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Abstract

In the base phi expansion, a natural number is written uniquely as a sum of powers
of the golden mean with coefficients 0 and 1, where it is required that the product of
two consecutive digits is always 0. We tackle the problem of describing these expan-
sions in detail. We classify the positive parts of the base phi expansions according
to their suffixes, and the negative parts according to their prefixes, specifying the
sequences of occurrences of these digit blocks. We prove that the positive parts of
the base phi expansions are a subsequence of the sequence of Zeckendorf expansions,
giving an explicit formula in terms of a generalized Beatty sequence. The negative
parts of the base phi expansions no longer appear lexicographically. We prove that
all allowed digit blocks appear, and determine the order in which they do appear.

1. Introduction

Let the golden mean be given by ϕ := (1 +
√

5)/2. Ignoring leading and trailing

zeros, a natural number N can be written uniquely as

N =

∞∑
i=−∞

diϕ
i,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed (see [2]). As usual,

we denote the base phi expansion of N as β(N), and these expansions are written

with a radix point as

β(N) = dLdL−1 · · · d1d0 · d−1d−2 · · · dR+1dR.

We define

β+(N) = dLdL−1 · · · d1d0 and β−(N) = d−1d−2 · · · dR+1dR.
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So β(N) = β+(N) · β−(N). For example, β(2) = 10 · 01, and β(3) = 100 · 01.

This paper deals with the following question: what are the words of 0’s and 1’s

that can occur as digit blocks in the base phi expansion N , and for which numbers

N do they occur? In Section 6, we answer this question for the suffixes of the β+-

part of the base phi expansions, and in Section 7 for the complete β−-part of the

base phi expansions, and the prefixes of the β−-part of length at most 3.

The first five sections establish relationships between the base phi expansions and

Zeckendorf expansions, also known as Fibonacci representations. Recall that in the

Zeckendorf expansions, a natural number is written uniquely as a sum of Fibonacci

numbers with coefficients 0 and 1, where, again, it is required that the product of

two consecutive digits is always 0. In a previous work [6] we have classified the

Zeckendorf expansions according to their suffixes. It turned out that if we consider

the suffixes as labels on the Fibonacci tree, then the numbers with a given suffix in

their Zeckendorf expansion appear as generalized Beatty sequences in a natural way

on this tree. The connection between base phi and Zeckendorf expansions, permits

us to exploit these results in Section 6. See the paper [8] for a less direct approach,

in terms of two-tape automata.

In Section 2 we give a formula for the positive part of a base phi expansion in

terms of Zeckendorf expansions. In Section 3 we recall the recursive structure of

base phi expansions, and derive some tools from this which are useful in the final

two sections. In Section 4 we take a closer look at the Lucas intervals. In Section 5

we introduce generalized Beatty sequences, which for the base phi expansion take

over the role played by arithmetic sequences in the classical expansions in base b,

where b is an integer larger than 1.

We end this introduction by pointing out that there is a neat way to obtain

N from the β+(N)-part of β(N), without knowing the β−(N)-part. If β(N) =

β+(N)·β−(N) is the base phi expansion of a natural number N , then N = dβ+(N)e.
Here d·e is the ceiling function. For a proof, add the maximum number of powers

corresponding to β−(N), taking into account that no 11 appears. This is bounded by

the geometric series starting at ϕ−1 with common ratio ϕ−2, i.e., by ϕ−1/(1−ϕ−2) =

1.

2. Embedding Base Phi into Zeckendorf

We define the Lekkerkerker-Zeckendorf expansion. Let (Fn) be the Fibonacci num-

bers. Let F̈0 = 1, F̈1 = 2, F̈2 = 3, . . . be the twice-shifted Fibonacci numbers,

defined by F̈i = Fi+2. Ignoring leading and trailing zeros, a natural number N can

be written uniquely as

N =

∞∑
i=0

eiF̈i,



INTEGERS: 24 (2024) 3

with digits ei = 0 or 1, and where eiei+1 = 11 is not allowed. We denote the

Zeckendorf expansion of N as Z(N).

Let V be the generalized Beatty sequence (cf. [1]) defined by

V (n) = 3bnϕc+ n+ 1.

Here b·c denotes the floor function, and (bnϕc) is the well-known lower Wythoff

sequence.

We define the function S by

S(n) = max{k ∈ N : V (k) ≤ n} − 1.

Theorem 1. For all N ≥ 0,

β+(N) = Z(N + S(N)).

This theorem will be proved in Section 2.2.

The basis for the embedding of the β+(N) into the collection of Zeckendorf words

is the following analysis.

2.1. The Art of Adding 1

It is essential to give ourselves the freedom to also write non-admissible expansions

in the form

β(N) = dLdL−1 · · · d1d0 · d−1d−2 · · · dR+1dR.

For example, since β(4) = 101.01 and β(2) = 10 · 01, we can write

β(5)
.
= β(4) + 1

.
= 101 · 01 + 1 · 0 .

= 102 · 01
.
= 110 · 02

.
= 1000 · 1001. (1)

Here the symbol
.
= indicates that we consider a non-admissible expansion.

It is convenient to generate all Zeckendorf expansions and base phi expansions

by repeatedly adding the number 1. To compute β(N) + 1 for some number N ,

then, in general, there is a carry both to the left and (two places) to the right. This

is illustrated by the example in Equation (1). Note that there is not only a double

carry, but that we also have to get rid of the 11’s, by replacing them with 100’s.

This is allowed because of the equation ϕn+2 = ϕn+1 + ϕn. We call this operation

a golden mean flip.

To compute Z(N) + 1 for some number N , a distinction between e0 = 0 and

e0 = 1 has to be made:

Z(N) = eL · · · e2e1 0 gives Z(N) + 1 = eL · · · e2e1 1

and

Z(N) = eL · · · e2e1 1 gives Z(N) + 1
.
= eL · · · e2 10.



INTEGERS: 24 (2024) 4

Here we used the symbol
.
= because (several) golden mean flips might follow, where

for the Zeckendorf expansion these are justified by the equation Fn+2 = Fn+1 +Fn.

Note that replacing e11 + 1 by 10 follows from 1+1=2 (!).

For the convenience of the reader we provide in Table 1 a list of the Zeckendorf

and base phi expansions of the first 18 natural numbers.

N Z(N) β(N)
1 1 1·
2 10 10 · 01
3 100 100 · 01
4 101 101 · 01
5 1000 1000 · 1001
6 1001 1010 · 0001
7 1010 10000 · 0001
8 10000 10001 · 0001
9 10001 10010 · 0101

N Z(N) β(N)
10 10010 10100 · 0101
11 10100 10101 · 0101
12 10101 100000 · 101001
13 100000 100010 · 001001
14 100001 100100 · 001001
15 100010 100101 · 001001
16 100100 101000 · 100001
17 100101 101010 · 000001
18 101000 1000000 · 000001

Table 1: Zeckendorf and base phi expansions

2.2. Proof of Theorem 1

The essential ingredient of the proof is the following result from [5], Theorem 5.1

and Remark 5.4. An alternative, short proof of the first part could be given with

the Propagation Principle from Section 3.

Proposition 1. Let β(N) = (di(N)) be the base phi expansion of N . Then

d1d0 · d−1(N) = 10 · 1 never occurs,

d1d0 · d−1(N) = 00 · 1 if and only if N = 3bnϕc+n+1 for some natural numbern.

Proof of Theorem 1. One observes that there are many β(N) such that β+(N) =

Z(N ′) for some N ′. Moreover, if this is the case, then also β+(N + 1) = Z(N ′+ 1),

except if d−1(N) = 1 in β(N). Indeed, as long as d−1(N) = 0, adding 1 gives the

same result for both the Zeckendorf and the positive part of the base phi expansion,

as seen in the previous section. However, suppose

Z(N ′) = β+(N), and d−1(N) = 1.

Then, by Proposition 1, d1d0 ·d−1(N) = 00·1, and adding 1 to N gives the expansion

β(N+1) with digit block d1d0 ·d−1(N+1) = 10·0. So β+(N+1) ends in exactly the

same two digits as Z(N ′+2), and in fact β+(N+1) = Z(N ′+2). This means that one

Zeckendorf expansion has been skipped: that of N ′ + 1. Every time a d−1(N) = 1

occurs, this skipping takes place. Since Z(0) = β+(0), . . . , Z(5) = β+(5), this gives

the formula β+(N) = Z(N + S(N)), with S(n) = max{k ∈ N : 3bkϕc+ k ≤ n}, by

the second statement of Proposition 1. 2
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3. The Recursive Structure of Base Phi Expansions

The Lucas numbers (Ln) = (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, . . .) are defined by

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

The Lucas numbers have a particularly simple base phi expansion. For all n ≥ 1 we

obtain from the well-known formula L2n = ϕ2n + ϕ−2n, and the recursion formula

L2n+1 = L2n + L2n−1 that

β(L2n) = 102n · 02n−11, β(L2n+1) = 1(01)n · (01)n. (2)

By iterated application of the double carry and the golden mean flip to β(L2n+1) +

β(1), and a similar operation for β(L2n+2 − 1) (see also the last page of [7]) for all

n ≥ 1 one finds that

β(L2n+1 + 1) = 102n+1 · (10)n01, β(L2n+2 − 1) = (10)n+1 · 02n+11. (3)

As in [5] we partition the natural numbers into Lucas intervals

Λ2n := [L2n, L2n+1] and Λ2n+1 := [L2n+1 + 1, L2n+2 − 1].

The basic idea behind this partition is that if

β(N) = dLdL−1 · · · d1d0 · d−1d−2 · · · dR+1dR,

then the leftmost index L = L(N) and the rightmost index R = R(N) satisfy

L(N) = |R(N)| = 2n if and only if N ∈ Λ2n,

L(N) = 2n+ 1, |R(N)| = 2n+ 2 if and only if N ∈ Λ2n+1.
(4)

This is not hard to see from the simple expressions we have for the β-expansions of

the Lucas numbers; see also Theorem 1 in [9].

To obtain recursive relations, the interval Λ2n+1 = [L2n+1 + 1, L2n+2 − 1] has to

be divided into three subintervals. These three intervals are

In :=[L2n+1 + 1, L2n+1 + L2n−2 − 1],

Jn :=[L2n+1 + L2n−2, L2n+1 + L2n−1],

Kn :=[L2n+1 + L2n−1 + 1, L2n+2 − 1].

It is very convenient to use the free group versions of words of 0’s and 1’s. So,

for example, (01)−10001 = 1−1001.

Theorem 2 (Recursive Structure Theorem). Let the odd and even Lucas intervals

be given by

Λ2n+1 = [L2n+1 + 1, L2n+2 − 1], Λ2n+2 = [L2n+2, L2n+3].
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(A) For all n ≥ 2 and k = 1, . . . , L2n − 1, we have

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−1, we have

Jn : β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.

(B) For all n ≥ 1 and k = 0, . . . , L2n+1 one has

β(L2n+2 + k) = β(L2n+2) + β(k) = 10 · · · 0β(k) 0 · · · 01.

See [7] for a proof of this theorem. As an illustration of the use of Theorem 2 we

shall now prove a lemma that we need in Section 6.

Lemma 1. Let m ≥ 1 be an integer. There are (a) no expansions β(N) with the

digit block d2m · · · d0 ·d−1(N) = 102m ·1, and there are (b) no expansions β(N) with

the digit block d2m+1 · · · d0 · d−1(N) = 102m+1 · 0.

Proof. (a) The first time d2m · · · d0 = 102m occurs is for N = L2m, and then

d−1(N) = 0, as follows from the β(L2m) formula in Equation (2). With Equation

(4) we see that this is also the only occurrence of the digit block 102m · 1 in the

expansions of the numbers N in Λ2m. Similarly, it is obvious that the digit block

102m · 1 does not appear in the expansions of the numbers N in Λ2m+1.

From Part (B) of the Recursive Structure Theorem we see that the digit block

d2m · · · d0 = 102m in the expansions of the numbers N in Λ2m+2 only occurs in

combination with d−1(N) = 0 (since we already proved this for the interval Λ2m) .

From Part (A) of the Recursive Structure Theorem we will see that the digit

block d2m · · · d0 = 102m in the expansions of the numbers N in Λ2m+3 only occurs

in combination with d−1(N) = 0. This is definitely more complicated than this

observation for Λ2m+2. We have to split Λ2m+3 into the three pieces Im+1, Jm+1

and Km+1. The middle piece Jm+1 corresponds to numbers in Λ2m, from which we

already know that d2m · · · d0(N) = 102m implies that d−1(N) = 0. The numbers

N in the first piece, Im+1, correspond to numbers in Λ2m+1 from which the digits

d2m+1d2m = 10 have been replaced by the digits d2m+3d2m+2d2m+1d2m = 1000. In

particular d2m = 0 excludes any occurrence of d2m · · · d0 = 102m. In the same way

occurrences of d2m · · · d0 = 102m in Km+1 are excluded.

The final conclusion is that both intervals Λ2m+2 and Λ2m+3 only contain num-

bers N for which the occurrence of d2m · · · d0(N) = 102m implies d−1(N) = 0. In

the same way, these properties of Λ2m+2 and Λ2m+3 carry over to the two Lucas

intervals Λ2m+4 and Λ2m+5, and we can finish the proof by induction.

(b) The first time d2m+1 · · · d0 = 102m+1 occurs is for N = L2m+1 + 1 in Λ2m+1,

and then d−1(N) = 1 (see Equation (3)). This is also the only occurrence of
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d2m+1 · · · d0 = 102m+1 in numbers from Λ2m+1. Moreover, in all numbers from

Λ2m+2 the digit block d2m+1 · · · d0 = 102m+1 does not occur at all. We finish the

proof as in part (a), by applying the Recursive Structure Theorem.

It is convenient to have a second version of the Recursive Structure Theorem

which involves a higher resemblance between the Λ-intervals with an odd index in

Part (A), and the Λ-intervals with an even index in the Part (B) case. It is also

convenient to have the Λ-intervals play a more visible role in the recursion. In fact,

it is easy to check that the three intervals In, Jn and Kn in the Recursive Structure

Theorem satisfy

In = Λ
(a)
2n+1 := Λ2n+1 + L2n+2,

Jn = Λ
(b)
2n := Λ2n + L2n+3,

Kn = Λ
(c)
2n+1 := Λ2n+1 + L2n+3.

In this equation we employ the usual notation A+ x := {a+ x : a ∈ A} for a set of

real numbers A and a real number x.

Theorem 3 (Recursive Structure Theorem: 2nd version). Let the odd and even

Lucas intervals be given by

Λ2n+1 = [L2n+1 + 1, L2n+2 − 1], Λ2n+2 = [L2n+2, L2n+3].

(A) For all n ≥ 1 one has

Λ2n+1 = Λ
(a)
2n−1 ∪ Λ

(b)
2n−2 ∪ Λ

(c)
2n−1,

where Λ
(a)
2n−1 = Λ2n−1 +L2n, Λ

(b)
2n−2 = Λ2n−2 +L2n+1, and Λ

(c)
2n−1 = Λ2n−1 +L2n+1.

We have

β(N) =


1000(10)−1 β(N − L2n) (01)−11001, if N ∈ Λ

(a)
2n−1,

100β(N − L2n+1) (01)−1001001, if N ∈ Λ
(b)
2n−2,

10β(N − L2n+1) (01)−10001, if N ∈ Λ
(c)
2n−1.

(5)

(B) For all n ≥ 1 one has

Λ2n+2 = Λ
(a)
2n ∪ Λ

(b)
2n−1 ∪ Λ

(c)
2n ,

where Λ
(a)
2n = Λ2n +L2n+1, Λ

(b)
2n−1 = Λ2n−1 +L2n+2, and Λ

(c)
2n = Λ2n +L2n+2. We

have

β(N) =


1000(10)−1 β(N − L2n+1) (01)−10001, if N ∈ Λ

(a)
2n ,

100β(N − L2n+2) 01 if N ∈ Λ
(b)
2n−1,

10β(N − L2n+1) 01 if N ∈ Λ
(c)
2n .

(6)
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Proof. (A) This is a rephrasing of Part (A) in Theorem 2.

(B) We start by showing that the three intervals Λ
(a)
2n ,Λ

(b)
2n−1,Λ

(c)
2n partition Λ2n+2.

The first number in Λ
(a)
2n is L2n + L2n+1 = L2n+2, which is the first number of

Λ2n+2. The last number in Λ
(a)
2n is L2n+1 + L2n+1 = 2L2n+1.

The first number in Λ
(b)
2n−1 is L2n−1 + 1 + L2n+2 = L2n−1 + 1 + L2n + L2n+1 =

2L2n+1 + 1, which indeed, is the successor of the last number in Λ
(a)
2n .

The last number in Λ
(b)
2n−1 is L2n − 1 +L2n+2, which indeed has successor L2n +

L2n+2, the first number in Λ
(c)
2n . Finally, the last number in Λ

(c)
2n is L2n+1 +L2n+2 =

L2n+3, which is the last number in Λ2n+2.

To prove the first case in Equation (5), we first show, using Equation (2) twice,

that this equation is correct for N = L2n+2, which is the first number of Λ
(a)
2n :

β(L2n+2) = 102n+2 · 02n+11

= 1000 02n−1 · 02n−2 0001

= 1000(10)−1102n · 02n−11 (01)−10001

= 1000(10)−1β(L2n) (01)−10001

= 1000(10)−1β(L2n+2 − L2n+1) (01)−10001.

The first case in Equation (5) is also correct for all other N ∈ Λ
(a)
2n , because

as above, the digit block dLdL−1dL−2dL−3(N) always is 1000, and the digit block

dL−2dL−3(N − L2n+1) always is 10. For the negative digits we have a similar

property.

The second case in Equation (5) follows directly from the fact that if N ∈ Λ
(b)
2n−1,

then

β(N − L2n+2) + β(L2n+2) = d2n−1 · · · d0 · d−1 · · · d−2n + 102n+2 · 02n+11

= d2n−1 · · · d0 · d−1 · · · d−2n + 100 02n · 02n 01

= 100d2n−1 · · · d0 · d−1 · · · d−2n01,

since the numbers in Λ2n−1 have a β-expansion d2n−1 · · · d0 · d−1 · · · d−2n with 2n

digits on the left and 2n digits on the right. Note that we do not have to use the

symbol
.
=, as there are no double carries or golden mean flips.

The third case in Equation (5) follows in the same way.

Lemma 1 is an example of a general phenomenon, which we call the Propagation

Principle. It has an extension to combinations of digit blocks that we give in Lemma

2. The Propagation Principle is closely connected to the following notion. We say

an interval Γ and a union of intervals ∆ of natural numbers are β-congruent modulo

q for some natural number q if ∆ is a disjoint union of translations of Λ-intervals,

such that for all j = 1, . . . , |Γ|, if N is the jth element of Γ, and N ′ is the jth element
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of ∆, then

dq−1 · · · d1d0 · d−1 · · · d−q(N) = dq−1 · · · d1d0 · d−1 · · · d−q(N ′).

We write this as Γ ∼= ∆1∆2 . . .∆r mod q, when the number of translations of

Λ-intervals in ∆ equals r. Note that the definition implies that the r disjoint

translations of Λ-intervals appear in the natural order, and that we refrain from

indicating the translations. Simple examples are Λ5
∼= Λ3Λ2Λ3 mod 1 and Λ6

∼=
Λ4Λ3Λ4 mod 3. Theorem 3 is a source of many more examples.

An important observation is that if

Γ ∼= ∆1∆2 . . .∆r mod q and Γ′ ∼= ∆′1∆′2 . . .∆
′
r′ mod q′,

and Γ ∪ Γ′ is an interval, then

ΓΓ′ := Γ ∪ Γ′ ∼= ∆1∆2 . . .∆r∆
′
1∆′2 . . .∆

′
r′ mod min{q, q′}. (7)

To keep the formulation and the proof of the following lemma simple, we only

formulate it for central digit blocks of length 8 (i.e., q = 4). In the following,

occurrences of digit blocks in β-expansions have to be interpreted with additional

0’s added to the left of the expansion.

Lemma 2 (Propagation Principle for β-expansions with length 8, i.e., q = 4). (a)

Suppose the digit block d3 · · · d0 · d−1 · · · d−4, does not occur in the β-expansions of

the numbers N = 1, 2, . . . , 17. Then it does not occur in any β-expansion.

(b) Let D be an integer between 1 and 4. Suppose the digit block d3 · · · d0 ·d−1 · · · d−4

occurs in the β-expansion of N if and only if the digit block e3 · · · e0 · e−1 · · · e−4

occurs in the β-expansion of the number N − D, for N = D,D + 1, . . . , D + 17.

Then this paired occurrence holds for all N .

Proof. (a) Let us say that a Lucas interval Λm satisfies property D if the digit

block d3 · · · d0 · d−1 · · · d−4 does not occur in the β-expansions of the numbers N

from Λm. Note that N = 17 is the last number in Λ5, so it is given that the intervals

Λ1, . . . ,Λ5 all satisfy property D. The interval Λ6 also satisfies property D, by an

application of Theorem 2 (B).

The interval Λ7 = Λ
(a)
5 ∪ Λ

(b)
4 ∪ Λ

(c)
5 satisfies property D. For Λ

(a)
5 , this follows

since Λ5 satisfies property D, and the first case in Equation (5) does not change the

central block of length 8. The same argument applies to Λ
(c)
5 . For the interval Λ

(b)
4 ,

the second case in Equation (5) gives that the positive digit blocks d3 · · · d0 are the

same as for the corresponding numbers in Λ4, and that the negative digit blocks are

d−1 · · · d−4(7)(01)−100 = 0000 and d−1 · · · d−4(9)(01)−100 = 0100, which already

occurred in the expansions β(0) and β(3).

The interval Λ8 = Λ
(a)
6 ∪ Λ

(b)
5 ∪ Λ

(c)
6 also satisfies property D, since the word

transformations in Equation (6) do not change the central blocks of length 8 in
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Λ6, nor in Λ5. Another way to put this, is that Λ8
∼= Λ6Λ5Λ6 mod 4. Since the

β-expansions only get longer, we have in fact that Λm ∼= Λm−2Λm−3Λm−2 mod 4

for all m ≥ 8. Thus it follows by induction that Λm satisfies property D for all

m ≥ 8.

(b) Let us say that a Lucas interval Λm, m ≥ 1 satisfies property E if the numbers

N from Λm have the property that the digit block d3 · · · d0 · d−1 · · · d−4 occurs in

the β-expansion of N if and only if the digit block e3 · · · e0 ·e−1 · · · e−4 occurs in the

β-expansion of N −D. Then it is given that Λ1, . . . ,Λ5 all satisfy property E . The

proof continues as in part (a), but we have to take into account that the numbers

N−D and N can be elements of different Lucas intervals. This ‘boundary’ problem

is easily solved by induction: it is given for Λ4Λ5 and Λ5Λ6, and the equation used

for induction is

Λm+1Λm+2
∼= Λm−1Λm−2Λm−1ΛmΛm−1Λm mod 4.

This equation is an instance of Equation (7).

4. A Closer Look at the Lucas Intervals

Here we say more on the idea of splitting Lucas intervals in unions of translated

Lucas intervals. To keep the presentation simple, we start with showing how all the

natural numbers can be split into translations of the three Lucas intervals Λ3,Λ4

and Λ5. This can of course be done in many ways, but we consider a way derived

from the Recursive Structure Theorem (Theorem 3). One has

Λ6 = Λ
(a)
4 ∪ Λ

(b)
3 ∪ Λ

(c)
4 = [Λ4+L5] ∪ [Λ3+L6] ∪ [Λ4+L6],

Λ7 = Λ
(a)
5 ∪ Λ

(b)
4 ∪ Λ

(c)
5 = [Λ5+L5] ∪ [Λ4+L7] ∪ [Λ5+L7],

Λ8 = Λ
(a)
6 ∪ Λ

(b)
5 ∪ Λ

(c)
6 = [Λ6+L7] ∪ [Λ5+L8] ∪ [Λ6+L8]

= [Λ4+L5+L7] ∪ [Λ3+L6+L7] ∪ [Λ4+L6+L7] ∪ [Λ5+L8]

∪ [Λ4+L5+L8] ∪ [Λ3+L6+L8] ∪ [Λ4+L6+L8].

Note how the splitting of Λ6 was used in the splitting of Λ8. Continuing in this

fashion, we inductively obtain a splitting of all Lucas intervals Λn, which we call

the canonical splitting.

What is the sequence of translated intervals Λ3,Λ4 and Λ5 created in this way?

Let the word C(Λn) code these successive intervals in Λn by their indices 3, 4 or

5. Let κ be the morphism on the monoid {3, 4, 5}∗ defined by

κ(3) = 5, κ(4) = 434 κ(5) = 545.

Theorem 4. For all n ≥ 3 the interval Λn is a union of adjacent translations of

the three intervals Λ3,Λ4 and Λ5. If C(·) is the coding function for the canonical
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splittings then for n ≥ 0

C(Λ2n+4) = κn(4), C(Λ2n+5) = κn(5).

Proof. For n = 0 this is trivially true. We continue by induction. Suppose it is true

for k = 1, . . . , n. Then, by Theorem 3,

C(Λ2n+6) = C(Λ2n+4)C(Λ2n+3)C(Λ2n+4) = κn(4)κn−1(5)κn(4)

= κn−1(κ(4)5κ(4)) = κn−1(4345434) = κn−1(κ2(4)) = κn+1(4),

C(Λ2n+7) = C(Λ2n+5)C(Λ2n+4)C(Λ2n+5) =

= κn(5)κn(4)κn(5) = κn(545) = κn+1(5).

We continue this analysis, now focussing on the partition of the natural numbers

by the intervals

Ξn := Λ2n−1 ∪ Λ2n = [L2n−1 + 1, L2n+1].

The relevance of the Ξn is that these are exactly the intervals where β−(N) has

length 2n, for n ≥ 1. The results in the sequel of this section will therefore be useful

in Section 7.

There are three (Sturmian) morphisms f, g and h that play an important role

in these results, where it is convenient to look at a and b both as integers and as

abstract letters. The morphisms are given by

f :
{a→ aba

b→ ab
, g :

{a→ baa

b→ ba
, h :

{a→ aab

b→ ab
. (8)

Theorem 5. For all n ≥ 2 the interval Ξn is a union of adjacent translations of

the three intervals Λ3,Λ4 and Λ5. If C(·) is the coding function for the canonical

splittings, then for n ≥ 0

C(Ξn+2) = δ(hn(b)),

where δ is the decoration morphism given by δ(a) = 54, δ(b) = 34.

Proof. We first establish the commutation relation κ δ = δ h. It suffices to prove

this for the generators, and indeed:

κ(δ(a)) = κ(54) = 545434 = δ(aab) = δ(h(a)),

κ(δ(b)) = κ(34) = 5434 = δ(ab) = δ(h(b)).

Using Theorem 4 and the commutation relation, for n ≥ 1 we obtain

C(Ξn+2) = C(Λ2n+3)C(Λ2n+4) =

= κn−1(5)κn(4) = κn−1(5434) = κn−1(δ(ab)) = δ(hn−1(ab)) = δ(hn(b)).

For n = 0 we have Ξ2 = Λ3 ∪ Λ4, so C(Ξ2) = 34 = δ(b).
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5. Generalized Beatty Sequences

Let α be an irrational number larger than 1. We call a sequence V with terms of

the form Vn = pbnαc + qn + r, n ≥ 1 a generalized Beatty sequence. Here p, q and

r are integers, called the parameters of V , and we write V = V (p, q, r).

In this paper we only consider the case α = ϕ, the golden mean, so any mention

of a generalized Beatty sequence assumes that α = ϕ. A prominent role is played

by the lower Wythoff sequence A := V (1, 0, 0) and the upper Wythoff sequence

B := V (1, 1, 0). These are complementary sequences, associated with the Beatty

pair (ϕ,ϕ2).

Here is the key lemma that tells us how generalized Beatty sequences behave

under compositions. In its statement below, as Lemma 3, a typographical error in

its source is corrected.

Lemma 3 ([1, Corollary 2]). Let V be a generalized Beatty sequence with param-

eters (p, q, r). Then V A and V B are generalized Beatty sequences with parameters

(pVA, qVA, rVA) = (p+ q, p, r − p) and (pVB , qVB , rVB) = (2p+ q, p+ q, r).

It will be useful later on to have a sort of converse of this lemma. If C and D are

two N-valued sequences, then we denote by C tD the sequence whose terms give

the set C(N) ∪D(N), in increasing order.

Lemma 4. Let V = V (p, q, r) be a generalized Beatty sequence. Let U and W be

two disjoint sequences with union V = U tW :

U(N) ∩W (N) = ∅, U(N) ∪W (N) = V (N).

Suppose U is a generalized Beatty sequence with parameters (p+ q, p, r − p). Then

W is the generalized Beatty sequence with parameters (2p+ q, p+ q, r).

Proof. According to Lemma 3, we have U = V A. Since A and B are disjoint with

union N, we must have W = V B, and Lemma 3 gives that W is a generalized

Beatty sequence with parameters (2p+ q, p+ q, r).

Here is the key lemma to ‘recognize’ a generalized Beatty sequence, taken from

[1]. If S is a sequence, we denote its sequence of first order differences as ∆S, i.e.,

∆S is defined by

∆S(n) = S(n+ 1)− S(n), for n = 1, 2 . . . .

Lemma 5 ([1]). Let V = (Vn)n≥1 be the generalized Beatty sequence defined by

Vn = pbnϕc + qn + r, and let ∆V be the sequence of its first differences. Then

∆V is the Fibonacci word over the alphabet {2p + q, p + q}. Conversely, if xa,b
is the Fibonacci word over the alphabet {a, b}, then every V with ∆V = xa,b is a

generalized Beatty sequence V = V (a− b, 2b− a, r) for some integer r.
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6. The Positive Powers of the Golden Mean

For every digit block w we will determine the sequence Rw of those numbers N

with digit block w = dm−1 · · · d0 as the suffix of β+(N). More generally, we are

also interested in occurrence sequences of numbers N with dm−1 · · · d0(N) = w and

d−1 · · · d−m′(N) = v. We denote these as Rw·v.

For a couple of small values of m,m′, we have the following result from the paper

[5, Theorem 5.1].

Theorem 6 ([5]). Let β(N) = (di(N)) be the base phi expansion of a natural

number N . Then:

R1 = V0(1, 2, 1), R10 = V (1, 2,−1), R00·0 = V0(1, 2, 0), R00·1 = V (3, 1, 1).

Here it made sense to add N = 1 to V (1, 2, 1), and N = 0 to R00·0. We accom-

plished this by adding the n = 0 term to the generalized Beatty sequence V : we

define V0 by

V0(p, q, r) := (pbnϕc+ qn+ r)n≥0.

The digit blocks w = dm−1 · · · d1 0 behave rather differently from digit blocks w =

dm−1 · · · d1 1. We therefore analyse these cases separately, in Section 6.1 and Section

6.2.

6.1. Digit Blocks w = dm−1 · · · d10

We order the digit blocks w with d0 = 0 in a Fibonacci tree. The first four levels

of this tree are depicted in Figure 1. The first line gives w, the second line Rw.

w = 0
V0(−1, 3, 0)

w = 00
V0(1, 2, 0) t V (3, 1, 1)

w = 000
V0(4, 3, 0) t V (3, 1, 1)

w = 0000
V0(4, 3, 0) t V (7, 4, 1)

w = 1000
V (4, 3,−2)

w = 100
V (3, 1,−1)

w = 0100
V (3, 1,−1)

w = 10
V (1, 2,−1)

w = 010
V (1, 2,−1)

w = 0010
V (3, 1,−2)

w = 1010
V (4, 3,−1)

1

Figure 1: Tree of digit blocks w = dm−1 · · · d10

We start with the short words w.
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Proposition 2. The sequence of occurrences Rw of numbers N such that the digits

dm−1 · · · d0 of the base phi expansion of N are equal to w, i.e., dm−1 · · · d0(N) = w,

is given for the words w of length at most 3, and ending in 0, by

(a) R0 = V (−1, 3, 0),

(b) R00 = V0(1, 2, 0) t V (3, 1, 1),

(c) R10 = R010 = V (1, 2,−1),

(d) R000 = V0(4, 3, 0) t V (3, 1, 1),

(e) R100 = V (3, 1,−1).

Proof. (a) w = 0: Since the numbers ϕ+ 2 and 3− ϕ form a Beatty pair, i.e.,

1

ϕ+ 2
+

1

3− ϕ
= 1,

the sequences V (1, 2, 0) and V (−1, 3, 0) are complementary in the positive integers.

It follows that R0 = V0(−1, 3, 0) is the complement of R1 = V0(1, 2, 1), by Theorem

6.

(b) w = 00: Theorem 6 gives that R00 is the union of the two GBS V0(1, 2, 0)

and V (3, 1, 1). These two sequences correspond to the numbers N with expansions

containing 00 · 0, coded B in [5], and those containing 00 · 1, coded D in [5].

(c) w = 10 and w = 010: From Theorem 6 we obtain that R10 is equal to V (1, 2,−1).

(d) w = 000: By Lemma 1 there are no base phi expansions with d2d1d0d−1(N) =

100 · 1. This means that the numbers N from V (3, 1, 1) in the last part of Theorem

6 do exactly correspond with the numbers N with d2d1d0d−1(N) = 000 · 1. This

gives one part of the numbers N where β+(N) has the suffix 000.

The other part comes from the occurrences of N with d2d1d0d−1(N) = 000 · 0.

The trick is to observe that the digit blocks 1010 and 000 · 0 always occur in

pairs of the expansions of N − 1 and N , for N = 7, . . . 18. The Propagation

Principle (Lemma 2 (b)) gives that this pairing holds for all positive integers

N . From Theorem 7 we know that the digit block 1010 has occurrence sequence

R1010 = V (4, 3,−1). So the pairing implies that the digit block 000·0 has occurrence

sequence V0(4, 3, 0). Here we should mention that Theorem 7 uses the proposition

we are on the way of proving (via the formula R1010 = R010 B), however, this only

uses part (c), which we already proved above.

(e) w = 100: We already know that expansions with 100 · 1 do not occur, and

one checks that an expansion β(N − 2) = · · · 100 · 0 · · · always occurs paired to

an expansion β(N) = · · · 00 · 1 · · · , for N = 2, . . . , 19. The Propagation Principle

(Lemma 2 (b)) then implies that this pairing occurs for all N . This gives that

R100 = R00·1 − 2 = V (3, 1,−1), using the result of part (b).

The sequences R010 and R100 are examples of what we call Lucas-Wythoff se-

quences: their parameters are given by (L1, L0,−1) and (L2, L1,−1), respectively.
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In general, a Lucas-Wythoff sequence G is a generalized Beatty sequence defined

for a natural number m by

G = V (Lm+1, Lm, r),

where r is an integer.

Theorem 7. Fix a word w = wm−1 · · ·w0 of 0’s and 1’s, containing no 11, where

m ≥ 2. Let w0 = 0. Then—except if w = 0m—the sequence Rw of occurrences of

numbers N such that the digits dm−1 · · · d0 of the base phi expansion of N are equal

to w, i.e., dm−1 · · · d0(N) = w, is a Lucas-Wythoff sequence of the form

Rw =

{
V (Lm−2, Lm−3, γw), if wm−1 = 0

V (Lm−1, Lm−2, γw), if wm−1 = 1.

where γw is a negative integer or 0.

If w consists entirely of 0’s, this sequence of occurrences is given by a disjoint

union of two Lucas-Wythoff sequences. We have

R02m = V (L2m, L2m−1, 1) t V0(L2m−1, L2m−2, 0),

R02m+1 = V0(L2m+1, L2m, 0) t V (L2m, L2m−1, 1).

Proof. Suppose first that w is a word not equal to 0m for some m ≥ 2.

The proof is by induction on the length m of w. For m = 2 the statement of the

theorem holds by Proposition 2 (c). Next, let w be a word of length m with w0 = 0.

In the case that wm−1 = 1, w has a unique extension to 0w, and R0w = Rw is

equal to the correct Lucas-Wythoff sequence.

In the case that wm−1 = 0, the induction hypothesis is that Rw is a Lucas-

Wythoff sequence Rw = V (Lm−2, Lm−3, γw). By Theorem 1, the numbers N with a

β+(N) ending with the digit block w are in one-to-one correspondence with numbers

N ′ with a Z(N ′) ending with the digit block w, and the same property holds for

the digit blocks 0w, and 1w, respectively. Note that the correspondence is one-to-

one, since the numbers ‘skipped’ in the Zeckendorf expansions all1 have d0 = 1. It

therefore follows from Proposition 2.6 in [6] that

R0w = RwA and R1w = RwB.

By Lemma 3, RwA has parameters

(Lm−2 + Lm−3, Lm−2, γw − Lm−2) = (Lm−1, Lm−2, γw − Lm−2),

and RwB has parameters

(2Lm−2 + Lm−1, Lm−2 + Lm−3, γw) = (Lm, Lm−1, γw).

1We have to follow a different strategy for the words w = dm−1 · · · d11 in the next section.
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These are indeed the right expressions for the two words 0w and 1w of length m+1.

The words w = 0m with m ≥ 2 are next. For all m ≥ 1 we claim that

R02m·0 = V0(L2m−1, L2m−2, 0), R02m·1 = V (L2m, L2m−1, 1), (9)

R02m+1·0 = V0(L2m+1, L2m, 0), R02m+1·1 = V (L2m, L2m−1, 1). (10)

The proof is by induction. In the proof of Proposition 2 (b), we find that R00·0 =

V0(1, 2, 0) and R00·1 = V (3, 1, 1). Since L0 = 2, L1 = 1 and L2 = 3, this is Equation

(9) for m = 1. We find in the proof of Proposition 2 (d), that R000·0 = V0(4, 3, 0)

and R000·1 = V (3, 1, 1). This is Equation (10) for m = 1.

Suppose now that both Equation (9) and Equation (10) hold.

First, we do the induction step for Equation (9). Since 102m+1 · 0 never occurs

by Lemma 1, we must have

R02m+2·0 = R02m+1·0 = V0(L2m+1, L2m, 0). (11)

This is the left part of Equation (9) for m+ 1 instead of m.

The fact that 102m+1 · 0 never occurs also implies that

R102m+1·1 = R102m+1 = V (L2m+1, L2m, γ102m+1) = V (L2m+1, L2m,−L2m+1). (12)

Here we used the first part of the proof, determining γ102m+1 from the observation

that the first occurrence of d2m+1 · · · d0(N) = 102m+1 is at N = L2m+1 + 1, the

first element of the Lucas interval Λ2m+1.

Next, we take V = R02m+1·1, U = R102m+1·1 and W = R02m+2·1 in Lemma 4.

According to Equation (10), we take (p, q, r) = (L2m, L2m−1, 1). The parameters of

the sequence U should be (p+ q, p, r− p) = (L2m+1, L2m, 1−L2m), which conforms

with Equation (12).

The conclusion of Lemma 4 is that W = R02m+2·1 has parameters (2p + q, p +

q, r) = (2L2m + L2m−1, L2m + L2m−1, 1) = (L2m+2, L2m+1, 1). Therefore,

R02m+2·1 = V (L2m+2, L2m+1, 1). (13)

This is the right part of Equation (9) for m+ 1 instead of m.

Next, we do the induction step for Equation (10). Since 102m+2 · 1 never occurs

by Lemma 1, we must have, using Equation (13),

R02m+3·1 = R02m+2·1 = V (L2m+2, L2m+1, 1).

This is the right part of Equation (10) for m+ 1 instead of m.

The fact that 102m+2 · 1 never occurs also implies that

R102m+2·0 = R102m+2 = V (L2m+2, L2m+1,−L2m+1). (14)
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Here we used the first part of the proof, determining γ102m+2 from the observation

that the first occurrence of d2m+2 · · · d0(N) = 102m+2 is at N = L2m+2, the first

element of the Lucas interval Λ2m+2.

Next, we take V = R02m+2·0, U = R102m+2·0 and W = R02m+3·0 in Lemma 4.

According to Equation (11), we take (p, q, r) = (L2m+1, L2m, 0). The parameters

of the sequence U should be (p + q, p, r − p) = (L2m+2, L2m+1,−L2m+1), which

conforms with Equation (14).

The conclusion of Lemma 4 is that W = R02m+3·0 has parameters (2p + q, p +

q, r) = (2L2m+1 + L2m, L2m+1 + L2m, 0) = (L2m+3, L2m+2, 0). Therefore,

R02m+3·0 = V (L2m+3, L2m+2, 0). (15)

This is the left part of Equation (10) for m+ 1 instead of m.

6.2. Digit Blocks w = dm−1 · · · d11

Here there are digit blocks that do not occur at all, like w = 1001. We denote this

as R1001 = ∅. We order the digit blocks w with d0 = 1 in a tree. The first four

levels of this tree (taking into account that the node corresponding to R1001 has no

offspring), are depicted in Figure 2.

w = 1
V0(1, 2, 1)

w = 01
V0(1, 2, 1)

w = 001
V0(4, 3, 1)

w = 0001
V0(4, 3, 1)

w = 00001
V0(11, 7, 1)

w = 10001
V (7, 4,−3)

w = 1001
∅

w = 101
V (3, 1, 0)

w = 0101
V (3, 1, 0)

w = 00101
V (4, 3,−3)

w = 10101
V (7, 4, 0)

1

Figure 2: Tree of digit blocks w = dm−1 · · · d11

Here R01 = R1 = V0(1, 2, 1) has been given in Theorem 6. The correctness of

the other occurrence sequences follows from Theorem 8.

We next determine an infinite family of excluded blocks.
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Lemma 6. Let m ≥ 2 be an integer. Expansions β+(N) = · · · d2d1d0 = · · · 102m1

do not occur for any N .

Proof. Consider an N such that β+(N) = · · · 102m1. Such an N , of course, has

d−1(N) = 0, so we see that β(N − 1) = · · · 102m+1 · 0 · · · . According to Lemma 1

this is not possible.

Next, we establish a connection with the previous section.

Lemma 7. Let m ≥ 2 be an integer. The digit block w = dm−1 · · · d11 · 0 is a digit

block of β(N) if and only if the digit block w̆ := dm−1 · · · d10 · 0 occurs in β(N − 1).

Proof. This follows quickly from the Propagation Principle (Lemma 2) applied to

the blocks 00 · 0 and 01 · 0.

Theorem 8. Fix a word w = wm−1 · · ·w0 of 0’s and 1’s, containing no 11, where

m ≥ 3. Let w0 = 1. With exception of a family of words listed below, the sequence

Rw of occurrences of numbers N such that the digits dm−1 · · · d0 of the base phi ex-

pansion of N are equal to w, i.e., dm−1 · · · d0(N) = w, is a Lucas-Wythoff sequence

of the form

Rw =

{
V (Lm−2, Lm−3, γw), γw ∈ Z \ Z+ if wm−1 = 0

V (Lm−1, Lm−2, γw), γw ∈ Z \ Z+ if wm−1 = 1.

For m ≥ 1 the following words are exceptional. In case w = 02m1 we have Rw =

V0(L2m+1, L2m, 1), and this is also the sequence of occurrences of w = 02m+11. In

case w = 102m1 the word w does not occur at all as · · · d2d1d0 = · · · 102m1. In case

w = 102m+11 we have Rw = V (L2m+2, L2m+1,−L2m+1 + 1).

Proof. It follows from Lemma 7 that Rw = Rw̆ + 1, if Rw 6= ∅. So the first part of

Theorem 7 yields the statement of the theorem for all w not equal to 0m1 or 10m1.

In case w = 02m1 · 0, we have w̆ = 02m+1 · 0, and the result follows from the left

part of Equation (10).

In case w = 102m1 the word w does not occur at all as · · · d2d1d0 = · · · 102m1,

according to Lemma 6.

In case w = 102m+11 · 0 we have w̆ = 102m+2 · 0, and now Equation (14) gives

that Rw = Rw̆ + 1 = V (L2m+2, L2m+1,−L2m+1 + 1).

7. The Negative Powers of the Golden Mean

Here we discuss what we can say about the words β−(N). These have an even more

intricate structure than the β+(N).
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7.1. The Words β−(N)

We start by describing complete β−(N)’s. Although at first sight these seem to

appear in a random order, there is an order, dictated not by a coin toss, but by

another dynamical system: the rotation over an angle ϕ. Moreover, they appear in

singletons, or triples. This can be proved with the {ABC, D}–structure found in

the paper [5]. For a more extensive analysis, partition the natural numbers larger

than 1 into intervals

Ξn = Λ2n−1 ∪ Λ2n = [L2n−1 + 1, L2n+1].

The Ξn, n = 1, 2, . . . , introduced in Section 4, are exactly the intervals where β−(N)

has length 2n. The Ξn intervals have length

L2n+1 − L2n−1 = L2n+1 − L2n + L2n − L2n−1 = L2n−1 + L2n−2 = L2n.

Call three consecutive numbers N,N + 1, N + 2 a trident if β−(N) = β−(N + 1) =

β−(N + 2). For example: 2,3,4 and 6,7,8 are tridents. We shall always take the

middle number N+1 as the representing number of a trident interval [N,N+1, N+2].

We call this number Π-essential. By definition the other Π-essential numbers are

the singletons.

Lemma 8 (Trident Splitting). In Λ2n−1 ∪ Λ2n the last number of Λ2n−1 and the

first two numbers in Λ2n are in the same trident.

Proof. This is true for n = 1 and n = 2: Λ1 ∪ Λ2 = {2} ∪ [3, 4] is a trident, and

Λ3∪Λ4 = [5, 6]∪[7, 8, . . . , 11] contains the trident [6, 7, 8]. The property then follows

by induction, using Theorem 3.

The following lemma helps to count singletons and tridents.

Lemma 9. The following relation between Lucas numbers and Fibonacci numbers

holds: Fn + 3Fn+1 = Ln+2 for n = 0, 1, 2, . . . .

For a proof, note that F0+3F1 = 3 = L2, and F2+3F3 = 1+6 = L4, and then add

these two equations, etc. The lemma describes the fact that the Ξn intervals contain

F2n−2 singletons, and F2n−1 tridents, making a total number of L2n. The collection

of different β−(N)-blocks of length 2n thus has cardinality F2n−2 + F2n−1 = F2n.

This implies that we have proved the following theorem.

Theorem 9. All Zeckendorf words of even length ending in 1 appear as β−(N)-

blocks.

Here we mean by a Zeckendorf word (or golden mean word), all words in which

11 does not occur. We denote by Zm the set of Zeckendorf words of length m, for

m = 1, 2, . . . . It is easily proved that the cardinality of Zm equals Fm+2. So the



INTEGERS: 24 (2024) 20

cardinality of the set of words from Z2n ending in 1 is equal to F2n, implying the

result of Theorem 9.

Since all β−(N) have the suffix 01, the essential information of these words is

contained in

γ−(N) := β−(N)1−10−1.

The words γ−(N) are Zeckendorf words, corresponding one-to-one to the natural

numbers Z−1(γ−(N)). Obviously, the γ−(N) have the same ordering as the β−(N).

According to Theorem 9 we then (after identifying tridents with their middle num-

ber) obtain a permutation of length F2n of the Π-essential elements of Ξn by coding

these numbers by C(N) := Z−1(γ−(N)). We denote this permutation by Πβ
2n. The

following Zeckendorf words and codes will be important in the sequel.

Lemma 10. For all natural numbers n we have

γ−(L2n) = 02n−2, γ−(L2n+1) = [01]n−1, (16)

γ−(L2n+1 + 1) = [10]n, γ−(L2n+2 − 1) = 02n, (17)

C(L2n) = 0, C(L2n+1) = F2n−1 − 1, (18)

C(L2n+1 + 1) = F2n+2 − 1, C(L2n+2 − 1) = 0. (19)

Proof. The correctness of Equations (16) and (17) follows from Equations (2) and

(3). So γ−(L2n) is the first word in Z2n−2, γ−(L2n+1) is 0 followed by the last word

in Z2n−3, γ−(L2n+1 +1) is the last word in Z2n, and γ−(L2n+2−1) is the first word

in Z2n−2. Since Zm has cardinality Fm+2, Equations (18) and (19) follow.

We have to determine the codings of all natural numbers N . For this, it is useful

to translate Theorem 3 to the γ−-blocks.

Theorem 10 (Recursive Structure Theorem: γ−-version). Let the odd and even

Lucas intervals be given by

Λ2n+1 = [L2n+1 + 1, L2n+2 − 1], Λ2n+2 = [L2n+2, L2n+3].

(A) For all n ≥ 1 one has Λ2n+1 = Λ
(a)
2n−1 ∪ Λ

(b)
2n−2 ∪ Λ

(c)
2n−1,

where Λ
(a)
2n−1 = Λ2n−1 +L2n, Λ

(b)
2n−2 = Λ2n−2 +L2n+1, and Λ

(c)
2n−1 = Λ2n−1 +L2n+1.

We have

γ−(N) =


γ−(N − L2n) 10, if N ∈ Λ

(a)
2n−1,

γ−(N − L2n+1) 0010, if N ∈ Λ
(b)
2n−2,

γ−(N − L2n+1) 00, if N ∈ Λ
(c)
2n−1.

(20)

(B) For all n ≥ 1 one has Λ2n+2 = Λ
(a)
2n ∪Λ

(b)
2n−1 ∪Λ

(c)
2n , where Λ

(a)
2n = Λ2n +L2n+1,

Λ
(b)
2n−1 = Λ2n−1 + L2n+2, and Λ

(c)
2n = Λ2n + L2n+2. We have

γ−(N) =


γ−(N − L2n+1) 00, if N ∈ Λ

(a)
2n ,

γ−(N − L2n+2) 01 if N ∈ Λ
(b)
2n−1,

γ−(N − L2n+1) 01 if N ∈ Λ
(c)
2n .

(21)
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Table 2 gives the situation for n = 2.

N Λ-int. ·β−(N) ·γ−(N) C(N)
5 Λ3 ·1001 ·10 2
6 Λ3 ·0001 ·00 0
7 Λ4 ·0001 ·00 0
8 Λ4 ·0001 ·00 0
9 Λ4 ·0101 ·01 1
10 Λ4 ·0101 ·01 1
11 Λ4 ·0101 ·01 1

Table 2: The case n = 2, where Ξ2 = Λ3 ∪ Λ4 = [5, 6, . . . , 11].

We see that Πβ
4 =

(
2 0 1

)
.

For n = 3, the situation is displayed in Table 3.

N Λ-int. ·β−(N) ·γ−(N) C(N)
12 Λ5 ·101001 ·1010 7
13 Λ5 ·001001 ·0010 2
14 Λ5 ·001001 ·0010 2
15 Λ5 ·001001 ·0010 2
16 Λ5 ·100001 ·1000 5
17 Λ5 ·000001 ·0000 0
18 Λ6 ·000001 ·0000 0
19 Λ6 ·000001 ·0000 0
20 Λ6 ·010001 ·0100 3

N Λ-int. ·β−(N) ·γ−(N) C(N)
21 Λ6 ·010001 ·0100 3
22 Λ6 ·010001 ·0100 3
23 Λ6 ·100101 ·1001 6
24 Λ6 ·000101 ·0001 1
25 Λ6 ·000101 ·0001 1
26 Λ6 ·000101 ·0001 1
27 Λ6 ·010101 ·0101 4
28 Λ6 ·010101 ·0101 4
29 Λ6 ·010101 ·0101 4

Table 3: The case n = 3, where Ξ3 = Λ5 ∪ Λ6 = [12, 13, . . . , 29].

We see that Πβ
6 =

(
7 2 5 0 3 6 1 4

)
.

What are these permutations?

Theorem 11. For all natural numbers n, consider the F2n Zeckendorf words of

length 2n occurring as β−(N) in the β-expansions of the numbers in Ξn. Then

these occur in an order given by a permutation Πβ
2n, which is the orbit of the element

F2n − 1 under addition by the element F2n−2 on the cyclic group Z/F2nZ.

Proof. We have to show for all n that

Πβ
2n(1) = F2n − 1, (22)

Πβ
2n(j + 1) = Πβ

2n(j) + F2n−2 mod F2n, for j = 1, . . . , F2n − 1. (23)

It is easily checked that the cases n = 2 and n = 3 given above conform with this.

For n = 3 one has F6 = 8, F4 = 3, and Πβ
6 (1) ≡ 7, Πβ

6 (j + 1) ≡ Πβ
6 (j) + 3 mod 8

for j = 1, . . . 7.
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The claim in Equation (22) follows from Lemma 10 for all n: since the inter-

val Ξn = [L2n−1 + 1, L2n+1], we have Πβ
2n(1) = F2n − 1 by Equation (19). The

proof proceeds by induction, based on Theorem 10, the γ−-version of the Recursive

Structure Theorem.

For Equation (23) with n replaced by n + 1, we have to split the permutation

Πβ
2n+2 into six pieces, and then we have to glue the expressions together to obtain

the full permutation on the set Ξn+1 = Λ2n+1 ∪ Λ2n+2 = [L2n+1 + 1, L2n+2 − 1] ∪
[L2n+2, L2n+3]. According to the Recursive Structure Theorem

Ξn+1 = Λ
(a)
2n−1 ∪ Λ

(b)
2n−2 ∪ Λ

(c)
2n−1 ∪ Λ

(a)
2n ∪ Λ

(b)
2n−1 ∪ Λ

(c)
2n . (24)

We start with the first interval, Λ
(a)
2n−1. From Theorem 10, for N ∈ Λ

(a)
2n−1, we have

that

γ−(N) = γ−(N − L2n) 10. (25)

What does this imply for the codes?

Let Z(C(N−L2n)) = γ−(N−L2n) = d2n−3 · · · d0, so C(N−L2n) =
∑2n−3
i=0 diF̈i.

Then Equation (25) leads to

C(N) =

2n−3∑
i=0

diF̈i+2 + 1 · F̈1 + 0 · F̈0 =

2n−3∑
i=0

diF̈i+2 + 2.

This implies, in particular, that the differences between the codes of two consecutive

Π-essential numbers within the interval Λ2n−1 have increased from F2n−2 mod F2n

to F2n mod F2n+2 for the corresponding numbers in the interval Λ
(a)
2n−1. We pass

to the second interval, Λ
(b)
2n−2. From Theorem 10 we have that for N from Λ

(b)
2n−2,

γ−(N) = γ−(N − L2n+1) 0010. (26)

What does this imply for the codes?

Let Z(C(N − L2n+1)) = γ−(N − L2n+1) = d2n−4 · · · d0, so C(N − L2n+1) =∑2n−4
i=0 diF̈i. Then Equation (26) leads to

C(N) =

2n−4∑
i=0

diF̈i+4 + 0 · F̈3 + 0 · F̈2 + 1 · F̈1 + 0 · F̈0 =
2n−4∑
i=0

diF̈i+4 + 2.

This implies that the differences between the codes of two consecutive numbers

within the interval Λ2n−2 have increased from F2n−4 mod F2n−2 to F2n mod F2n+2

for the corresponding numbers in the interval Λ
(b)
2n−2. Similar computations give that

for the next 4 intervals Λ
(c)
2n−1,Λ

(a)
2n ,Λ

(b)
2n−1, and Λ

(c)
2n there always is an addition of

F2n mod F2n+2.

The remaining task is to check that the same holds on the five boundaries between

the translated Λ-intervals. We number these boundaries with the roman numerals

I, II, III, IV, V.
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III & V: For the third boundary between the intervals Λ
(c)
2n−1 and Λ

(a)
2n , and the

fifth boundary between the intervals Λ
(b)
2n−1 and Λ

(c)
2n , this follows from the Trident

Splitting Lemma (Lemma 8). The reason is that if [N,N + 1, N + 2] is the trident

which is splitted, then the difference between C(N − 1) and C(N) is equal to F2n

mod F2n+2, as these two numbers are both from the first translated Λ-interval, and

not from the same trident. But then the difference between the codes of the last

Π-essential number N −1 in the first translated Λ-interval, and the first Π-essential

number N + 1 in the second translated Λ-interval is also equal to F2n mod F2n+2.

I: The last number in the first interval Λ
(a)
2n−1 is 2L2n−1 with associated γ−-block

γ−(2L2n − 1) = γ−(2L2n − 1− L2n) 10 = γ−(L2n − 1) 10 = 02n−1 10.

Here we used the first case of Equation (20) in the first step, and Equation (17) in

the last step. It follows directly that C(2L2n − 1) = 2.

The first number in the second interval Λ
(b)
2n−2 is 2L2n. From Equation (2) we

have β(2L2n)
.
= 202n · 02n−12

.
= 202n · 02n−11001, so γ−(2L2n) = 02n−110, giving

C(2L2n) = 2. It is clear also that the second number 2L2n + 1 in Λ
(b)
2n−2 has code

C(2L2n+1) = 2. As in the previous case, this implies that the difference between the

codes of the last Π-essential number in the first translated Λ-interval, and the first

Π-essential number in the second translated Λ-interval is equal to F2n mod F2n+2.

II: The last number in the second interval Λ
(b)
2n−2 is the number L2n−1 + L2n+1.

According to the second case of Equation (20), the associated γ−-block is

γ−(L2n−1 + L2n+1) = γ−(L2n−1 + L2n+1 − L2n+1) 0010

= γ−(L2n−1) 0010 = [01]n−2 0010.

But we know from Lemma 10 that γ−(L2n−1) 0101 = [01]n = γ−(L2n+3).

By Lemma 10, we have that C(L2n+3) = F2n+1 − 1. To obtain the code of

N = L2n−1 + L2n+1, we have to subtract the number F3 + F1 = 3 with Zeckendorf

expansion 0101, and add the number F2 = 2 with Zeckendorf expansion 0010. This

gives the code

C(L2n−1 + L2n+1) = F2n+1 − 1− 3 + 1 = F2n+1 − 3.

The first number in the third interval Λ
(c)
2n−1 is the number L2n−1 + L2n+1 + 1.

According to the third case of Equation (20) the associated γ−-block is

γ−(L2n−1 + L2n+1 + 1) = γ−(L2n−1 + L2n+1 + 1− L2n+1) 00 = γ−(L2n−1 + 1) 00.

But we know from Lemma 10 that γ−(L2n−1 + 1)10 = [10]n = γ−(L2n+1 + 1).

By Lemma 10, we have that C(L2n+1 + 1) = F2n+2 − 1. To obtain the code of

N = L2n−1 + L2n+1 + 1, we have to subtract the number F2 = 2 with Zeckendorf
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expansion 10, from this code. This gives the code

C(L2n−1 + L2n+1 + 1) = F2n+2 − 1− 2 = F2n+2 − 3.

The conclusion is that L2n−1 +L2n+1 and N = L2n−1 +L2n+1 + 1 are Π-essential,

with difference in codes F2n+2 − 3− (F2n+1 − 3) = F2n.

IV: The last number in the fourth interval Λ
(c)
2n is the number L2n+1 + L2n+1 =

2L2n+1. According to the third case of Equation (21) the associated γ−-block is

γ−(2L2n+1) = γ−(2L2n+1 − L2n+1) 00 = γ−(L2n+1) 00 = [01]n−1 00.

But we know from Lemma 10 that γ−(L2n+1) 01 = [01]n = γ−(L2n+3).

By Lemma 10, we have that C(L2n+3) = F2n+1 − 1. To obtain the code of

N = 2L2n+1, we have to subtract the number F1 = 1 with Zeckendorf expansion

01. This gives the code

C(2L2n+1) = F2n+1)− 1− 1 = F2n+1 − 2.

The first number in the fifth interval Λ
(b)
2n−1 is the number L2n−1 + 1 + L2n+2.

According to the second case of Equation (20) the associated γ−-block is

γ−(L2n−1 + 1 + L2n+2) = γ−(L2n−1 + 1 + L2n+2 − L2n+2) 01 = γ−(L2n−1 + 1) 01.

But we know from Lemma 10 that γ−(L2n−1 + 1)10 = [10]n = γ−(L2n+1 + 1).

By Lemma 10, we have that C(L2n+1 + 1) = F2n+2 − 1. To obtain the code of

N = L2n−1 + 1 + L2n+2, we have to subtract the number F2 = 2 with Zeckendorf

expansion 10, and add the number F1 = 1 with Zeckendorf expansion 01 to this

code. This gives the code

C(L2n−1 + L2n+1 + 1) = F2n+2 − 1− 2 + 1 = F2n+2 − 2.

The conclusion is that 2L2n+1 and L2n−1+1+L2n+2 are Π-essential, with difference

in codes F2n+2 − 2− (F2n+1 − 2) = F2n.

We now explain the connection with a rotation on a circle mentioned at the

beginning of this section. Note that with this point of view all the cyclic groups of

Theorem 11 are represented by a single object: the rotation on the circle.

Theorem 12. For all natural numbers n, the permutations Πβ
2n are given by the

order in which the first F2n iterates of the rotation z → exp(2πi(z − ϕ)) occur on

the circle.

We sketch a proof of this result based on the paper [10]. In the literature one does

not find the rotation z → exp(2πi(z − ϕ)), but several papers treat the rotation

z → exp(2πi(z + τ)), where τ is the algebraic conjugate of ϕ. Note that this
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rotation has exactly the same orbits as z → exp(2πi(z + ϕ)), and replacing ϕ by

−ϕ amounts to reversing the permutation. In the literature the origin is usually

added to the orbit. For instance in [10], the N ordered iterates are given by the

permutation
(
u1 u2 . . . uN

)
, which for all N gives a permutation starting trivially

with u1 = 0. Lemma 2.1 in [10] states that for j = 1, . . . , N one has uj = (j − 1)u2

mod N . Next, Theorem 3.3 in [10] states that u2 = u2(N) = F2n−1 in the case

that N = F2n, n ≥ 1. We illustrate this for the case n = 3. We have N = F6 = 8,

and 0 < {5τ} < {2τ} < {7τ} < {4τ} < {τ} < {6τ} < {3τ}, so
(
u1 u2 . . . uN

)
=(

0 5 2 7 4 1 6 3
)
. As {8τ} is the largest number in the rotation orbit of the first 9

iterations,
(
uN+1 uN . . . u2

)
=
(
8 3 6 1 4 7 2 5

)
. After subtraction of 1 in all entries,

one obtains the permutation Πβ
6 .

7.2. Digit Blocks w = d−1 · · · d−m(N)

For all digit blocks w we will try to determine the sequence Rw of those numbers N

with w as the prefix of β−(N). The tridents introduced in the previous section give

occurrence sequences Rw which are unions of three consecutive generalized Beatty

sequences. We write for short

V (p, q, [r, r + 1, r + 2]) := V (p, q, r) t V (p, q, r + 1) t V (p, q, r + 2).

As before, we order the w in a Fibonacci tree. The first four levels of this tree are

depicted in Figure 3.

w = Λ
∅

w = 0
V (1, 2, [−1, 0, 1])

w = 00
V (3, 1, [2, 3, 4])

w = 000
V (4, 3, [−1, 0, 1])

w=001
V (7, 4, [2, 3, 4])

w = 01
V0(4, 3, [2, 3, 4])

w = 010
V0(4, 3, [2, 3, 4])

w = 1
V (3, 1, 1)

w = 10
V (3, 1, 1)

w = 100
V (4, 3,−2)

w = 101
V (7, 4, 1)

1

Figure 3: Tree of digit blocks w = d−1 · · · d−m(N).
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We start with the words w on this tree. We writeR·w for the occurrence sequences

of words w occurring as a prefix of the words β−(N), to emphasize the positions of

these words in the expansion β(N).

Proposition 3. Let β(N) = β+(N) · β−(N) be the base phi expansion of N .

Let w be a word of length m. Then the sequence of occurrences of numbers N such

that the first m digits of β−(N) are equal to w, i.e., d−1 · · · d−m(N) = w, is given

for the words w of length at most 3, by

(a) R·0 = V (2, 1,−1) t V (2, 1, 0) t V (2, 1, 1),

(b) R·1 = R·10 = V (3, 1, 1),

(c) R·00 = V (3, 1, 2) t V (3, 1, 3) t V (3, 1, 4),

(d) R·01 = R·010 = V0(4, 3, 2) t V0(4, 3, 3) t V0(4, 3, 4),

(e) R·000 = V (4, 3,−1) t V (4, 3, 0) t V (4, 3, 1),

(f) R·001 = V (7, 4, 2) t V (7, 4, 3) t V (7, 4, 4),

(g) R·100 = V (4, 3,−2),

(h) R·101 = V (7, 4, 1).

Proof. (a) w = ·0: In Section 5 of the paper [5] the tridents are coded by triples

(A,B,C). It follows from Theorem 5.1 of [5] that the first elements (coded A) of

the tridents are all members of V (2, 1,−1). This implies the statement in (a).

(b) w = ·1: We already know from Proposition 1 that R·1 = V (3, 1, 1).

(c) w = ·00: Using the Propagation Principle, we see that a digit block ·10 is always

followed directly by the first element of a trident of ·00’s and vice versa. This implies

the statement in (c), because of (b).

(d) w = ·01: This result is given in Remark 6.2 in the paper [5].

(e) w = ·000: Using the Propagation Principle, we see that a ·100 is always followed

directly by the first element of a trident of ·000’s and vice versa. So (e) is implied

by (g).

(f) w = ·001: Take the first sequence V (3, 1, 2) of R·00, and put p = 3, q = 1, r = 2.

Then the first sequence of R·000 is equal to V (4, 3,−1) = V (p+ q, p, r− p). It then

follows from Lemma 4 that the first sequence of R·001 is equal to V (2p+q, p+q, r) =

V (7, 4, 2).

(g) w = ·100: For the first 17 numbers we check that ·100 occurs as the prefix of

β−(N) if and only if 1000 occurs as the suffix of β+(N). The result then follows

from Theorem 7: Rw = V (Lm−1, Lm−2, γw) if wm−1 = 0, where here m = 4, so

R1000 = V (L3, L2, γ1000) = V (4, 3,−2). Here γ1000 is determined by noting that

N = 5 is the first number in R1000.

(h) w = ·101: Take the sequence R·10 = V (3, 1, 1), and put p = 3, q = 1, r = 1.

Then R·100 is equal to V (4, 3,−2) = V (p+ q, p, r− p). It then follows from Lemma

4 that the sequence R·101 is equal to V (2p+ q, p+ q, r) = V (7, 4, 1).
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The reader might think that we can now proceed, as we did earlier, from these

cases to words w with larger lengths m, using the same tools. However, this does

not work. The reason is that the β−(N) words do not occur in lexicographical order,

in contrast with the β+(N) words. Some occurrence sequences are Lucas-Wythoff,

some are not — but still close to Lucas-Wythoff sequences.

Recall the three (Sturmian) morphisms f, g and h from Equation (8). Note that

f equals the square of the Fibonacci morphism a 7→ ab, b 7→ a, so f has fixed point

xF, the Fibonacci word. The fixed point xG of g is given by xG = b xF, and the

fixed point xH of h is given by xH = a xF — see [3, Theorem 3.1].

Let VF, VG, VH denote the families of sequences having xF, xG, xH as first differ-

ences, with first element an arbitrary integer. Then, by definition, one example is

V = VF, if we take VF(1) = p+ q+ r. We have also already encountered a VG, since

V0 = VG, if we take VG(1) = r. This follows from V0(p, q, r) = r, p + q + r, · · · =

r, b + r, . . . , which gives ∆V0 = bxF = xG. We mention that one can show that

there do not exist α, p, q, and r such that VH is a generalized Beatty sequence

V = (pbnαc+ qn+ r).

We conjecture that the following holds.

Conjecture. Let β(N) = β+(N) · β−(N) be the base phi expansion of N . Let w

be a word of length m. Let R·w be the sequence of occurrences of numbers N such

that the first m digits of β−(N) are equal to w, i.e., d−1 · · · d−m(N) = w. Then

there exist two Lucas numbers a and b such that either R·w = VF, R·w = VG, or

R·w = VH. A second possibility is that R·w is a union of three of such sequences.

In all cases in Proposition 3 the sequence R·w is a VF, except R·010, which is a

union of three VG’s, the middle one being VG(4, 3,−4). The first case where a VG

as R·w occurs, is for w = ·1001, where a = 29, b = 18. The first case where VH

as R·w occurs, is as the first element of the trident for the digit block w = ·0100,

where a = 18, b = 11.
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[3] J. Berstel and P. Séébold, A remark on morphic Sturmian words, RAIRO Theor. Inform. Appl.
28 (1994), 255–263.

[4] R. M. Capocelli, A note on Fibonacci trees and the Zeckendorf representation of integers,
Fibonacci Quart. 26 (1988), 318–324.

[5] F. M. Dekking, Base phi representations and golden mean beta-expansions, Fibonacci Quart.
58 (2020), 38–48.



INTEGERS: 24 (2024) 28

[6] M. Dekking, The structure of Zeckendorf expansions, Integers 21, #A6 (2021), 10 pp.

[7] M. Dekking, How to add two natural numbers in base phi, Fibonacci Quart. 59 (2021), 19–22.

[8] C. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to rep-
resentation in base ϕ and a generalization, Int. J. Algebra Comput. 9 (1999), 351–384.
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