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Abstract

In this study, all Narayana numbers which are concatenations of two base b repdigits
are found. Lower bounds for linear forms in logarithms of algebraic numbers and a
modified Baker-Davenport reduction technique are used in the main result’s proof.

1. Introduction

For an integer b ≥ 2, a positive integer R is called a base b repdigit if it has only

one distinct digit in its base b representations. In particular, such a number has

the form a
(
bm−1
b−1

)
for some positive integers a,m with m ≥ 1 and 0 ≤ a ≤ b − 1.

When b = 10, we omit the base and simply say R is a repdigit.

Given positive integers A1, A2, · · · , At, the concatenation of their base b strings

of digits is A1A2 · · ·At(b). A base b repdigit R is of the form R = a . . . a︸ ︷︷ ︸
m times

(b),

whereas concatenation of two base b repdigits is a1 . . . a1︸ ︷︷ ︸
l times

a2 . . . a2︸ ︷︷ ︸
m times

(b), where a1, a2 ∈

{0, 1, . . . , b− 1} with a1 > 0.

Diophantine equations with repdigits and terms from linear recurrent sequences

like Fibonacci, Lucas, Pell, Pell-Lucas, balancing, and Lucas-balancing sequences

have recently gained much attention from researchers. The terms of various binary

and ternary recurrent sequences, as well as the sum, difference, product, and con-

catenations of repdigits are covered in a number of works. For example, Lucas,

Pell, and Pell-Lucas numbers as the sum of two repdigits have been studied in [4]

and [5]. Bravo et al. [7] obtained all base b repdigits which are the sum of two
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Narayana numbers. Alahmadi et al. [1] found that 13, 21, 34, 55, 59, 144, 233, and

377 are the only Fibonacci numbers which are concatenations of two repdigits. In

[9], Ddamulira studied all the Padovan numbers which are concatenations of two

repdigits. For more, one can see [2, 6, 10, 12, 13, 14], and [18]. In our study, we

find all Narayana numbers which are concatenations of two base b repdigits, where

2 ≤ b ≤ 9. In particular, we solve the Diophantine equation

Nn = a1 . . . a1︸ ︷︷ ︸
l times

a2 . . . a2︸ ︷︷ ︸
m times

(b) = a1

(
bl − 1

b− 1

)
· bm + a2

(
bm − 1

b− 1

)
(1)

such that n,m, l ≥ 1 and a1, a2 ∈ {0, 1, . . . , b− 1} with a1 > 0 and a1 6= a2.

Narayana numbers were derived from a problem involving cows and calves pro-

posed by the Indian mathematician Narayana Pandit[3]. The Narayana’s cows

sequence {Nn}n≥0 can be expressed as the following ternary linear recurrence se-

quence:

Nn+3 = Nn+2 +Nn (2)

for n ≥ 0 with initial condition (N0, N1, N2) = (0, 1, 1). The first few terms of this

sequence are

0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, · · · .

The characteristic polynomial of the Narayana’s cows sequence is f(x) = x3−x2−1,

which is irreducible in Q[x]. The zeros of this polynomial are α (≈ 1.46557) and

two conjugate complex zeros β and γ with |β| = |γ| < 1. The following are some

properties of the Narayana’s sequence (see Lemma 5 in [7]). The Binet formula of

it is given by

Nn = aαn + bβn + cγn for all n ≥ 0,

where

a =
α

(α− β)(α− γ)
, b =

β

(β − α)(β − γ)
, c =

γ

(γ − α)(γ − β)
.

It can be alternatively written as Nn = Cαα
n+2 + Cββ

n+2 + Cγγ
n+2 for all n ≥ 0,

where Cx = 1
x3+2 for x ∈ {α, β, γ}. The minimal polynomial of Cα is 31x3− 31x2 +

10x− 1 and all the zeros of this polynomial are inside the unit circle. Numerically,

the following estimates hold for α,Cα and Cββ
n+2 + Cγγ

n+2:

1.45 < α < 1.5; 5 < C−1
α < 5.15; |Cββn+2 + Cγγ

n+2| < 1/2 for all n ≥ 1.

It is simple to demonstrate by induction that

αn−2 ≤ Nn ≤ αn−1 for all n ≥ 1. (3)

Our main result is the following.
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Theorem 1. The only Narayana numbers that are concatenations of two repdigits

in base b with 2 ≤ b ≤ 9 are 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 277, and 406. More

precisely,

2 = N4 = 102,

3 = N5 = 103,

4 = N6 = 1002 = 104,

6 = N7 = 1102 = 203 = 124 = 106,

9 = N8 = 1003 = 214 = 145 = 136 = 127 = 109,

13 = N9 = 314 = 235 = 216 = 167 = 158 = 149,

19 = N10 = 345 = 316 = 257 = 238 = 219,

28 = N11 = 111002 = 407 = 348 = 319,

41 = N12 = 11123 = 2214 = 567 = 518 = 459,

60 = N13 = 1111002 = 3304 = 2205 = 1147 = 748,

88 = N14 = 2246,

277 = N17 = 5447 = 3379, and

406 = N18 = 31115.

For the proof, we approach the standard procedure of obtaining bounds for cer-

tain linear forms in (nonzero) logarithms. The upper bounds are obtained via a

manipulation of the associated Binet’s formula for Narayana’s sequence. For the

lower bounds, we use the celebrated Baker’s theorem on lower bounds for nonzero

linear forms in logarithms of algebraic numbers due to Matveev. The bounds on

the variables obtained via Baker’s theorem are usually too large for computational

purposes. To reduce the bounds, we use the Baker–Davenport reduction procedure.

2. Preliminaries

We prove the following lemma which gives a relation between n and l +m of (1).

Lemma 1. All solutions to Equation (1) satisfy

(l +m− 1) log b+ logα < n logα < (l +m) log b+ 1.

Proof. From (1) and (3), we get

αn−2 ≤ Nn < bl+m.

Taking the logarithm on both sides, we obtain

(n− 2) logα < (l +m) log b.
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This leads to

n logα < (l +m) log b+ 2 logα < (l +m) log b+ 1.

On the other hand, for the lower bound, (1) implies

bl+m−1 < Nn ≤ αn−1.

Taking the logarithm on both sides, we get

(l +m− 1) log b < (n− 1) logα,

which implies

(l +m− 1) log b+ logα < n logα.

Baker’s theory plays an important role in reducing the bounds concerning linear

forms in logarithms of algebraic numbers. Let η be an algebraic number with

minimal primitive polynomial

f (X) = a0(X − η(1)) . . . (X − η(k)) ∈ Z [X],

where a0 > 0, and η(i)’s are conjugates of η. Then the logarithmic height of η is

given by

h(η) =
1

k

log a0 +

k∑
j=1

max{0, log |η(j)|}

 .

In particular, if η = a/b is a rational number with gcd(a, b) = 1 and b > 0, then

h(η) = log(max{|a|, b}). The following are some properties of the logarithmic height

function:

h(η + γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηk) = |k|h(η), k ∈ Z.

With these notation, Matveev (see [17] or [8, Theorem 9.4]) proved the following

result.

Theorem 2. Let η1, η2, . . . , ηl be positive real algebraic numbers in a real algebraic

number field L of degree dL and b1, b2, . . . , bl be non zero integers. If Γ =
∏l
i=1 η

bi
i −1

is not zero, then

log |Γ| > −1.4 · 30l+3l4.5d2
L(1 + log dL)(1 + logD)A1A2 . . . Al,

where D = max{|b1|, |b2|, . . . , |bl|} and A1, A2, . . . , Al are real numbers such that

Aj ≥ max{dLh (ηj) , | log ηj |, 0.16} for j = 1, . . . , l.
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We use the following reduction method of Baker-Davenport due to Dujella and

Pethő [11, Lemma 5] for bound reduction.

Lemma 2. Let M be a positive integer and p/q be a convergent of the continued

fraction of the irrational number τ such that q > 6M . Let A, B, µ be real numbers

with A > 0 and B > 1. Let ε := ‖µq‖ −M‖τq‖, where ‖.‖ denotes the distance

from the nearest integer. If ε > 0, then there exists no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The following lemma will be used in our proof. It is seen in [15, Lemma 7].

Lemma 3. Let r ≥ 1 and H > 0 be such that H > (4r2)r and H > L/(logL)r.

Then

L < 2rH(logH)r.

3. Proof of Theorem 1

We are now able to prove Theorem 1.

Proof of Theorem 1. Assume that n > 250. Using Binet’s formula of Narayana’s

cows sequence in (1), we get

Cαα
n+2 + Cββ

n+2 + Cγγ
n+2 =

1

b− 1

(
a1b

l+m − (a1 − a2)bm − a2

)
. (4)

We examine (4) in two different steps.

Firstly, we write (4) in the following way:

(b− 1)Cαα
n+2 − a1b

l+m = −(b− 1)(Cββ
n+2 + Cγγ

n+2)− (a1 − a2)bm − a2.

Taking the absolute value on both sides and dividing by a1b
l+m, we get∣∣∣∣( (b− 1)Cα

a1

)
αn+2b−(l+m) − 1

∣∣∣∣ < 22 · bm

a1bl+m
<

22

bl
. (5)

Put

Γ =

(
(b− 1)Cα

a1

)
αn+2b−(l+m) − 1. (6)
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We need to show Γ 6= 0. If Γ = 0, then

Cαα
n+2 =

a1

b− 1
bl+m. (7)

To show the above equality is absurd, let G be the Galois group of the splitting field

of the characteristic polynomial f(x) over Q and let σ ∈ G be an automorphism

such that σ(α) = β. Applying σ on both sides of (7) and taking their absolute

values, we get

|Cββn+2| = a1

b− 1
bl+m.

But, |Cββn+2| < |Cβ | = 0.407506 · · · < 1, whereas a1
b−1b

l+m ≥ 1, which is not

possible. Therefore, Γ 6= 0. To apply Theorem 2 in (6), let

η1 =
(b− 1)Cα

a1
, η2 = α, η3 = b, b1 = 1, b2 = n+ 2, b3 = −(l +m),

where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) : Q] is 3. Since

l +m < n, take D = n. The heights of η1, η2, η3 are calculated as follows:

h(η1) = h((b− 1)Cα/a1) ≤ h(8) + h(Cα) + h(a1) ≤ 2 log 8 +
log 31

3
< 5.4,

h(η2) = h(α) =
logα

3
, h(η3) = h(b) ≤ log 9.

Thus, we take

A1 = 16.2, A2 = logα, and A3 = 3 log 9.

Applying Theorem 2, we find

log |Γ| > −1.4 · 30634.532(1 + log 3)(1 + log(n+ 2))(16.2)(logα)(3 log 9)

> −1.11 · 1014 log(1 + log(n+ 2)).

Comparison of the above inequality with (5) gives

l log b− log 22 < 1.11 · 1014(1 + log(n+ 2)),

which leads to

l log b < 1.12 · 1014(1 + log(n+ 2)). (8)

Secondly, we rewrite (4) as

(b− 1)Cαα
n+2 − a1b

l+m + (a1 − a2)bm = −(b− 1)(Cββ
n+2 + Cγγ

n+2)− a2.

Taking the absolute value on both sides and dividing by (b− 1)Cαα
n+2, we obtain∣∣∣∣1− (a1b

l − (a1 − a2)

(b− 1)Cα

)
α−(n+2)bm

∣∣∣∣ < 15

(b− 1)Cααn+2
<

36

αn
. (9)
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Put

Γ′ = 1−
(
a1b

l − (a1 − a2)

(b− 1)Cα

)
α−(n+2)bm.

Using similar arguments as before, we can show that Γ′ 6= 0. With the notation of

Theorem 2, we take

η1 =
a1b

l − (a1 − a2)

(b− 1)Cα
, η2 = α, η3 = b, b1 = 1, b2 = −(n+ 2), b3 = m,

where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) : Q] is 3. Since

m < n+ 2, D = n+ 2. Computing the logarithmic heights of η1, η2 and η3, we get

h(η2) =
logα

3
, h(η3) = log b

and

h(η1) ≤ h(a1b
l − (a1 − a2)) + h((b− 1)Cα)

≤ h(a1) + lh(b) + h(a1 − a2) + h(b− 1) + h(Cα) + log 2

< 4 log 8 + 2 log 2 +
log 31

3
+ l log b

< 10.85 + l log b.

Hence, from (8), we get

h(η1) < 10.85 + 1.12 · 1014(1 + log(n+ 2)).

So, we take

A1 = 3.39 · 1014(1 + log(n+ 2)), A2 = logα, and A3 = 3 log 9.

Using all these values in Theorem 2, we have

log |Γ′| > −1.4 · 30634.532(1 + log 3)(1 + log(n+ 2))(3.39 · 1014(1 + log(n+ 2)))

· (logα)(3 log 9).

Comparing the above inequality with (9), we obtain

n logα− log(36) < 2.32 · 1027(1 + log(n+ 2))2.

Thus, we conclude that

n < 6.13 · 1027(1 + log(n+ 2))2 < 9.8 · 1028(log n)2.
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With the notation of Lemma 3, we take r = 2, L = n, and H = 9.8 · 1028. Applying

Lemma 3, we have

n < 22(9.8 · 1028)(log(9.8 · 1028))2

< 1.75 · 1033.

Our next aim is to reduce these bounds of (1). Put

Λ = (l +m) log b− (n+ 2) logα− log

(
Cα(b− 1)

a1

)
.

Then (5) can be written as

|e−Λ − 1| < 22

bl
.

Observe that Λ 6= 0 as e−Λ− 1 = Γ 6= 0. Assuming l ≥ 6, the right-hand side in the

above inequality is at most 22
64 <

1
2 . The inequality |ez − 1| < y for real values of z

and y implies |z| < 2y. Thus, we get

|Λ| < 44

bl
,

which implies that∣∣∣∣(l +m) log b− n logα− log

(
α2Cα(b− 1)

a1

)∣∣∣∣ < 44

bl
.

Dividing both sides by logα, we get∣∣∣∣(l +m)

(
log b

logα

)
− n−

(
log(α2Cα(b− 1)/a1)

logα

)∣∣∣∣ < 116

bl
. (10)

To apply Lemma 2 in (10), let

u = l +m, τ =

(
log b

logα

)
, v = n, µ = −

(
log(α2Cα(b− 1)/a1)

logα

)
,

A = 116, B = b, w = l.

Choose M = 1.75 · 1033. Applying Lemma 2, we find the following results given in

Table 1.

b 2 3 4 5 6 7 8 9
qt q79 q62 q74 q69 q58 q63 q72 q64

ε ≥ 0.085 0.103 0.189 0.187 0.097 0.126 0.030 0.007
l ≤ 123 77 61 52 47 44 42 40

Table 1: Bounds on l
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Thus, in all cases l ≤ 123. Now, for 1 ≤ a1, a2 ≤ 8 and l ≤ 123, put

Λ′ = m log b− (n+ 2) logα+ log

(
a1b

l − (a1 − a2)

(b− 1)Cα

)
.

Then (9) can be written as

|e−Λ′
− 1| < 36

αn
.

Observe that Λ′ 6= 0 as e−Λ′ − 1 = Γ′ 6= 0. Since n > 250, the right-hand side in the

above inequality is at most 36
α251 <

1
2 . The inequality |ez − 1| < y for real values of

z and y implies |z| < 2y. Thus, we get

|Λ′| < 72

αn
,

which implies that∣∣∣∣m log b− n logα+ log

(
a1b

l − (a1 − a2)

(b− 1)Cαα2

)∣∣∣∣ < 72

αn
.

Dividing both sides by logα, we get∣∣∣∣m( log b

logα

)
− n+

(
log(a1b

l − (a1 − a2)/((b− 1)Cαα
2)

logα

)∣∣∣∣ < 188.4

αn
. (11)

To apply Lemma 2 in (11), let

u = m, τ =

(
log b

logα

)
, v = n, µ =

(
log(a1b

l − (a1 − a2)/((b− 1)Cαα
2)

logα

)
,

A = 188.4, B = α, w = n.

Choose M = 1.75 ·1033. With the help of Mathematica, we find the following results

given in Table 2.

b 2 3 4 5 6 7 8 9

qt q81 q63 q74 q69 q58 q63 q72 q64

ε ≥ 0.00295 0.00061 0.00065 0.00054 0.00002 0.00012 0.00023 0.00021
n ≤ 237 241 238 239 248 244 243 241

Table 2: Bounds on n

Thus, n ≤ 248 in all cases, which is a contradiction to our assumption that

n > 250. This completes the proof of the theorem. 2
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[4] C. Adegbindin, F. Luca, and A. Togbé, Pell and Pell-Lucas numbers as sums of two repdigits,
Bull. Malays. Math. Sci. Soc. 43 (2020), 1253-1271.
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