left(d_{1}\right)^{t}$ which misses C. Hence every subcube of \mathbb{N}^{t} of size $\left(d_{2}\right)^{t}$ contains a subcube of \mathbb{N}^{t} of size d^{t} which misses $B \cup C$. Since d_{2} exists for every $d \in \mathbb{N}, B \cup C$ is not piecewise syndetic.

3. Extending Fact 2 to \mathbb{N}^{t}.

A version of Fact 2 for \mathbb{N}^{t} requires a definition of the gap size of a finite subset S of \mathbb{N}^{t}. This is Definition 5 below, which requires Definition 4 .

Definition 4. Let $t \geq 1$ and let M be a subcube of \mathbb{N}^{t}. Let $d \in \mathbb{N}$ and let $S \subseteq \mathbb{N}^{t}$. We say that S is d-dense in M if every subcube of M of size d^{t} meets S.

The following definition is consistent with Definition 1 in the Introduction.
Definition 5. Let $t \geq 1$, let S be a fixed finite subset of \mathbb{N}^{t}, and let M be any subcube of \mathbb{N}^{t} which contains S. Let $d(M)$ denote the smallest $d \in \mathbb{N}$ such that S is d-dense in M. The minimum $d(M)$, over all subcubes M of \mathbb{N}^{t} which contain S, is denoted by $g s(S)$, and is called the gap size of S.

Theorem 2. Let $r, t \in \mathbb{N}$ and let f be any nondecreasing function from \mathbb{N} to \mathbb{N}. Then there exists a (smallest) $B_{t}(f ; r) \in \mathbb{N}$ such that if $\left[1, B_{t}(f ; r)\right]^{t}$ is r-colored, there exists a monochromatic set S such that $|S|>f(g s(S))$.

Let us first give a short proof that the negation of Theorem 2 implies the negation of Theorem 1. After that we give a more constructive proof.

Proof 1 of Theorem 2. Assume now that Theorem 2 is false. That is, there are fixed $r, t \in \mathbb{N}$ and a nondecreasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $n \in \mathbb{N}$ there is an r - coloring χ_{n} of $[1, n]^{t}$ such that whenever $S \subseteq[1, n]^{t}$ is monochromatic with respect to χ_{n}, then $|S| \leq f(g s(S))$. We now define a chain of subsets $L_{1} \supseteq L_{2} \supseteq L_{3} \supseteq \cdots$ of $\left\{\chi_{1}, \chi_{2}, \chi_{3}, \ldots\right\}$ in the following way. This is essentially an application of Kőnig's infinity lemma [18].

Let $\mathbb{N}^{t}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a fixed enumeration of the points of \mathbb{N}^{t}.
Let L_{1} be an infinite subset of the set of colorings $\left\{\chi_{1}, \chi_{2}, \chi_{3}, \ldots\right\}$ such that all of the colorings in L_{1} agree at x_{1}. Let L_{2} be an infinite subset of L_{1} such that all of the colorings in L_{2} agree on $\left\{x_{1}, x_{2}\right\}$. Continuing in this way, we obtain for each $u \geq 1$ an infinite set L_{u} of colorings (L_{u} is a subset of $\left\{\chi_{1}, \chi_{2}, \chi_{3}, \ldots\right\}$), all of which agree on the set $\left\{x_{1}, x_{2}, \ldots, x_{u}\right\}$.

Now we define a coloring χ of \mathbb{N}^{t} which will contradict Theorem 1. For each $u \geq 1$, choose $h_{u} \in L_{u}$, and define the coloring χ by

$$
\chi\left(x_{u}\right)=h_{u}\left(x_{u}\right), \quad u \geq 1
$$

By Theorem 1, some color class C of χ is piecewise syndetic, which means that for some fixed $d \in \mathbb{N}, C+[0, d]^{t}$ contains arbitrarily large (finite) subcubes M of \mathbb{N}^{t}. Then $S=M \cap C$ is monochromatic with respect to χ and S is d-dense in M, hence $g s(S) \leq d$, so $f(g s(S)) \leq f(d)$. As $|M|$ becomes large, so does $|S|=|M \cap C|$. Let M be contained in $\left\{x_{1}, x_{2}, \ldots, x_{u}\right\}$. Then χ restricted to $\left\{x_{1}, x_{2}, \ldots, x_{u}\right\}$ is identical to h_{u} restricted to $\left\{x_{1}, x_{2}, \ldots, x_{u}\right\}$, so by the assumption on $h_{u},|S| \leq f(g s(S)) \leq f(d)$, contradicting Theorem 1 , since d is fixed and S can be arbitrarily large.

The following lemmas are needed for our second proof of Theorem 2.
Lemma 1. Let $t \geq 1$ be given and fixed throughout this Lemma and proof. Let $1=m_{0}<m_{1}<m_{2}<\cdots$ be any strictly increasing sequence of positive integers. Then for each $r \geq 1$, the following statement S_{r} holds:
S_{r} : Let M be any subcube of \mathbb{N}^{t} of size $\left(m_{r}\right)^{t}$, and let an r-coloring of M be given, with color classes $C_{1}, C_{2}, \ldots, C_{r}$. Then there exist $i \in \mathbb{N}$, with $1 \leq i \leq r$, and a subcube M^{\prime} of M of size $\left(m_{i}\right)^{t}$, such that C_{i} is m_{i-1} - dense in M^{\prime}. (That is, every subcube of M^{\prime} of size $\left(m_{i-1}\right)^{t}$ meets the color class C_{i}.)

Proof. For $r=1$, let M be any subcube of \mathbb{N}^{t} of size $\left(m_{1}\right)^{t}$, and let M be 1-colored, with color class C_{1}. Then every subcube of M of size $\left(m_{0}\right)^{t}$ meets C_{1}.

Now let $r \geq 2$ and assume that S_{r-1} holds. Let M be any subcube of \mathbb{N}^{t} of size $\left(m_{r}\right)^{t}$, and let an r-coloring of M be given, with color classes $C_{1}, C_{2}, \ldots, C_{r}$.
Case 1. If every subcube of M of size $\left(m_{r-1}\right)^{t}$ meets C_{r}, then S_{r} holds by setting $i=r$ and $M^{\prime}=M$, since then every size $\left(m_{r-1}\right)^{t}$ subcube of M^{\prime} meets C_{r}.

Case 2. There is a size $\left(m_{r-1}\right)^{t}$ subcube M^{\prime} of M which does not meet C_{r}. Now we have an $(r-1)$-coloring of a size $\left(m_{r-1}\right)^{t}$ subcube of \mathbb{N}^{t}, and we are done by the induction hypothesis.

Lemma 2. Given $r, t \in \mathbb{N}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$, there exists (a smallest) $A_{t}(f ; r) \in \mathbb{N}$ such that if $\left[1, A_{t}(f ; r)\right]^{t}$ is r-colored, there exist $d, m \in \mathbb{N}$, a color class C, and a size m^{t} subcube M of $\left[1, A_{t}(f ; r)\right]^{t}$, such that C is d-dense in M and $m>f(d)$.

Proof. Let $r, t \in \mathbb{N}$ and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be given. We apply Lemma 1 by defining

$$
m_{0}=1, m_{1}=1+f\left(m_{0}\right), m_{2}=1+f\left(m_{1}\right), \ldots, m_{r}=1+f\left(m_{r-1}\right)
$$

We can now show that $A_{t}(f ; r) \leq m_{r}$. Let $\left[1, m_{r}\right]^{t}$ be r-colored, with color classes C_{1}, \ldots, C_{r}. By Lemma 1 there exists $i, 1 \leq i \leq r$, and a subcube M of $\left[1, m_{r}\right]^{t}$ of size
$\left(m_{i}\right)^{t}$ such that C_{i} is m_{i-1} - dense in M. Here M has size $\left(m_{i}\right)^{t}$, and $m_{i}>f\left(m_{i-1}\right)$, so we can set $m=m_{i}, d=m_{i-1}, C=C_{i}$.

Proof 2 of Theorem 2. We apply Lemma 2 with the given r, t and the function $g: \mathbb{N} \rightarrow \mathbb{N}$ given by $g(x)=x f(x)+x$, and we show that

$$
B_{t}(f ; r) \leq A_{t}(g ; r)
$$

Let $\left[1, A_{t}(g ; r)\right]^{t}$ be r-colored. By Lemma 2 there exist $d, m \in \mathbb{N}$, a color class C, and a size m^{t} subcube M of $\left[1, A_{t}(g ; r)\right]^{t}$ such that C is d-dense in M and $m>g(d)$.

Let $S=M \cap C$. Since S is monochromatic, there remains only to show that $|S|>f(g s(S))$. We have that S is d-dense in M (since C is d-dense in M), so $d \geq g s(S)$ by Definition 5. Since f is non-decreasing, $f(d) \geq f(g s(S))$.

The subcube M of size m^{t} contains $\left[\frac{m}{d}\right]^{t}$ pairwise disjoint subcubes of size d^{t}, and each of these meets S. Finally, since $m>g(d)=d f(d)+d$, we have

$$
|S| \geq\left(\left[\frac{m}{d}\right]\right)^{t}>\left(\left[\frac{m}{d}\right]-1\right)^{t} \geq\left(\left[\frac{d f(d)+d}{d}\right]-1\right)^{t}=(f(d))^{t} \geq f(d) \geq f(g s(S))
$$

4. Replacing t by an Infinite Set X.

Perhaps it is of interest to note that some of these results extend to finite colorings of \mathbb{N}^{X}, for any infinite set X. We outline this below, including some necessary modifications of the definitions.

Definition $\tilde{\mathbf{2}}$. Let X be an infinite set. Any subset M of \mathbb{N}^{X} of the form $M=\mathbf{a}+[0, m-1]^{X}$, where $\mathbf{a} \in \mathbb{N}^{X}, m \in \mathbb{N}$, is called a subcube of \mathbb{N}^{X}.

Of course, by Y^{X} we mean $\{f: X \rightarrow Y\}$.

Definition $\tilde{3}$. Let X be an infinite set. A subset S of \mathbb{N}^{X} is called piecewise syndetic if for some $d \in \mathbb{N}, S+[0, d]^{X}$ contains subcubes of \mathbb{N}^{X} of the form $\mathbf{a}+[0, m-1]^{X}$ for arbitrarily large $m \in \mathbb{N}$.

Theorem $\tilde{1}$. If $r \in \mathbb{N}, X$ is an infinite set, $A \subseteq \mathbb{N}^{X}, A$ is piecewise syndetic, and

$$
A=A_{1} \cup A_{2} \cup \cdots \cup A_{r}
$$

then some A_{i} is piecewise syndetic.

Proof. The proof is the same as the proof of Theorem 1.
Definition $\tilde{4}$. Let X be an infinite set and let M be a subcube of \mathbb{N}^{X}. Let $d \in \mathbb{N}$ and let $S \subseteq \mathbb{N}^{X}$. We say that S is d-dense in M if every subcube of M of the form $\mathbf{b}+[0, d-1]^{X}$ meets S.

Definition $\tilde{\mathbf{5}}$. Let X be an infinite set, let S be a fixed finite subset of \mathbb{N}^{X}, and let M be any subcube of \mathbb{N}^{X} which contains S. Let $d(M)$ denote the smallest $d \in \mathbb{N}$ such that S is d-dense in M. The minimum of $d(M)$, over all subcubes M of \mathbb{N}^{X} which contain S, is denoted by $g s(S)$ and is called the gap size of S.

It seems that Theorem 2 has no analogue in the context of \mathbb{N}^{X}. However, Lemmas 1 and 2 make perfect sense, with the same proofs, if they are re-stated in the following way.

Lemma $\tilde{1}$. Let X be a fixed infinite set. Let $1=m_{0}<m_{1}<m_{2}<\cdots$ be any strictly increasing sequence of positive integers. Then for each $r \geq 1$, the following statement S_{r} holds:
$S_{r}:$ Let M be any subcube of \mathbb{N}^{X} of the form $\boldsymbol{a}+\left[0, m_{r}-1\right]^{X}$, and let an r coloring of M be given, with color classes $C_{1}, C_{2}, \ldots, C_{r}$. Then there exist $i \in \mathbb{N}$, with $1 \leq i \leq r$, and a subcube M^{\prime} of M of the form $\mathbf{b}+\left[0, m_{i}-1\right]^{X}$, such that C_{i} is m_{i-1} - dense in M^{\prime}. (That is, every subcube of M^{\prime} of the form $\mathbf{c}+\left[0, m_{i-1}-1\right]^{X}$ meets the color class C_{i}.)

Lemma $\tilde{\mathbf{2}}$. Given $r \in \mathbb{N}$ and an infinite set X, and given $f: \mathbb{N} \rightarrow \mathbb{N}$, there exists (a smallest) $A_{X}(f ; r) \in \mathbb{N}$ such that if $\left[1, A_{X}(f ; r)\right]^{X}$ is r-colored, there exist $d, m \in \mathbb{N}$, a color class C, and a subcube M of $\left[1, A_{X}(f ; r)\right]^{X}$ of the form $M=\boldsymbol{a}+[0, m-1]^{X}$ such that C is d-dense in M and $m>f(d)$.

References

[1] Jóseph Beck, A remark concerning arithmetic progressions, J. Combin. Theory Ser. A 29 (1980), 376-379.
[2] M. Beiglböck, Arithmetic progressions in abundance by combinatorial tools, Proc. Amer. Math. Soc. 137 (2009), 3981-3983.
[3] V. Bergelson, N. Hindman, and R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, Topology Proc. 23 (1998), 23-60.
[4] A. Bernardino, R. Pacheco, and M. Silva, The gap structure of a family of integer subsets, Electron. J. Comb. 21 (2014), \#P147.
[5] T. Brown, On van der Waerden's theorem on arithmetic progressions, Notices Amer. Math. Soc. 16 (1969), 245.
[6] T. Brown, An interesting combinatorial method in the theory of locally finite semigroups, Pacific J. Math. 36 (1971), 285-289.
[7] T. Brown, On van der Waerden's theorem and the theorem of Paris and Harrington, J. Combin. Theory Ser. A 30 (1981), 108-111.
[8] T. Brown, Monochromatic forests of finite subsets of \mathbb{N}, Integers $\mathbf{0}$ (2000), \#A4, 7 pp.
[9] T. Brown, A canonical coloring theorem for piecewise syndetic subsets of \mathbb{N}, Integers 23 (2023), \#A54, 4 pp.
[10] P. Debnath and S. Goswami, Abundance Of arithmetic progressions in some combinatorially rich sets By elementary means, Integers 21 (2021), \#A105, 7 pp.
[11] E. Frittaion, Brown's lemma in second-order arithmetic, Fund. Math. 238 (2017), 269-283.
[12] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, New Jersey, 1981.
[13] I. Goldbring, Ultrafilters Throughout Mathematics, American Mathematical Society, Providence, Rhode Island, 2022.
[14] N. Hindman, Preimages of points under the natural map from $\beta(\mathbb{N} \times \mathbb{N})$ to $\beta \mathbb{N} \times \beta \mathbb{N}$, Proc. Amer. Math. Soc. 37 (1973), 603-608.
[15] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, 2nd ed., De Gruyter, Berlin, Boston, 2011.
[16] G. Lallement, Semigroups and Combinatorial Applications, John Wiley \& Sons, New York, 1979.
[17] J. Justin and G. Pirillo, On a natural extension of Jacob's ranks, J. Combin. Theory Ser. A 43 (1986), 205-218.
[18] D. Kőnig, Über eine Schlussweise aus dem Endlichen ins Unendliche, Acta Sci. Math. (Szeged) 3 (1927), 121-130.
[19] B. Landman and A. Robertson, Ramsey Theory on the Integers, 2nd ed., American Mathematical Society, Rhode Island, 2014.
[20] A. de Luca and S. Varricchio, Finiteness and Regularity in Semigroups and Formal Languages, Springer-Verlag, Berlin, 1998.
[21] A. Robertson, Fundamentals of Ramsey Theory, CTC Press, Boca Raton, FL, Abingdon, Oxon, 2021.
[22] H. Straubing, The Burnside problem for semigroups of matrices, in Combinatorics on Words, Progress and Perspectives, 279-295, Academic Press, Toronto, Ontario, 1983.

[^0]: DOI: 10.5281/zenodo. 10450904

