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Abstract

The problem of representing a given positive integer as a sum of four squares of

integers has been widely studied for a long time. Given a positive odd integer

n, one can find a representation of n by some computation in a maximal order

of a quaternion algebra, once a pair of (positive) integers x, y that satisfy x2 +

y2 ≡ −1 mod n is given. In this paper, we introduce a new approach to finding a

representation of an odd integer w, given x, y that meet the above requirement. This

method can avoid the complicated non-commutative structure in the quaternion

algebra, which is similar to the method used to obtain a representation of a prime

p ≡ 1 mod 4 as a sum of two squares, employing continued fraction expansions.

However, in this case, we use the Hurwitz algorithm for complex number expansions.

1. Introduction

In 1770 Lagrange proved in [4] that all positive integers can be written as a sum

of four squares. In 1986, three randomized algorithms were presented by Rabin

DOI: 10.5281/zenodo.10821681



INTEGERS: 24 (2024) 2

and Shallit[14], which were used to obtain a representation for any given (positive)

integer n under the assumption of the Extended Riemann Hypothesis. Among all

the methods, one used a maximal order called the Hurwitz order

H =

{
h1 + h2i+ h3j + h4k

2
| all hn ∈ Z, h1 ≡ h2 ≡ h3 ≡ h4 mod 2

}
,

which is contained in the restriction of Hamiltonians from R to Q, namely the

quaternion algebra
(
−1,−1

Q

)
, where i, j and k are the coordinates satisfying

i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j.

By [12], once a solution to x2 + y2 ≡ −1 mod n has been found, one can write n as

a sum of four squares by computing the greatest common right divisor of x+ yi+ j

and n in H, i.e., the greatest common divisor by computing on the right-hand side.

However, this method is less effective compared to the approach for solving the

sum-of-two-squares problem, which aims to write certain positive integers as a sum

of two square integers. The intricate structure of
(
−1,−1

Q

)
will bring much trouble

to the calculation in this algebra, primarily due to its non-commutative property.

Therefore, in this paper, we present an algorithm designed to work in a commutative

ring. Specifically, our method allows operation in the Gaussian integer ring Z[i],

and avoids the need for cumbersome arithmetic in the Hurwitz order.

To help understand the basic idea of this paper, we illustrate firstly the method

employed by Hermite in 1848 [7] to represent a given prime p ≡ 1 mod 4 as a sum

of two squares (one can also see [1] for additional reference):

1. Find x0 with 0 < x0 <
p
2 such that x20 ≡ −1 mod p.

2. Expand x0

p into a simple continued fraction expansion till the denominator of

the convergents Pn

Qn
satisfies Qn <

√
p < Qn+1. Then we have

p = (x0Qn − pPn)2 +Q2
n.

This method has inspired us to consider the sum-of-four-squares problem using

continued fraction expansions. However, our focus lies in utilizing continued fraction

expansions of complex numbers, instead of the classical continued fractions.

Hurwitz first introduced the concept of complex continued fractions in [8]. He de-

veloped an expanding algorithm that chooses the nearest Gaussian integers at each

step, demonstrating properties akin to those in the classical scenario. Subsequently,

in [6], Hensley further detailed properties of Hurwitz continued fraction expansions.

These included aspects such as the growth of absolute values of denominator terms

in approximations and the distribution of remainders. Although their focus cen-

tered on infinite expansions rather than the finite expansions of rational complex
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numbers, most of the theorems and properties they developed are still applicable in

finite cases.

The paper is organized as follows. In Section 2, we present an overview of

properties related to Hurwitz continued fractions. Additionally, we introduce def-

initions and theorems concerning lattices, which will be used in the proof of the

main theorem. The theorem and its proof are illustrated in Section 3, followed

by the presentation of an algorithm detailing the entire process. Finally, we pro-

vide an illustrative example demonstrating the representation of a large odd prime

p ≡ 3 mod 4 as a sum of four squares in Section 4.

2. Preliminaries of Complex Continued Fractions and Lattices

First we present some basic facts about complex continued fractions and Hurwitz’s

algorithm about complex expansions. Some notation in this paper is adopted from

[5], and the readers can also refer to Section 5.2 in [6] for more details.

Let G denote the Gaussian integer ring Z[i], and {an} be a sequence in G, which

can be finite or infinite. Define the Q-pair {Pn} and {Qn} of sequences associated

to {an} recursively as

P−1 = 1, P0 = a0, Pn+1 = an+1Pn + Pn−1 (n ≥ 0),

Q−1 = 0, Q0 = 1, Qn+1 = an+1Qn +Qn−1 (n ≥ 0).

It is easy to verify that

PnQn−1 −QnPn−1 = (−1)n−1

and
Pn
Qn

= a0 +
1

a1 + 1
···+ 1

an

for all n ≥ 0. Pn

Qn
can be regarded as the n-th convergent defined by the sequence

{an}. If the number of elements in {an} is infinite and Pn

Qn
converges when n→∞,

we may say that the complex number z := a0 + 1
a1+

1
a2+···

has a continued fraction

expansion [a0; a1, a2, · · · ] as in the classical continued fraction case.

However, establishing a continued fraction expansion for a given complex number

z requires more definitions and notation. Since we do not focus on the details con-

cerning the continued fraction expansion algorithm, we solely introduce the Hurwitz

algorithm relevant to this paper.

We denote by [z] the Gaussian integer nearest z, i.e., rounding both real and

imaginary parts of z. The Hurwitz algorithm is more likely to be an improvement of
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the classical centered continued fraction algorithm for real numbers, which proceeds

by defining the sequences recursively as
z0 = z,

an = [zn],

zn+1 = (zn − an)−1.

We call {zn} the iteration sequence and {an} the partial quotients of z. Again we

can define the Q-pair {Pn} and {Qn} as above, and they still satisfy the recursive

equations.

Since zn − an lies in Φ :=
{
x+ yi | − 1

2 ≤ x, y ≤
1
2

}
, which can be inferred from

the definition of an, we have

zn ∈ Φ−1 = {x+ yi | (|x| − 1)2 + y2 ≥ 1, x2 + (|y| − 1)2 ≥ 1} \ {(0, 0)}

for n ≥ 1. Consequently, |<(zn)| ≥ 1, |=(zn)| ≥ 1, and an ∈ G\{0,±1,±i} for all

n ≥ 1. In Figure 1, one can find the regions of Φ and Φ−1, highlighted in blue.

(a) Φ (b) Φ−1

Figure 1: The region of Φ and Φ−1

Proposition 1 ([5]). Let z ∈ C, and let {zn}, {an} be the iteration sequence and

partial quotients of z under the Hurwitz algorithm, respectively. Let {Pn} and {Qn}
be the Q-pair associated to {an}. Then we have Qnz − Pn = (−1)n (z1 · · · zn+1)

−1

for all legal n, and zn+1 = −Qn−1z−Pn−1

Qnz−Pn
.

In this context, the term “legal” signifies that n ≥ −1 is an integer, and can be

chosen arbitrarily if z allows for an infinite continued fraction expansion, or smaller

than m if z = [a0; a1, · · · , am]. One can see Proposition 3.3 in [5] for the proof.
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Throughout this paper, our focus is on scenarios where z ∈ Q[i], indicating z as

a rational complex number, thereby ensuring the termination of the algorithm. If

the length of the expansion sequence of z is m, then by the m-th step, we achieve

zm = 0 and Pm

Qm
= z. It is noteworthy that, if z ∈ Q[i], and z possesses a Hurwitz

expansion [a0; a1, · · · , am], then for any n ≥ 0, we can derive a Hurwitz expansion

of zn = [an; an+1, · · · , am].

We now illustrate the definition and some fundamental properties of lattices,

which will be used in the proof of the main theorem. For further elaboration, one

can refer to the first chapter in [3].

Definition 1. Let {b1,b2, · · · ,bk} be k linearly independent vectors in Rn. The

set of all points L =
k∑
i=1

xibi with integral x1, · · · , xk is called the lattice with basis

{b1,b2, · · · ,bk}, and the rank of the lattice L is k.

Sometimes we simply use the matrix (b1, · · · , bk) to denote the lattice generated

by vectors b1,b2, · · · ,bk. In this paper, we only consider full rank lattices, i.e., the

case where k = n.

Definition 2. Given a full-rank lattice L = (b1, · · · ,bn) in Rn, the determinant

of L is defined as

det(L) := |Zn/L| = |det(b1, · · · ,bn)|,

and it can be verified that this determinant remains unchanged for any basis of L.

Proposition 2 ([3]). Given a full-rank lattice L in Rn, any convex centrally sym-

metric body S of volume greater than 2n|det(L)| contains a nonzero lattice point in

L.

The above proposition is the Minkowski’s Theorem, a detailed introduction of

which can be found in the third chapter of [3].

3. Representation of Sum of Four Squares

Let us now introduce the main theorem of this paper, which aims at representing an

integer w as a sum of four squares. We may assume w is odd. To see this, consider

an arbitrary w′ = 2ew with w odd. Given a2 + b2 + c2 + d2 = w, we can derive

a′, b′, c′, d′ satisfying a′2 + b′2 + c′2 + d′2 = w′ by calculating

(1 + i)e(a+ bi+ cj + dk) = a′ + b′i+ c′j + d′k

in the quaternion algebra.

Our finding serves as an alternative approach, replacing the previous method that

necessitates computing the greatest common right divisor of w and x + yi + j in
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−1,−1

Q

)
. While our theorem applies to all odd positive integers that are not perfect

squares, we only have deterministic polynomial algorithms for finding solutions x, y

to x2 + y2 ≡ −1 mod p for primes p ≡ 3 mod 4. For more information, refer to [15].

As for general w, Rabin and Shallit have described a randomized algorithm to find

x, y in Theorem 3.1 of [14]. Moreover, Pollard and Schnorr [11] have given a more

general algorithm for solving x2 + Dy2 ≡ k mod w, which runs quickly in random

polynomial time under the assumption of the General Riemann Hypothesis.

We define |z| :=
√
=2(z) + <2(z) =

√
zz̄ to be the norm of z when z ∈ C. For a

vector b = (b1, · · · , bn), ||b|| :=
√
b21 + · · ·+ b2n denotes the length of b.

The main theorem is stated as follows.

Theorem 1. Given an odd integer w (not a square) and integers x, y (0 ≤ x, y <
w
2 ) such that x2 + y2 ≡ −1 mod w, let z := x+yi

w , and z admits a finite Hur-

witz continued fraction (HCF) expansion [a0, · · · , am] = [0; a1, · · · , am] with Q-pairs

(Pk, Qk). One can find a unique index n < m such that |Qn| ≤
√
w < |Qn+1|. If

|Qn| 6=
√
w, then w = |(x + yi) · Qn − w · Pn)|2 + |Qn|2, which is a representation

of w as a sum of four squares.

Proof. We may assume that all Gaussian integers appearing in the context below

do not have a norm of
√
w. Otherwise, the problem will be solved by finding a

representation of w as a sum of two squares.

Before presenting the proof, we introduce two additional lemmas. Although their

original discussion revolved around the infinite expansion case, they are applicable

in the context of rational complex numbers, and the proofs remain valid.

Lemma 1 ([8]). For any complex number z with HCF expansion [a0; a1, ..., am, ...]

and Q-pairs (Pk, Qk), we have

1 = |Q0| < |Q1| < · · · < |Qm|

for all legal m.

Lemma 2 ([10]). For any complex number z with HCF expansion [a0; a1, ..., am, ...]

and any legal k, we have ∣∣∣∣z − Pk
Qk

∣∣∣∣ ≤ 1

|Qk|2
.

From Lemma 1, we establish the existence of a unique n less than m such that

|Qn| <
√
w < |Qn+1|. By considering

|((x+yi)·Qk−w ·Pk)|2+|Qk|2 = (x2+y2+1)|Qk|2+w2|Pk|2−2w<(P̄k ·(x+yi)Qk),

we observe that this expression is divisible by w for arbitrary k with the condition

w | x2 + y2 + 1.
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Let Sk = (x+ yi) ·Qk − w · Pk for all −1 ≤ k ≤ m. The overall proof idea is as

follows. Firstly, we show that |Sn|2 + |Qn|2 can only be either w or 2w, with the

specific selection of n as described in the theorem. Then we exclude the 2w-case,

thus substantiating the entire theorem.

If |Sn| <
√
w, then |Sn|2 + |Qn|2 = w. This holds true since |Qn| <

√
w, and

hence |Sn|2 + |Qn|2 < 2w, which must also be divisible by w. Therefore, we obtain

a representation of w as a sum of four squares. From now on, we consider the case

where |Sn| >
√
w.

From Proposition 1, we derive that

zk+1 = −
Qk−1 · x+yiw − Pk−1
Qk · x+yiw − Pk

= −Sk−1
Sk

for all k. By the rules of the Hurwitz algorithm, we know |zk+1| ≥
√

2, and conse-

quently |Sk−1| ≥
√

2 |Sk|.
For any given k, we have

SkQk+1−Sk+1Qk = ((x+yi)Qk−wPk)Qk+1−((x+yi)Qk+1−wPk+1)Qk = (−1)kw.

Setting k = n, we deduce SnQn+1 − Sn+1Qn = (−1)nw.

Firstly, let us consider the case where n is even, then SnQn+1 − Sn+1Qn = w.

We list some facts that can be obtained from the previous content. From Lemma 2

we derive

|QnSn| = |Qn((x+ yi) ·Qn − w · Pn)| =
∣∣∣∣w ·Q2

n

(
x+ yi

w
− Pn
Qn

)∣∣∣∣ ≤ w,
and

|Sn+1| =
∣∣∣∣w ·Qn+1

(
z − Pn+1

Qn+1

)∣∣∣∣ ≤ w

|Qn+1|
<
√
w.

Recalling that |Qn| <
√
w < |Qn+1|, and |Sn| >

√
w, we conclude that

|Qn+1Sn| > w > |QnSn+1|.

Furthermore, ∣∣∣∣Qn+1Sn
QnSn+1

∣∣∣∣ =

∣∣∣∣ SnSn+1

∣∣∣∣ · ∣∣∣∣Qn+1

Qn

∣∣∣∣ > √2 · 1 =
√

2,

and

|Qn+1Sn| · |QnSn+1| = |(QnSn) · (Qn+1Sn+1)| ≤ w2.

Assuming QnSn+1 = r+ti, we have Qn+1Sn = r+w+ti. Following our previous

analysis, we derive four inequalities:
r2 + t2 < w2,
(r + w)2 + t2 > w2,
(r + w)2 + t2 > 2(r2 + t2),
((r + w)2 + t2) · (r2 + t2) ≤ w4.
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We can use these relations to obtain further constraints for Qn+1Sn. Let us consider

the case r < 0 and r ≥ 0 separately to obtain the upper bounds for |Qn+1Sn|.
When r < 0, the first and the second inequalities indicate

(r + w)2 + t2 < 2w2 + 2wr ≤ 2w2,

hence |Qn+1Sn|2 < 2w2. When r ≥ 0, the second inequality naturally holds,

and the third one holds if the first does. Thus, we may assume r = wε cos θ,

t = wε sin θ, where ε ∈ (0, 1) from the first inequality and θ ∈
[
−π2 ,

π
2

]
considering

the assumption that r ≥ 0. Now, we have

|Qn+1Sn|2 = (r + w)2 + t2 = w2ε2 + w2 + 2w2ε cos θ,

and the last inequality suggests ε2(ε2 + 1 + 2ε cos θ) ≤ 1.

Recall that our goal is to derive the upper bound of |Qn+1Sn|, equivalently, the

upper bound of w2ε2 + w2 + 2w2ε cos θ. The last inequality implies

cos θ ≤ 1

2ε

(
1

ε2
− ε2 − 1

)
.

On one hand, cos θ ≥ 0, hence

1

2ε

(
1

ε2
− ε2 − 1

)
≥ 0,

yielding ε2 ≤
√
5−1
2 , i.e., 0 ≤ ε ≤

√√
5−1
2 . On the other hand, cos θ ≤ 1 implies

that, if we require
1

2ε

(
1

ε2
− ε2 − 1

)
≥ 1,

then cos θ ≤ 1
2ε

(
1
ε2 − ε

2 − 1
)

would always hold. Notably, when

1

2ε

(
1

ε2
− ε2 − 1

)
≥ 0,

the value decreases when ε increases, hence ε =
√
5−1
2 is the unique root of

1

2ε

(
1

ε2
− ε2 − 1

)
= 1.

Therefore, when ε ≤
√
5−1
2 , cos θ can be chosen arbitrarily.

Next, let us determine the upper bounds separately for 0 < ε ≤
√
5−1
2 and

√
5−1
2 < ε ≤

√√
5−1
2 when r ≥ 0. For 0 < ε ≤

√
5−1
2 , cos θ can assume any
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value between (0, 1). To maximize w2ε2 +w2 + 2w2ε cos θ, we choose cos θ = 1 and

ε =
√
5−1
2 . Consequently,

max

{
w2ε2 + w2 + 2w2ε cos θ | 0 < ε ≤

√
5− 1

2

}
= (

√
5 + 1

2
)2w2.

For
√
5−1
2 < ε ≤

√√
5−1
2 , we recall the inequality ε2(ε2+1+2ε cos θ) ≤ 1. Therefore,

max

w2ε2 + w2 + 2w2ε cos θ |
√

5− 1

2
< ε ≤

√√
5− 1

2


≤ max

 1

ε2
w2 |

√
5− 1

2
< ε ≤

√√
5− 1

2

 =

(√
5 + 1

2

)2

w2.

Hence we always have |Qn+1Sn| ≤
√
5+1
2 w when n is even.

As for the case where n is odd, the equation SnQn+1 − Sn+1Qn = −w holds.

The previous analysis in the even n scenario remains valid. Assuming that

QnSn+1 = r + ti, Qn+1Sn = r − w + ti,

we obtain another four inequalities:
r2 + t2 < w2,
(r − w)2 + t2 > w2,
(r − w)2 + t2 > 2(r2 + t2),
((r − w)2 + t2) · (r2 + t2) ≤ w4.

By separately analyzing cases where r > 0 and r ≤ 0, we find that the upper bounds

for |Qn+1Sn|2 are identical to those in the even n scenario.

Therefore, |Qn+1Sn| ≤
√
5+1
2 w holds in all cases. Given |Qn+1| >

√
w, we find

that

|Sn| <
√

5 + 1

2

√
w, |Sn|2 + |Qn|2 <

3 +
√

5 + 1

2
w < 4w,

consequently allowing for only 2w or 3w.

The assertion that |Sn|2 + |Qn|2 = 3w is impossible can be demonstrated as

follows. From Lemma 2, we deduce∣∣∣∣ wQn
∣∣∣∣2 + |Qn|2 ≥ |Sn|2 + |Qn|2 ≥ 3w.

Therefore, |Qn|2 ≤ 3−
√
5

2 w, implying |Sn|2 ≥ 3+
√
5

2 w (i.e., |Sn| ≥
√
5+1
2

√
w) for

the equation |Sn|2 + |Qn|2 = 3w to hold, which contradicts the condition |Sn| <√
5+1
2

√
w derived in the preceding paragraph.
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Finally, we conclude that |Sn|2 + |Qn|2 can only equal 2w when |Sn| >
√
w, thus

having

|Sn+1| ≤
|Sn|√

2
<

√
2w√
2

=
√
w.

Employing the concept of lattices, we shall demonstrate the impossibility of this

scenario. Notice that the two pairs (Sn, Qn+1), (Sn+1, Qn) exhibit some form of

symmetry, given their shared relative magnitudes. Therefore, for the same reason

as discussed above, we also have the equation |Sn+1|2 + |Qn+1|2 = 2w under the

assumption that |Sn| >
√
w. Next we prove that these two equations for |Sn|, |Qn|,

|Sn+1| and |Qn+1| cannot hold simultaneously.

Let us begin by considering a full-rank lattice L = (b1,b2,b3,b4) in R4:
0 0 0 1
0 0 1 0
0 −w y −x
−w 0 x y

 .

By straightforward computation, we have det(L) = w2. For any b ∈ L, write

b =
4∑
i=1

µibi; then

||b||2 = (−wµ1 + xµ3 + yµ4)2 + (−wµ2 + yµ3 − xµ4)2 + µ2
3 + µ2

4.

Thus ||b||2 ≡ (x2 + y2 + 1)(µ2
3 + µ2

4) ≡ 0 mod w, i.e., w | ||b||2 for any b ∈ L.

Consider the ball centered at the origin in R4 with a radius of
√

2w − ε for some

small ε > 0, denoted by B(
√

2w − ε). When ε is sufficiently small,

Vol(B(
√

2w − ε)) =
π2

2
(2w − ε)2 > 24w2 = 24 det(L),

hence by Proposition 2, B(
√

2w − ε) must contain a nonzero point u in L. Write

u =
4∑
i=1

xibi. It follows that

w | ||u||2 = (−x1w + x3x+ x4y)2 + (−x2w + x3y − x4x)2 + x23 + x24 < 2w,

which implies that

(−x1w + x3x+ x4y)2 + (−x2w + x3y − x4x)2 + x23 + x24 = w.

Alternatively speaking, we have discovered two Gaussian integers x1 + x2i and

x3 − x4i satisfying

|x3 − x4i|2 + |(x1 + x2i)w − (x3 − x4i)(x+ yi)|2 = w. (1)
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On the other hand, if we take (x1 +x2i)w− (x3−x4i)(x+ yi) = x′3−x′4i, by direct

calculation we have

(x3 + x4i)− (x′3 + x′4i)(x+ yi) = (x2 + y2 + 1)(x3 + x4i) + (x1 − x2i)(x+ yi)w,

which is divisible by w. Therefore, there also exists a Gaussian integer x′1 + x′2i

such that

|x′3 + x′4i|2 + |(x′3 + x′4i)(x+ yi)− (x′1 + x′2i)w|2 = w, (2)

where

x′3 + x′4i = ((x1 + x2i)w − (x3 − x4i)(x+ yi)),

and

(x′3 + x′4i)(x+ yi)− (x′1 + x′2i)w = x3 + x4i.

Here, we denote a+ bi = a − bi for any a + bi ∈ C. In other words, Equation (1)

and Equation (2) essentially represent the same equation, just interpreted in two

different ways.

We may assume that |x3 + x4i|2 > w
2 > |x

′
3 + x′4i|2, i.e.,

w > |x3 + x4i|2 >
w

2
> |(x1 + x2i)w − (x3 − x4i)(x+ yi)|2.

Here we still omit the case where some Gaussian integers have norm
√
w, since

finding such an element allows us to represent w as a sum of two squares, thus

solving the problem.

Now we introduce another lemma and its related concept, which was originally

proved by Lakein.

Definition 3 ([9]). Let z ∈ C be a complex number. A rational complex p
q (p, q ∈

Z[i]) is a good approximation to z if for any p′, q′ ∈ Z[i] with |q′| ≤ |q|, |q′z − p′| ≤
|qz − p|.

Lemma 3 ([9]). If z ∈ C admits a HCF expansion, then any HCF convergent Pk

Qk

of z is a good approximation to z.

Apart from [9], one can refer to [13] for the proofs of all three lemmas mentioned

in the proof of this theorem.

Consider the index k1 where |Qk1 | < |x3 + x4i| ≤ |Qk1+1|. Note that such k1
must exist due to the specific properties of the sequence. This is evident because

|Q−1| = 0, |Qm| = w, and |Qk| increases monotonically with increasing index k.

Recall our current conditions of |Qn| <
√
w < |Qn+1| and |Sn| >

√
w > |Sn+1|.

Since |x3 + x4i| ≤ |Qk1+1|, let q′ = x3 + x4i and p′ = x1 + x2i. By Lemma 3, we

have

|Sk1+1| ≤ |q′(x+ yi)− p′w|,
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i.e.,

|Sk1+1| ≤ |x′3 + x′4i| <
√
w

2
.

This allows us to conclude that k1 + 1 ≥ n+ 1, based on our choice of n. Simulta-

neously, considering |Qk1 | < |x3 + x4i| <
√
w, we derive that k1 ≤ n. Combining

these two results, we have k1 = n.

Similarly we consider the index k2 such that |Qk2 | < |x′3 + x′4i| ≤ |Qk2+1|, and

by the same discussion as above, we obtain k2 = n. Recall that |x′3 + x′4i| <
√

w
2 ,

hence now we have

|Qn| <
√
w

2
<
√
w < |Qn+1|, |Sn| >

√
w >

√
w

2
> |Sn+1|.

Given |Sn|2 + |Qn|2 = |Sn+1|2 + |Qn+1|2 = 2w, it follows that |Sn|2 > 3w
2 , and

|Qn+1|2 > 3w
2 . Therefore,

|SnQn+1| >
3w

2
, (3)

and

|Sn+1Qn| <
w

2
. (4)

However, we already have

SnQn+1 − Sn+1Qn = (−1)nw, (5)

and the triangular inequality reveals that Inequality (3), Inequality (4) and Equation

(5) cannot hold simultaneously. Therefore, the assumption |Sn| >
√
w is not true,

and we complete the proof of the theorem.

4. Algorithms and Examples

Now we summarize the content in Section 3 as the Algorithm 1 to obtain a repre-

sentation as a sum of four squares for odd w.

According to [15], for a prime p = 4k + 1 for some k, there already exist several

algorithms running in polynomial time that find x, y such that p = x2 + y2. Hence,

we mainly consider the odd w that is not a prime in the form 4k + 1.

The following proposition can be easily observed.

Proposition 3. For a given odd w, steps 2 to 5 in Algorithm 1 require O(logw)

operations.

It can be seen that Steps 2 to 5 in our algorithm are essentially the same as

the method of calculating the greatest common right divisor of w and x + yi in
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Algorithm 1 Finding a representation of odd w as a sum of four squares

Input: An odd positive integer w not a prime p ≡ 1 mod 4 or a perfect square;
Output: Four integers a, b, c, d such that a2 + b2 + c2 + d2 = w;
1. If w is an odd prime p ≡ 3 mod 4, use the method in [2] to obtain a pair
of integers 0 < x, y < w

2 such that x2 + y2 ≡ −1 mod w in polynomial time.
Otherwise, use the method in [14] and derive 0 ≤ x, y < w

2 such that x2 + y2 ≡
−1 mod w in random polynomial time.
2. Compute the Hurwitz expansion {ak} of x+yi

w and Qk until |Qk+1|2 − w ≥ 0;
3. If |Qk+1|2 = w, take a = <(Qk+1), b = =(Qk+1), c = d = 0;
4. If |Qk+1|2 > w, take a = <(Qk), b = =(Qk), c = <(Sk), d = =(Sk);
5. Return a, b, c, d.

the Hurwitz order after finding satisfying x, y. Hence they share the same time

complexity.

We take w = 9878785333482266655552223331179 as an example, which is a prime

in the form of 4k + 3. One can check that

(x, y) = (3292928444494088885184074443726, 2902967144089498477004731971911)

is a pair of solution to the congruence equation x2 + y2 ≡ −1 mod w. Expanding
x+yi
w under the Hurwitz algorithm, we have the results as shown in Table 1.

n an Pn Qn

-1 1 0
0 0 0 1
1 2 - i 1 2 - i
2 -1 + i -1 + i 3i
3 -2i 3 + 2i 8 - i
... ... ... ...
36 3 + i 393331037760940 - 446167971615681i -1338503914847043i

37 -2i -805083291726049 - 974048629634780i -2808580912939087 - 446167971615681i

38 2i 2341428297030500 - 2056334555067779i 892335943231362 - 6955665740725217i

Table 1: The expansion of x+yi
w

By calculation we have |Q37| <
√
w < |Q38|, hence

w = |Q37(x+ yi)− P37w|2 + |Q37|2,

and we obtain a representation of 9878785333482266655552223331179 as sum of

squares

13385039148470432 + 28085809129390872 + 4461679716156812.
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Here we actually obtain a representation of w as a sum of three squares, due to the

fact that Q37(x+yi)−P37w is a pure imaginary number. From the Gauss-Legendre’s

three-square theorem, we know that the positive integers n can be written as a sum

of three integer squares if and only if n is not in the form of 4k(8m + 7) for any

non-negative integers k,m. Therefore, the w we choose does admit a three-square

representation, and luckily we have obtained one. If we choose another pair of

solutions x, y, we may obtain a four-square representation as usual. For example, if

(x, y) = (2469696333370566663888055832790, 386824569443398797078511524330),

then we can represent w as

8070682415489312+23018104919355322+10899265884420752+16556432822283632.
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