

PIECEWISE SYNDETIC SETS IN \mathbb{N}^t AND \mathbb{N}^X

Tom C. Brown Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada tbrown@sfu.ca

Received: 4/18/23, Accepted: 12/15/23, Published: 1/2/24

Abstract

We give simple proofs that the basic facts concerning piecewise syndetic subsets of \mathbb{N} apply equally well to piecewise syndetic subsets of $\mathbb{N}^t, t \geq 1$. Some of these facts apply also to piecewise syndetic subsets of \mathbb{N}^X for any infinite set X.

1. Introduction

We write N for the set of positive integers $\{1, 2, 3, ...\}$ and [0, d] for the interval $\{0, 1, 2, ..., d\}$. Let S be an infinite subset of N. If there exists $d \in \mathbb{N}$ such that S + [0, d] contains an infinite interval, then S is syndetic. If there exists $d \in \mathbb{N}$ such that S + [0, d] contains arbitrarily large finite intervals of N, then S is piecewise syndetic. (As usual, S + [0, d] denotes the set $\{s + x : s \in S, x \in [0, d]\}$.) It is an elementary fact (see for example [21]) that every piecewise syndetic set S contains arbitrarily long arithmetic progressions.

We show that Fact 1 and Fact 2 below have natural extensions to $\mathbb{N}^t, t \ge 1$, and that (after extending the definition of "piecewise syndetic") Fact 1 extends also to \mathbb{N}^X for any infinite set X.

Fact 1. The property of being piecewise syndetic is "partition regular;" that is, if $A_1 \cup A_2 \cup \cdots \cup A_r \subseteq \mathbb{N}$ is piecewise syndetic then some A_i is piecewise syndetic.

In particular, if \mathbb{N} is finitely colored, then some color class is piecewise syndetic. This fact appears to have been first stated in [5], first proved explicitly in [6], then discovered and proved independently by Hindman in [14], and proved again by Furstenberg in [12]. (It is also mentioned in [13], [16], [20], and [21].) An example showing that a set of positive upper density need not be piecewise syndetic is given in [3], and is mentioned in [21]. A "canonical version" of Fact 1 (where \mathbb{N}

DOI: 10.5281/zenodo.10450904

is colored with either finitely many colors or infinitely many colors) is given in [9]. An elementary proof (using van der Waerden's theorem) that if S is a piecewise syndetic subset of \mathbb{N} then for each $k \geq 1$ the set

$$\{(a,d): a, a+d, a+2d, \dots, a+kd \in S\}$$

is piecewise syndetic in \mathbb{N}^2 , is given in [2]. In [13] (p. 56) is a proof of the interesting fact that if A, B are subsets of \mathbb{N} with positive Banach density, then A + B is piecewise syndetic. Other related work can be found in [8], [10], [11], and [22]. There are proofs of Facts 1 and 2 in [19].

To state Fact 2, we need the following definition.

Definition 1. For a finite subset $S = \{a_1 < a_2 < \cdots < a_n\}$ of \mathbb{N} , the gap size of S is

$$gs(S) = \max\{a_{j+1} - a_j : 1 \le j \le n - 1\}.$$

(If |S| = 1, we set gs(S) = 1.)

Fact 2. For all $r \in \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$, there exists a (smallest) $B(f;r) \in \mathbb{N}$ such that if [1, B(f;r)] is *r*-colored, there exists a monochromatic set *S* with |S| > f(gs(S)).

(There is certainly no analogous result for monochromatic arithmetic progressions. Jóseph Beck showed [1] in 1980 the existence of a 2-coloring of \mathbb{N} for which any monochromatic arithmetic progression S with gap size d has $|S| \leq (1+\epsilon) \log_2 d$, for sufficiently large d. Similar results were proved in [7] and in [17].)

2. Extending Fact 1 to \mathbb{N}^t .

Definition 2. Let $t \in \mathbb{N}$. Any subset of \mathbb{N}^t of the form $\mathbf{a} + [0, m-1]^t$, where

 $\mathbf{a} \in \mathbb{N}^t, m \ge 1, [0, m-1]^t = \{(x_1, x_2, \dots, x_t) : 0 \le x_i \le m-1, 1 \le i \le t\},\$

is called a *subcube* of \mathbb{N}^t of *size* m^t .

Note that the word "size" here refers to cardinality. Thus, the subset $[1,1]+[0,4]^2$ of \mathbb{N}^2 has size 5². The interval [10,15] in \mathbb{N} has size 6. A one-element subset of \mathbb{N}^t is a subcube of size 1.

Definition 3. For any $t \ge 1$, if S is an infinite subset of \mathbb{N}^t , we say that S is *piecewise syndetic* if and only if for some $d \in \mathbb{N}, S + [0, d]^t$ contains arbitrarily large (finite) subcubes of \mathbb{N}^t .

Note that for $S \subseteq \mathbb{N}$, S is piecewise syndetic if and only if there exist $d \in \mathbb{N}$ and arbitrarily long intervals M of \mathbb{N} such that if $[a, a + d] \subset M$, then $[a, a + d] \cap S \neq \emptyset$. (If d has this property then S + [0, d] contains arbitrarily long intervals. For example, assume that S contains all multiples of 4. Then for any finite interval M, if $[a, a + 3] \subset M$ then $[a, a + 3] \cap S \neq \emptyset$, and in fact S + [0, 3] will contain all of M except possibly for the first 3 and last 3 elements of M.)

If $S \subseteq \mathbb{N}$ is *not* piecewise syndetic then the negation of the previous property holds, i. e., for every $d \in \mathbb{N}$ there exists (a sufficiently large) $d_1 \in \mathbb{N}$ such that every interval $[a, a + d_1]$ in \mathbb{N} contains a subinterval E = [b, b + d] such that $E \cap S = \emptyset$.

For $\mathbb{N}^t, t \geq 2$, the same statements hold: If $S \subset \mathbb{N}^t$, then S is piecewise syndetic if and only if there exist $d \in \mathbb{N}$ and arbitrarily large subcubes M of \mathbb{N}^t such that every subcube of M of size d^t meets S, and if S is *not* piecewise syndetic, then for every $d \in \mathbb{N}$ there exists $d_1 \in \mathbb{N}$ such that every subcube of \mathbb{N}^t of size $(d_1)^t$ contains a subcube E of size d^t such that $E \cap S = \emptyset$.

The first statement (for $t \ge 2$) is less obvious than in the case t = 1, so let us illustrate it with an example for the case t = 2.

(In the next paragraph we write "subsquare" instead of "subcube" and " $d \times d$ subsquare" for any set of the form $(a, b) + [0, d - 1]^2$.)

Suppose $S \subseteq \mathbb{N}^2$ and S has the property that for some fixed $d \in \mathbb{N}$ there are arbitrarily large subquares M of \mathbb{N}^2 such that every $d \times d$ subsquare of M meets S. Now fix a large subsquare M of size say m^2 such that every $d \times d$ subsquare of Mmeets S. Let us assume, for convenience of visualizing, that m > 1000d and that the subsquare M has its sides parallel to the x and y axes of a coordinate plane. Consider the union, over all points $(x, y) \in M \cap S$, of all the $2d \times 2d$ subsquares $(x, y) + [0, 2d - 1]^2$. These subsquares evidently cover all of M except perhaps for a vertical strip along the left side of M of width d, and a horizontal strip along the bottom of M, of height d. This shows that $S + [0, 2d - 1]^2$ contains arbitrarily large subsquares, and hence S is piecewise syndetic.

The extension of Fact 1 to \mathbb{N}^t has a simple proof.

Theorem 1. If $r, t \in \mathbb{N}, A \subseteq \mathbb{N}^t, A$ is piecewise syndetic, and

$$A = A_1 \cup A_2 \cup \dots \cup A_r,$$

then some A_i is piecewise syndetic.

Proof. (We follow here the wonderful proof of Theorem 1 (in the case t = 1) which consists of the one-sentence statement in Chapter 14 of [15]: "One can verify combinatorially that the union of two sets which are not piecewise syndetic is not piecewise syndetic.")

Since A is piecewise syndetic, using induction on r it certainly suffices to show that if $B, C \subseteq \mathbb{N}^t$ and each of B, C is not piecewise syndetic then $B \cup C$ is not piecewise syndetic. Let $d \in \mathbb{N}$ be arbitrary. Since B is not piecewise syndetic, there exists d_1 (which depends on d) such that every subcube of \mathbb{N}^t of size $(d_1)^t$ contains a subcube of size d^t which misses B. Since C is not piecewise syndetic, there exists d_2 (which depends on d_1) such that every subcube of \mathbb{N}^t of size $(d_2)^t$ contains a subcube of size $(d_1)^t$ which misses C. Hence every subcube of \mathbb{N}^t of size $(d_2)^t$ contains a subcube of \mathbb{N}^t of size d^t which misses $B \cup C$. Since d_2 exists for every $d \in \mathbb{N}, B \cup C$ is not piecewise syndetic.

3. Extending Fact 2 to \mathbb{N}^t .

A version of Fact 2 for \mathbb{N}^t requires a definition of the *gap size* of a finite subset S of \mathbb{N}^t . This is Definition 5 below, which requires Definition 4.

Definition 4. Let $t \ge 1$ and let M be a subcube of \mathbb{N}^t . Let $d \in \mathbb{N}$ and let $S \subseteq \mathbb{N}^t$. We say that S is *d*-dense in M if every subcube of M of size d^t meets S.

The following definition is consistent with Definition 1 in the Introduction.

Definition 5. Let $t \ge 1$, let S be a fixed finite subset of \mathbb{N}^t , and let M be any subcube of \mathbb{N}^t which contains S. Let d(M) denote the smallest $d \in \mathbb{N}$ such that S is d-dense in M. The minimum d(M), over all subcubes M of \mathbb{N}^t which contain S, is denoted by gs(S), and is called the gap size of S.

Theorem 2. Let $r, t \in \mathbb{N}$ and let f be any nondecreasing function from \mathbb{N} to \mathbb{N} . Then there exists a (smallest) $B_t(f;r) \in \mathbb{N}$ such that if $[1, B_t(f;r)]^t$ is r-colored, there exists a monochromatic set S such that |S| > f(gs(S)).

Let us first give a short proof that the negation of Theorem 2 implies the negation of Theorem 1. After that we give a more constructive proof.

Proof 1 of Theorem 2. Assume now that Theorem 2 is false. That is, there are fixed $r, t \in \mathbb{N}$ and a nondecreasing function $f : \mathbb{N} \to \mathbb{N}$ such that for every $n \in \mathbb{N}$ there is an r - coloring χ_n of $[1,n]^t$ such that whenever $S \subseteq [1,n]^t$ is monochromatic with respect to χ_n , then $|S| \leq f(gs(S))$. We now define a chain of subsets $L_1 \supseteq L_2 \supseteq L_3 \supseteq \cdots$ of $\{\chi_1, \chi_2, \chi_3, \ldots\}$ in the following way. This is essentially an application of Kőnig's infinity lemma [18].

Let $\mathbb{N}^t = \{x_1, x_2, x_3, \dots\}$ be a fixed enumeration of the points of \mathbb{N}^t .

Let L_1 be an infinite subset of the set of colorings $\{\chi_1, \chi_2, \chi_3, ...\}$ such that all of the colorings in L_1 agree at x_1 . Let L_2 be an infinite subset of L_1 such that all of the colorings in L_2 agree on $\{x_1, x_2\}$. Continuing in this way, we obtain for each $u \ge 1$ an infinite set L_u of colorings $(L_u$ is a subset of $\{\chi_1, \chi_2, \chi_3, ...\}$, all of which agree on the set $\{x_1, x_2, \ldots, x_u\}$.

Now we define a coloring χ of \mathbb{N}^t which will contradict Theorem 1. For each $u \geq 1$, choose $h_u \in L_u$, and define the coloring χ by

$$\chi(x_u) = h_u(x_u), \quad u \ge 1.$$

By Theorem 1, some color class C of χ is piecewise syndetic, which means that for some fixed $d \in \mathbb{N}, C + [0, d]^t$ contains arbitrarily large (finite) subcubes M of \mathbb{N}^t . Then $S = M \cap C$ is monochromatic with respect to χ and S is d-dense in M, hence $gs(S) \leq d$, so $f(gs(S)) \leq f(d)$. As |M| becomes large, so does $|S| = |M \cap C|$. Let Mbe contained in $\{x_1, x_2, \ldots, x_u\}$. Then χ restricted to $\{x_1, x_2, \ldots, x_u\}$ is identical to h_u restricted to $\{x_1, x_2, \ldots, x_u\}$, so by the assumption on $h_u, |S| \leq f(gs(S)) \leq f(d)$, contradicting Theorem 1, since d is fixed and S can be arbitrarily large. \Box

The following lemmas are needed for our second proof of Theorem 2.

Lemma 1. Let $t \ge 1$ be given and fixed throughout this Lemma and proof. Let $1 = m_0 < m_1 < m_2 < \cdots$ be any strictly increasing sequence of positive integers. Then for each $r \ge 1$, the following statement S_r holds:

 S_r : Let M be any subcube of \mathbb{N}^t of size $(m_r)^t$, and let an r-coloring of M be given, with color classes C_1, C_2, \ldots, C_r . Then there exist $i \in \mathbb{N}$, with $1 \leq i \leq r$, and a subcube M' of M of size $(m_i)^t$, such that C_i is m_{i-1} - dense in M'. (That is, every subcube of M' of size $(m_{i-1})^t$ meets the color class C_i .)

Proof. For r = 1, let M be any subcube of \mathbb{N}^t of size $(m_1)^t$, and let M be 1-colored, with color class C_1 . Then every subcube of M of size $(m_0)^t$ meets C_1 .

Now let $r \geq 2$ and assume that S_{r-1} holds. Let M be any subcube of \mathbb{N}^t of size $(m_r)^t$, and let an *r*-coloring of M be given, with color classes C_1, C_2, \ldots, C_r .

Case 1. If every subcube of M of size $(m_{r-1})^t$ meets C_r , then S_r holds by setting i = r and M' = M, since then every size $(m_{r-1})^t$ subcube of M' meets C_r .

Case 2. There is a size $(m_{r-1})^t$ subcube M' of M which does not meet C_r . Now we have an (r-1)-coloring of a size $(m_{r-1})^t$ subcube of \mathbb{N}^t , and we are done by the induction hypothesis.

Lemma 2. Given $r, t \in \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$, there exists (a smallest) $A_t(f;r) \in \mathbb{N}$ such that if $[1, A_t(f;r)]^t$ is r-colored, there exist $d, m \in \mathbb{N}$, a color class C, and a size m^t subcube M of $[1, A_t(f;r)]^t$, such that C is d-dense in M and m > f(d).

Proof. Let $r, t \in \mathbb{N}$ and let $f : \mathbb{N} \to \mathbb{N}$ be given. We apply Lemma 1 by defining

 $m_0 = 1, m_1 = 1 + f(m_0), m_2 = 1 + f(m_1), \dots, m_r = 1 + f(m_{r-1}).$

We can now show that $A_t(f;r) \leq m_r$. Let $[1, m_r]^t$ be *r*-colored, with color classes C_1, \ldots, C_r . By Lemma 1 there exists $i, 1 \leq i \leq r$, and a subcube M of $[1, m_r]^t$ of size

 $(m_i)^t$ such that C_i is m_{i-1} - dense in M. Here M has size $(m_i)^t$, and $m_i > f(m_{i-1})$, so we can set $m = m_i$, $d = m_{i-1}$, $C = C_i$.

Proof 2 of Theorem 2. We apply Lemma 2 with the given r, t and the function $g: \mathbb{N} \to \mathbb{N}$ given by g(x) = xf(x) + x, and we show that

$$B_t(f;r) \le A_t(g;r).$$

Let $[1, A_t(g; r)]^t$ be r-colored. By Lemma 2 there exist $d, m \in \mathbb{N}$, a color class C, and a size m^t subcube M of $[1, A_t(g; r)]^t$ such that C is d-dense in M and m > g(d).

Let $S = M \cap C$. Since S is monochromatic, there remains only to show that |S| > f(gs(S)). We have that S is d-dense in M (since C is d-dense in M), so $d \ge gs(S)$ by Definition 5. Since f is non-decreasing, $f(d) \ge f(gs(S))$.

The subcube M of size m^t contains $[\frac{m}{d}]^t$ pairwise disjoint subcubes of size d^t , and each of these meets S. Finally, since m > g(d) = df(d) + d, we have

$$|S| \ge ([\frac{m}{d}])^t > ([\frac{m}{d}] - 1)^t \ge ([\frac{df(d) + d}{d}] - 1)^t = (f(d))^t \ge f(d) \ge f(gs(S)).$$

4. Replacing t by an Infinite Set X.

Perhaps it is of interest to note that some of these results extend to finite colorings of \mathbb{N}^X , for any infinite set X. We outline this below, including some necessary modifications of the definitions.

Definition 2. Let X be an infinite set. Any subset M of \mathbb{N}^X of the form $M = \mathbf{a} + [0, m-1]^X$, where $\mathbf{a} \in \mathbb{N}^X, m \in \mathbb{N}$, is called a *subcube* of \mathbb{N}^X .

Of course, by Y^X we mean $\{f : X \to Y\}$.

Definition 3. Let X be an infinite set. A subset S of \mathbb{N}^X is called *piecewise synde*tic if for some $d \in \mathbb{N}$, $S + [0, d]^X$ contains subcubes of \mathbb{N}^X of the form $\mathbf{a} + [0, m-1]^X$ for arbitrarily large $m \in \mathbb{N}$.

Theorem 1. If $r \in \mathbb{N}$, X is an infinite set, $A \subseteq \mathbb{N}^X$, A is piecewise syndetic, and

$$A = A_1 \cup A_2 \cup \cdots \cup A_r,$$

then some A_i is piecewise syndetic.

Proof. The proof is the same as the proof of Theorem 1.

Definition 4. Let X be an infinite set and let M be a subcube of \mathbb{N}^X . Let $d \in \mathbb{N}$ and let $S \subseteq \mathbb{N}^X$. We say that S is *d*-dense in M if every subcube of M of the form $\mathbf{b} + [0, d-1]^X$ meets S.

Definition 5. Let X be an infinite set, let S be a fixed finite subset of \mathbb{N}^X , and let M be any subcube of \mathbb{N}^X which contains S. Let d(M) denote the smallest $d \in \mathbb{N}$ such that S is d-dense in M. The minimum of d(M), over all subcubes M of \mathbb{N}^X which contain S, is denoted by gs(S) and is called the gap size of S.

It seems that Theorem 2 has no analogue in the context of \mathbb{N}^X . However, Lemmas 1 and 2 make perfect sense, with the same proofs, if they are re-stated in the following way.

Lemma 1. Let X be a fixed infinite set. Let $1 = m_0 < m_1 < m_2 < \cdots$ be any strictly increasing sequence of positive integers. Then for each $r \ge 1$, the following statement S_r holds:

 S_r : Let M be any subcube of \mathbb{N}^X of the form $\mathbf{a} + [0, m_r - 1]^X$, and let an rcoloring of M be given, with color classes C_1, C_2, \ldots, C_r . Then there exist $i \in \mathbb{N}$,
with $1 \leq i \leq r$, and a subcube M' of M of the form $\mathbf{b} + [0, m_i - 1]^X$, such that C_i is m_{i-1} - dense in M'. (That is, every subcube of M' of the form $\mathbf{c} + [0, m_{i-1} - 1]^X$ meets the color class C_i .)

Lemma 2. Given $r \in \mathbb{N}$ and an infinite set X, and given $f : \mathbb{N} \to \mathbb{N}$, there exists (a smallest) $A_X(f;r) \in \mathbb{N}$ such that if $[1, A_X(f;r)]^X$ is r-colored, there exist $d, m \in \mathbb{N}$, a color class C, and a subcube M of $[1, A_X(f;r)]^X$ of the form $M = \mathbf{a} + [0, m-1]^X$ such that C is d-dense in M and m > f(d).

References

- Jóseph Beck, A remark concerning arithmetic progressions, J. Combin. Theory Ser. A 29 (1980), 376-379.
- [2] M. Beiglböck, Arithmetic progressions in abundance by combinatorial tools, Proc. Amer. Math. Soc. 137 (2009), 3981-3983.
- [3] V. Bergelson, N. Hindman, and R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, *Topology Proc.* 23 (1998), 23-60.
- [4] A. Bernardino, R. Pacheco, and M. Silva, The gap structure of a family of integer subsets, *Electron. J. Comb.* 21 (2014), #P147.
- [5] T. Brown, On van der Waerden's theorem on arithmetic progressions, Notices Amer. Math. Soc. 16 (1969), 245.

- [6] T. Brown, An interesting combinatorial method in the theory of locally finite semigroups, *Pacific J. Math.* 36 (1971), 285-289.
- [7] T. Brown, On van der Waerden's theorem and the theorem of Paris and Harrington, J. Combin. Theory Ser. A 30 (1981), 108-111.
- [8] T. Brown, Monochromatic forests of finite subsets of N, Integers 0 (2000), #A4, 7 pp.
- [9] T. Brown, A canonical coloring theorem for piecewise syndetic subsets of N, Integers 23 (2023), #A54, 4 pp.
- [10] P. Debnath and S. Goswami, Abundance Of arithmetic progressions in some combinatorially rich sets By elementary means, *Integers* 21 (2021), #A105, 7 pp.
- [11] E. Frittaion, Brown's lemma in second-order arithmetic, Fund. Math. 238 (2017), 269-283.
- [12] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, New Jersey, 1981.
- [13] I. Goldbring, Ultrafilters Throughout Mathematics, American Mathematical Society, Providence, Rhode Island, 2022.
- [14] N. Hindman, Preimages of points under the natural map from $\beta(\mathbb{N} \times \mathbb{N})$ to $\beta\mathbb{N} \times \beta\mathbb{N}$, Proc. Amer. Math. Soc. **37** (1973), 603-608.
- [15] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, 2nd ed., De Gruyter, Berlin, Boston, 2011.
- [16] G. Lallement, Semigroups and Combinatorial Applications, John Wiley & Sons, New York, 1979.
- [17] J. Justin and G. Pirillo, On a natural extension of Jacob's ranks, J. Combin. Theory Ser. A 43 (1986), 205-218.
- [18] D. Kőnig, Über eine Schlussweise aus dem Endlichen ins Unendliche, Acta Sci. Math. (Szeged) 3 (1927), 121-130.
- [19] B. Landman and A. Robertson, Ramsey Theory on the Integers, 2nd ed., American Mathematical Society, Rhode Island, 2014.
- [20] A. de Luca and S. Varricchio, Finiteness and Regularity in Semigroups and Formal Languages, Springer-Verlag, Berlin, 1998.
- [21] A. Robertson, Fundamentals of Ramsey Theory, CTC Press, Boca Raton, FL, Abingdon, Oxon, 2021.
- [22] H. Straubing, The Burnside problem for semigroups of matrices, in *Combinatorics on Words*, *Progress and Perspectives*, 279-295, Academic Press, Toronto, Ontario, 1983.