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Abstract

We prove several theorems about pseudoprimes, some of which deal with composite
Fermat numbers. These numbers have more pseudoprime bases than other numbers
of similar size and we can exhibit some of their strong pseudoprime bases. The
integers for which the set of all strong pseudoprime bases is a subgroup of the
group of all pseudoprime bases are identified.

1. Introduction

A pseudoprime to base b, or psp(b), is a composite positive integer n that satisfies

the conclusion of Fermat’s little theorem, that is,

bn−1 ≡ 1 (mod n) . (1)

Although the converse of Fermat’s little theorem is not true, if Congruence (1) holds

for a given b > 1, then n is likely to be prime. Congruence (1) with b = 2 was once

considered a test for primality.

Pseudoprimes to base 2 up to 25 · 109 were studied in detail in [9]. The first

ten pseudoprimes to base 2 are 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465,

and 2701. Since [9] appeared in 1980, Feitsma [5] has computed the psp(2) below

264 ≈ 1.8 · 1019. He found 118 968 378 of them.

If one tests Congruence (1) for several different bases b and reports “n is probably

prime” only if it holds for every base, the test becomes somewhat more reliable.

A Carmichael number is a composite integer n that is a pseudoprime to every

base b for which gcd(b, n) = 1. They are sparse compared to primes, although

there are infinitely many of them [1]. Thus the probable prime test just mentioned

would report that every Carmichael number is prime (unless it found a b with

gcd(b, n) > 1).
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Rabin [10] and Monier [7] proposed a more reliable test using the fact that 1 has

only two square roots modulo a prime number but more than two of them modulo

a composite number. If n is odd, then we can write n− 1 = d · 2k, where d is odd.

If n is an odd prime and gcd(b, n) = 1, then either

bd ≡ 1 (mod n) or (2)

bd·2
i

≡ −1 (mod n) for some i with 0 ≤ i < k. (3)

If n is composite and either Congruence (2) or (3) is true, then n is called a strong

pseudoprime to base b or spsp(b).

The spsp(b) are a proper subset of psp(b), and so are scarcer than psp(b). For

example, of the 118 968 378 psp(2) less than 264 found by Feitsma, only 31 894 014

are spsp(2) [5]. The first ten strong pseudoprimes to base 2 are 2047, 3277, 4033,

4681, 8321, 15841, 29341, 42799, 49141, and 52633.

Rabin and Monier proved that there are no strong Carmichael numbers, that is,

there is no composite n which is a strong pseudoprime to all bases relatively prime

to n. In fact they ([10, Theorem 1], [7, Theorem 5]) proved that every composite n

is a strong pseudoprime to at most 1/4 of bases b, 1 ≤ b < n.

Let us call a base b to which a composite integer n is a pseudoprime but not a

strong pseudoprime a weak pseudoprime base for n. Beauchemin et al. [3] observed

that the weak pseudoprime bases for a composite n are precisely the bases for which

the pseudoprime test Congruence (1) missed an opportunity to factor n. Baillie and

the author [2, p. 1402] made the same observation. In fact, one has this theorem.

Theorem 1. ([3]) There is a polynomial-time algorithm to factor a composite in-

teger n, given a weak pseudoprime base b for n.

See [3, Theorem 1] or [11, Theorem 10.4] for proof. (This algorithm might not

factor n completely into prime factors. It simply splits n = xy with 1 < x, y < n.)

As a corollary, Carmichael numbers are easy to factor because they have many weak

pseudoprime bases.

Example 1. Let n = 764636569. Then n is pseudoprime to base 2 since 2n−1 ≡
1 (mod n). Let x = 2(n−1)/2 ≡ 254937152 (mod n). Since x 6≡ ±1 (mod n), but

x2 ≡ 1 (mod n), we have p = gcd(x+ 1, n) = 17489 and q = gcd(x− 1, n) = 43721;

these are proper factors of n, and they happen to be primes.

2. Properties of Pseudoprime Bases

Let Fn be the set of all pseudoprime bases 1 ≤ b < n for n and Rn be the set of all

strong pseudoprime bases 1 ≤ b < n for n.

Monier [7] and Baillie and the author [2, Theorem 1] independently proved this

formula.
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Theorem 2. ([7],[2]) The number of bases b (mod n) for which n is a psp(b) is

#Fn =
∏
p

gcd(n− 1, p− 1) , (4)

where the product is taken over the distinct prime divisors p of n.

Corollary 1. A product of two distinct primes has a square number of pseudoprime

bases.

Proof. Let p 6= q be the two primes. Then Formula (4) becomes

#Fpq = gcd(pq − 1, p− 1) gcd(pq − 1, q − 1) .

We claim these two gcds are equal. Let g = gcd(pq−1, p−1) and h = gcd(pq−1, q−
1). Then g divides both pq−1 and p−1, so g divides pq−1−(p−1) = p(q−1). But

clearly gcd(g, p) = 1, so g divides q−1 and also h. Likewise, h divides g. Therefore,

the gcds are equal and the number of pseudoprime bases for pq is the square of one

of the gcds.

Monier [7, Proposition 1] gave a formula for #Rn. Let n = pa1
1 p

a2
2 · · · par

r , n−1 =

2kd, pi − 1 = 2kidi for 1 ≤ i ≤ r, where d and the di are odd, and let v be the least

ki.

Theorem 3. ([7]) With the notation above, we have

#Rn =

(
1 +

2vr − 1

2r − 1

) r∏
i=1

gcd(d, di) . (5)

Note that Fn is a group under multiplication modulo n.

Theorem 4. With the notation above, the following are equivalent:

(a) The set Rn is a subgroup of Fn.

(b) The size #Rn divides #Fn.

(c) Either v = 1 or r = 1.

(d) Either at least one prime congruent to 3 modulo 4 divides n or n is a prime

power.

Proof. Statement (a) implies Statement (b): From group theory, the order of a

subgroup divides the order of the group.

Statement (b) implies Statement (c): The products in Formulas (4) and (5) both

range over the distinct prime factors of n. They differ in that the second product

is an odd integer because it omits the powers of 2 (to wit, min(2d, 2di)) in the first

product. Since #Rn divides #Fn, if we remove the odd parts of the products, we
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see that 1+ 2vr−1
2r−1 divides a power of 2, say, 2y where y ≥ r. If v = 1, 1+ 2vr−1

2r−1 = 2,

while if r = 1, then 1 + 2vr−1
2r−1 = 2v where v = k1. However, if v > 1 and r > 1, then

1 +
2vr − 1

2r − 1
= 2 + 2v + 22v + · · · ,

with r terms in this sum. No sum with this form can be a power of 2.

Statement (c) implies Statement (a): It suffices to prove that the product of two

strong pseudoprime bases a and b for n is a strong pseudoprime base for n. We

consider the two cases in Congruences (2) and (3). If ad ≡ bd ≡ 1 (mod n), then

(ab)d ≡ 1 (mod n). If ad ≡ bd ≡ −1 (mod n), then (ab)d ≡ 1 (mod n). If ad ≡ 1

and bd ≡ −1 (mod n), then (ab)d ≡ −1 (mod n). If ad ≡ −1 and bd ≡ 1 (mod n),

then (ab)d ≡ −1 (mod n).

Now suppose ad·2
i ≡ bd·2

j ≡ −1 (mod n). If i < j, then (ab)j ≡ −1 (mod n),

and likewise for j < i. Finally, we have the case of i = j. If v = 1, then i = j = 0,

which was handled above. If r = 1, then n is a prime power and Rn = Fn because

this is true when n is prime, and all solutions to xz ≡ ±1 (mod n) lift to higher

powers of the prime. (This last fact was noted in [3].)

Statement (d) is just another way of saying Statement (c).

Corollary 2. The set of all odd composite n for which Rn is not a subgroup of Fn

has asymptotic density 0.

Proof. If any prime congruent to 3 modulo 4 divides n, then v = 1. Thus, any odd

composite n for which Rn is not a subgroup of Fn must have only primes congruent

to 1 modulo 4 as its factors, and therefore be the sum of two squares. Landau [6]

proved that the set of all n ≤ X which are the sum of two squares is O(X/
√

logX)

as X →∞, so this set has density 0.

Corollary 3. The four statements (a), (b), (c), (d) of Theorem 4 are true for

almost all odd composite n in the sense of asymptotic density.

If n is pseudoprime to base b, then b and n are relatively prime and n is pseudo-

prime to both bases −b and b−1 modulo n. The same is true for strong pseudoprime

bases. See Theorem 6 below for a proof.

For most composite n the number of pseudoprime bases is small compared to n.

The next example is typical for numbers n whose prime factors are all congruent to

1 modulo 4.

Example 2. Let n = 221 = 13 · 17. Then n is a strong pseudoprime to bases 1,

21, 47, 174, 200, and 220 ≡ −1 (mod n). It is a weak pseudoprime to bases 18, 38,

64, 86, 103, 118, 135, 157, 183, and 203. These 16 bases form a subgroup of the

reduced residue class group modulo 221. The elements of the subgroup have order

1, 2, or 4. The set of strong pseudoprime bases do not form a subgroup. The bases
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1 and 220 are a subgroup of order 2. Any combination of strong (s) and weak (w)

can occur when bases are multiplied. The examples 21 · 21 ≡ 220, 21 · 174 ≡ 118,

21 · 38 ≡ 135, 47 · 118 ≡ 21, 18 · 103 ≡ 86, 64 · 86 ≡ 200 illustrate the possibilities s

· s ≡ s, s · s ≡ w, s · w ≡ w, s · w ≡ s, w · w ≡ w, w · w ≡ s, respectively.

The next theorem is a general result about numbers bm ± 1. The cyclotomic

polynomial Φm(x) is the irreducible factor of xm − 1 which does not divide xi − 1

for any i < m. The primitive part of bm − 1 is Φm(b). The primitive part of bm + 1

is Φ2m(b). An intrinsic factor of the primitive part of bm ± 1 is a factor (always a

single prime) of this number which also divides m. For example, the primitive part

of 56 − 1 is 21, which has the intrinsic factor 3. See Sections 3.3—3.5 of [11] for

more examples of these definitions. The next theorem is Corollary 4.5 of [11].

Theorem 5. ([11]) For every integer b > 1 and integer m > 2, every composite

divisor of the primitive part of bm− 1 or bm + 1, with any intrinsic factor removed,

is a strong pseudoprime to base b.

Here is a general theorem about strong pseudoprimes.

Theorem 6. If n is a strong pseudoprime to base b and t is an integer, then n is

a strong pseudoprime to base bt and to base −b.

Proof. If n is a strong pseudoprime to base b, then gcd(n, b) = 1, so it makes sense

to allow t < 0. The case t = 0 is trivial: every composite n is spsp(1). Write

n− 1 = d · 2k with odd d. If bd ≡ 1 (mod n), then (bt)d ≡ 1 (mod n). Now suppose

bd·2
i ≡ −1 (mod n) with 0 ≤ i < k. Let 2u be the highest power of 2 that divides t.

If u ≤ i, then (bt)d·2
i−u ≡ −1 (mod n) and 0 ≤ i−u < s. But if u > i, then (bt)d ≡

1 (mod n). In all cases, n is a strong pseudoprime to base bt. If bd ≡ 1 (mod n),

then (−b)d ≡ −1 (mod n). If bd ≡ −1 (mod n), then (−b)d ≡ 1 (mod n). If

bd·2
i ≡ −1 (mod n) with 0 < i < k, then (−b)d·2i ≡ −1 (mod n). In all cases, n is

a strong pseudoprime to base −b.

Corollary 4. For every integer b > 1, integer t, and integer m > 2, every composite

divisor of the primitive part of bm− 1 or bm + 1, with any intrinsic factor removed,

is a strong pseudoprime to base bt.

3. Fermat Numbers

It is well known that every prime divisor p of a Fermat number n = Fk = 22
k

+ 1

satisfies p ≡ 1 (mod 2k+2). Therefore, composite Fermat numbers have many more

pseudoprime bases than typical composite numbers because the value in Formula

(4) will be at least 2(k+2)r where r is the number of distinct prime factors of Fk.
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Since no prime congruent to 3 modulo 4 divides a Fermat number, RFk
is a subset

but not a subgroup of FFk
.

The first five Fermat numbers are prime. The next seven, F5 through F11, are

composite and completely factored. Many factors are known for larger ones, but no

larger one is completely factored or proved prime. Here is a corollary to Corollary

4.

Corollary 5. Every composite Fermat number is a strong pseudoprime to the base

2t for every integer t.

Theorem 7. Every composite Fermat number Fk is a strong pseudoprime to the

bases b = 22
k−1+t ± 2t for every integer t ≥ 0.

Proof. We have k ≥ 5 because F0 through F4 are prime. Since 22
k ≡ −1 (mod Fk),

we have

b2 = 22
k

·22t±2·22
k−1+2t+22t ≡ −22t±2·22

k−1+2t+22t = ±22
k−1+2t+1 (mod Fk) .

Hence, b4 ≡ 22
k+4t+2 ≡ 22

k

22+4t ≡ −22(2t+1) (mod Fk), so b8 ≡ 24(2t+1) (mod Fk).

By induction, b2
i ≡ 22

i−1(2t+1) (mod Fk) for i ≥ 3. When i = k + 1(≥ 6), we have

b2
i

≡ 2(2t+1)2k ≡ (−1)2t+1 ≡ −1 (mod Fk) .

Thus Fk is a strong pseudoprime to base b.

Theorem 8. Let Fk be a composite Fermat number. Let Sk be the set of all bases

mentioned in Corollary 5 and Theorem 7. Then Sk is a subgroup of FFk
, isomorphic

to the direct product of a cyclic group of order 2k+1 and a cyclic group of order 2.

Every element of Sk is a strong pseudoprime base for Fk.

Proof. Let Wk be the set of all powers of 2 modulo Fk. Since 22
k+1

is the first

power of 2 ≡ 1 (mod Fk), Wk is a cyclic group of order 2k+1. Let x = 22
k−1

+ 1

and y = 22
k−1 − 1. (These x and y are two bases from Theorem 7 with t = 0.) As

in the proof of Theorem 7 (with t = 0), we have x2 ≡ 22
k−1+1 (mod Fk). Note that

x22
k−1

≡ (22
k−1

+ 1)22
k−1

≡ 22
k

+ 22
k−1

≡ −1 + 22
k−1

≡ y (mod Fk),

so that all bases b in Theorem 7 have the form x2t. For any integers t and s, we have

(x2t)(x2s) ≡ x22t+s ≡ 22
k−1+1+t+s (mod Fk), so Sk is closed under multiplication

modulo Fk and is a subgroup of FFk
.

If x ∈ Wk, then x ≡ 2t (mod Fk) for some 0 ≤ t < 2k+1 and Fk would have

to divide 22
k−1−t + 1, which is impossible. The coset xWk consists of x times all

powers of 2. The quotient group Sk/Wk is cyclic of order 2.

Finally, the elements of Sk are strong pseudoprime bases by Corollary 5 and

Theorem 7.
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It always happens that Fk is a strong pseudoprime to some bases b 6∈ Sk. For

example, F5 has 5462 strong bases and 10922 weak bases, while S5 has 128 elements.

One of the strong bases not in S5 is b = 448911555.

Can we find a weak pseudoprime base, and with it a factorization of Fk, by

testing random possible bases b modulo Fk? When Fk has r prime factors, there

are at least 2(k+2)r pseudoprime bases for Fk, some of which are in Sk. But the

sample space of b has size 22
k

, so we would have to test about 22
k−(k+2)r to get one

pseudoprime base, and it could be strong. This is not practical even for k = 7 or 8;

we are interested in k ≥ 12.

Six small prime factors of F12 are known. The remaining cofactor is composite

with 1133 decimal digits. Can one use the known small factors to construct a

weak pseudoprime base b which, when used in Theorem 1, factors F12 as ij with

1 < i < j < F12 and i equals the product of one or more of the small factors? If

so, perhaps one could multiply b times an element of S12 to obtain another weak

pseudoprime base that factors F12 in a way that splits the composite cofactor.

Is there an analogue of Theorem 7 for quasi-Fermat numbers like 62
n

+ 1 or

3 · 22n + 1?

4. Lucas Analogues

Lucas sequences, and their applications to prime testing, were discussed in [2], [4],

and [12].

Let D, P , and Q be integers with P > 0 and D = P 2 − 4Q 6= 0. Define

U0 = 0, U1 = 1, V0 = 2, and V1 = P . The Lucas sequences Uk and Vk with

parameters P and Q are defined recursively for k ≥ 2 by Uk = PUk−1 − QUk−2

and Vk = PVk−1 − QVk−2. For k ≥ 0 we also have Uk = (αk − βk)/(α − β) and

Vk = αk + βk, where α and β are the distinct roots of x2 − Px+Q = 0. Note that

αβ = Q and α+ β = P .

When n > 1 is an odd positive integer, write δ(n) = n − (D/n) where (D/n) is

the Jacobi symbol. Choose D, P , and Q so that the Jacobi symbol (D/n) = −1.

It is well known [2], [4] that if n is prime and gcd(n,Q) = 1, then

Un+1 ≡ 0 (mod n) . (6)

Lucas pseudoprimes were defined in [2]. These are analogues of (Fermat) pseu-

doprimes in which bn−1 − 1 is replaced by a Lucas sequence. If n is composite and

satisfies (6), then we call n a Lucas pseudoprime, written lpsp(P , Q). Every n that

fails (6) is composite.

The precise set of numbers that are Lucas pseudoprimes depends on the algorithm

for choosing D, P , and Q. One algorithm, first proposed by John Selfridge in [9]

and mentioned in [2], and which seems to be widely used in primality testing, is
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this one.

Method 1. Let D be the first element of the sequence 5, −7, 9, −11, 13, −15, . . .

for which (D/n) = −1. Let P = 1 and Q = (1−D)/4.

See [2] and [9] for more methods of choosing the parameters. Theorem 9 below

is independent of the method.

Strong Lucas pseudoprimes are defined in [2]. If n is odd, then we can write

n + 1 = d · 2s where d is odd. If n is prime and (D/n) = −1, then we will have

either

Ud ≡ 0 (mod n) or (7)

Vd·2r ≡ 0 (mod n) for some r with 0 ≤ r < s. (8)

If (D/n) = −1 and the composite n satisfies either Congruence (7) or (8), then

n is called a strong Lucas pseudoprime with parameters P and Q, written slpsp(P ,

Q). If n is an slpsp(P , Q), then n is also an lpsp(P , Q), that is, Un+1 = Ud·2s ≡
0 (mod n).

The following equations show how to use the binary representation of n + 1 to

efficiently compute the values on the left sides of Congruences (7) and (8).

U2k = UkVk (9)

V2k = V 2
k − 2Qk (10)

Q2k = (Qk)2 (11)

Uk+1 = (PUk + Vk)/2 (12)

Vk+1 = (DUk + PVk)/2 (13)

Qk+1 = Q ·Qk (14)

Equations (9) and (10) are Equations 4.2.6 and 4.2.7 in Williams [12] while Equa-

tions (12) and (13) are Equations 4.2.21 in that book. Equations (9)–(11) are used

to double the subscript and exponent; Equations (12)–(14) are used to increment

the subscript and exponent by 1. These equations are also given in [4, p. 628].

Here is the Lucas analogue of Theorem 1.

Theorem 9. There is a polynomial-time algorithm to factor a composite integer n,

given integers P , Q such that n is lpsp(P ,Q) but not slpsp(P ,Q).

Proof. We prove the theorem for the (more interesting) case of (D/n) = −1. The

proof for (D/n) = +1 is similar. Write n + 1 = d · 2s with odd d. Consider the

numbers

Ud, U2d, . . . , Ud·2s mod n . (15)

We know that Ud·2s = Un+1 ≡ 0 (mod n) since n is lpsp(P ,Q). If Ud·2i ≡ 0 (mod n)

for all 0 ≤ i ≤ s, then n would be slpsp(P ,Q). Since this is not so, at least one
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of the numbers in List (15) is not 0 modulo n. Let i be the largest integer for

which Ud·2i 6≡ 0 (mod n). Then 0 ≡ Ud·2i+1 ≡ Ud·2iVd·2i (mod n) by Equation (9).

If Vd·2i ≡ 0 (mod n), then n would be slpsp(P ,Q). Since this is not so, and also

Ud·2i 6≡ 0 (mod n), we see that n divides the product of Ud·2i and Vd·2i , but neither

of them. Therefore, gcd(Ud·2i , n) and gcd(Vd·2i , n) are proper factors of n.

Example 3. Let n = 56279. Then n+ 1 = d · 2s with s = 3, d = 7035. Method 1

chooses D = −7, P = 1, Q = 2. We have Ud ≡ 21281, Vd ≡ 25711, U2d ≡ 11353,

V2d ≡ 15865, U4d ≡ 22545, V4d ≡ 24601, Un+1 = U8d ≡ 0, and V8d ≡ 2020 (mod n).

Then n is a Lucas pseudoprime because Un+1 ≡ 0. Since neither Congruence (7) nor

Congruence (8) hold, n is not a strong Lucas pseudoprime. The first number in List

(15) that is ≡ 0 (mod n) is U8d. We have gcd(U4d, n) = 167 and gcd(V4d, n) = 337,

both proper factors of n.

Let n = 2018839. Then n+ 1 = d · 2s with s = 3, d = 252355. Method 1 chooses

D = −19, P = 1, Q = 5. We have Ud ≡ 119992, Vd ≡ 199667, and U2d ≡ 0 (mod n),

which leads to gcd(Ud, n) = 2459 and gcd(Vd, n) = 821, two proper factors of n.

Let n = 10877. Then n + 1 = d · 2s with s = 1, d = 5439. Method 1 chooses

D = 5, P = 1, Q = −1. We have Ud ≡ 0 (mod n), so Congruence (7) holds, n is a

strong Lucas pseudoprime, and no factorization of n is produced.

Let n = 5459. Then n + 1 = d · 2s with s = 1, d = 2729. Method 1 chooses

D = −7, P = 1, Q = 2. We have Ud ≡ 3550, Vd ≡ 3847, U2d ≡ 3891, and V2d ≡
0 (mod n), so Congruence (8) holds with r = 1, n is a strong Lucas pseudoprime,

and no factorization of n is produced.

Is there an analogue of Fermat numbers for which one can prove Lucas analogues

of Corollary 5 or Theorems 7 or 8?

5. Conclusion

In [11] the author listed a dozen suggestions for new ways to factor a large integer

n. One of these was to find a weak pseudoprime base for n and use Theorem 1.

The example in Section 2 shows that the product of two strong pseudoprime bases

can be a weak pseudoprime base. But Corollary 3 shows that this rarely happens

because usually Rn is a subgroup of Fn. Composite Fermat numbers are exceptions.

Moreover, Corollary 5 and Theorem 7 identify explicit strong pseudoprime bases

other than the trivial 1 and −1 for all Fk. Suppose we multiply two or more of the

bases mentioned in Corollary 5 and Theorem 7. If we could find a weak pseudoprime

base for Fk this way, we would have a very fast algorithm for factoring all Fermat

numbers. Alas, this hope was dashed by Theorem 8.

It is curious that 211 − 1 is a strong pseudoprime to base 11. We wondered

whether another prime p might be a strong pseudoprime base for 2p − 1 when the
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latter is composite, but found no more examples with p < 200.

If a composite n is partially factored, can we easily find a base b, other than those

in Theorems 5, 6, 7, and Corollaries 4 and 5, so that n is psp(b) without factoring

n completely?

Acknowledgement. The author thanks Robert Baillie, Adam Hammer, Carl
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proved this work.
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