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Abstract

In this paper we prove that there exist infinitely many integers which can be ex-
pressed as a sum of four cubes of polynomials with integer coefficients. We give
several identities that express the integers 1 and 2 as a sum of four cubes of poly-
nomials. We also show that every integer can be expressed as a sum of five cubes
of polynomials with integer coefficients.

1. Introduction

This paper is concerned with the problem of expressing an integer as a sum of cubes

of polynomials with integer coefficients. As mentioned by Mordell [6], the first such

result was obtained in 1908 by Werebrusow who proved the identity

(1 + 6t3)3 + (1− 6t3)3 + (−6t2)3 = 2.

Subsequently, in 1936, Mahler [5] proved the identity

(9t4)3 + (3t− 9t4)3 + (1− 9t3)3 = 1.

If a is any arbitrary integer, we can multiply these identities by a3 to express

the integers 2a3 and a3, respectively, as a sum of three cubes of polynomials. In

this context it might be pertinent to mention here the considerable interest in the

problem of finding representations of integers as sums of three cubes of integers.

Except for integers not expressible as a sum of three cubes because of congruence

considerations, representations of all other integers less than 100 are now known

([1], [2], [3], [4]). However, regarding the problem of expressing an integer as a sum

of three cubes of polynomials, except for integers of the types a3 and 2a3 mentioned

above, it is not known whether there is any other integer that can be expressed as

a sum of three cubes of polynomials with integer coefficients. Identities expressing
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an integer as a sum of four or five cubes of polynomials have apparently not been

published.

We show in this paper that there exist infinitely many integers that are express-

ible as a sum of four cubes of polynomials with integer coefficients. Specifically,

we give several identities expressing the integers 1 and 2 as a sum of four cubes of

polynomials. We also prove that every integer is expressible as a sum of five cubes

of polynomials with integer coefficients.

2. Integers Expressed as Sums of Four Cubes of Polynomials

2.1. Two Polynomial Identities

The theorem below gives identities that describe infinitely many integers which can

be written as a sum of four cubes of polynomials.

Theorem 1. If p and q are arbitrary integers, any integer expressible either as

p3 + q3 or 2(p6− q6) is expressible as a sum of four cubes of univariate polynomials

with integer coefficients.

Proof. The proof is based on the following two identities in both of which t is an

arbitrary parameter:

p3 + q3 = {2(p + q)t2 + 4qt + q)}3 + {2(p + q)t2 + 4qt− p + 2q}3

+ {−2(p + q)t2 + (p− 3q)t + p}3 + {−2(p + q)t2 − (p + 5q)t + p− 2q}3, (1)

and

2(p6 − q6) = (pt− q2)3 + (−pt− q2)3 + (qt + p2)3 + (−qt + p2)3. (2)

To obtain Identity (1), we solve the equation

x3
1 + x3

2 + x3
3 + x3

4 = p3 + q3, (3)

by writing,

x1 = −y + p, x2 = −y + q, x3 = y + m, x4 = y −m, (4)

when (3) is readily solved for y to yield a nonzero solution given by y = −(2m2 −
p2− q2)/(p+ q). On writing m = (p+ q)t+ q, we get y = −2(p+ q)t2− 4qt+ p− q,

and on substituting the values of m and y in (4), we get the values of xi, i = 1, . . . , 4,

and we thus get Identity (1).

To prove Identity (2), we consider

(pt + u)3 + (−pt + u)3 + (qt + v)3 + (−qt + v)3
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as a cubic polynomial in t. It is evident that the coefficients of t3 and t in this

polynomial vanish. We now choose u = −q2, v = p2, so that the coefficient of t2

also vanishes, and the polynomial reduces to 2(p6 − q6), and we thus get Identity

(2).

It immediately follows from Identities (1) and (2) that integers that may be

written as p3 + q3 or 2(p6 − q6) can be written as a sum of four cubes of univariate

polynomials with integer coefficients.

As numerical applications of Identity (1), we give two examples by taking (p, q) =

(2,−1) and (p, q) = (2, 1) when we obtain the following two identities expressing

the integers 7 and 9, respectively, as a sum of four cubes of polynomials with integer

coefficients:

(2t2 − 4t− 1)3 + (2t2 − 4t− 4)3 + (−2t2 + 5t + 2)3 + (−2t2 + 3t + 4)3 = 7,

(6t2 + 4t + 1)3 + (6t2 + 4t)3 + (−6t2 − t + 2)3 + (−6t2 − 7t)3 = 9.

Similarly, on taking (p, q) = (2, 1) in Identity (2), we get the following identity

which expresses the integer 126 as a sum of four cubes of polynomials:

(2t− 1)3 + (−2t− 1)3 + (t + 4)3 + (−t + 4)3 = 126.

2.2. Expressing 1 as a Sum of Four Cubes of Polynomials

We give below three identities that express 1 as a sum of four cubes of polynomials:

(2t2)3 + (2t2 − 1)3 + (−2t2 − t + 1)3 + (−2t2 + t + 1)3 = 1, (5)

and

(3t6 + 3t3 + 1)3 + {−3t3(t3 + 1)}3 + (−3t4 − 2t)3 + (−t)3 = 1, (6)

and

(8t3 − 2t2 − 4t + 1)3 + (8t3 − 6t2 − 3t + 2)3

+ (−8t3 + 2t2 + 3t)3 + (−8t3 + 6t2 + 4t− 2)3 = 1. (7)

To obtain Identity (5), we solve the equation

x3
1 + x3

2 + x3
3 + x3

4 = 1, (8)

by writing x1 = p+ 1, x2 = p, x3 = −p− t, x4 = −p+ t. Equation (8) is now readily

solved and we get p = 2t2 − 1, which yields the values of xi, i = 1, . . . , 4, that leads

to Identity (5).

To obtain Identity (6), we write x1 = −t2p + 1, x2 = t2p, x3 = p + t, x4 = −t.
Equation (8) is now readily solved and we get p = −3t(t3 − 1), which yields the

values of xi, i = 1, . . . , 4, that leads to Identity (6).
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To obtain Identity (6), we write x1 = pm + 1, x2 = qm, x3 = −pm − t and

x4 = −qm + t. Equation (8) now reduces to

((q2 − p2)t + p2)m− (p + q)t2 + p = 0, (9)

and on writing

p = 2t, q = 2t− 1, (10)

Equation (9) further reduces to

m− 4t2 + t + 2 = 0,

and hence we get m = 4t2− t− 2. Using the values of p, q given by (10), we get the

values of xi, i = 1, . . . , 4, which leads to Identity (7).

2.3. Expressing 2 as a Sum of Four Cubes of Polynomials

The following identity expresses the integer 2 as a sum of of four cubes of polyno-

mials in three variables:

{6t3(g3 + h3)2 + 1}3 + {−6t3(g3 + h3)2 + 1}3

+ {−6gt2(g3 + h3)}3 + {−6ht2(g3 + h3)}3 = 2. (11)

To obtain Identity (11), we begin by writing

(p + 1)3 + (−p + 1)3 + q3 + r3 = 2 (12)

which reduces to

6p2 + q3 + r3 = 0. (13)

We solve Equation (13) by writing p = fm, q = gm, r = hm, and we get,

m = −6f2/(g3 + h3).

To obtain a solution with integer coefficients, we write f = t(g3 + h3), and we get

m = −6t2(g3 + h3) which leads to the solution,

p = −6t3(g3 + h3)2, q = −6gt2(g3 + h3), r = −6ht2(g3 + h3),

and on substituting these values in (12), we get Identity (11).

We give below three more identities expressing the integer 2 as a sum of four

cubes of univariate polynomials:

(t2)3 + (t2)3 + (−t2 + t + 1)3 + (−t2 − t + 1)3 = 2, (14)

(3t3 + 1)3 + (−3t3 + 1)3 + (−3t2)3 + (−3t2)3 = 2, (15)

(18t3 + 1)3 + (−18t3 + 1)3 + (−6t2)3 + (−12t2)3 = 2. (16)
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More such identities can be obtained.

To obtain Identity (14), we solve the equation,

x3
1 + x3

2 + x3
3 + x3

4 = 2, (17)

by writing x3 = −m + 1, x2 = −m + 1, x3 = m + t, x4 = m − t. Equation (17)

can now be readily solved for m, and we get m = 1− t2, which yields the values of

xi, i = 1, . . . , 4, that leads to Identity (14).

Identity (15) may be obtained from Identity (11) by writing g = 1, h = 1 and

replacing t by t/2.

To obtain Identity (16), we solve Equation (17) by writing

x1 = −2tm− 6t3 + 1, x2 = 2tm + 6t3 + 1, x3 = −6t2, x4 = m, (18)

when Equation (17) reduces to m(m + 12t2)2 = 0, which yields m = −12t2, and

now the relations (18) yield the values of xi, i = 1, . . . , 4, that leads to Identity (16).

3. Integers Expressed as Sums of Five Cubes of Polynomials

We will now prove that every integer can be expressed as a sum of five cubes of

polynomials.

Theorem 2. Every integer is expressible as a sum of five cubes of univariate poly-

nomials with integer coefficients.

Proof. The proof is based on the following six identities:

6m = (36t3 + m + 1)3 + (36t3 + m− 1)3 + 2(−36t3 −m)3 + (−6t)3, (19)

6m + 1 = (36t3 − 18t2 + 3t + m + 1)3 + (36t3 − 18t2 + 3t + m− 1)3

+ 2(−36t3 + 18t2 − 3t−m)3 + (−6t + 1)3, (20)

6m + 2 = (36t3 − 36t2 + 12t + m)3 + (36t3 − 36t2 + 12t + m− 2)3

+ 2(−36t3 + 36t2 − 12t−m + 1)3 + (−6t + 2)3, (21)

6m + 3 = (36t3 − 54t2 + 27t + m− 3)3 + (36t3 − 54t2 + 27t + m− 5)3

+ 2(−36t3 + 54t2 − 27t−m + 4)3 + (−6t + 3)3, (22)

6m + 4 = (36t3 + 36t2 + 12t + m + 3)3 + (36t3 + 36t2 + 12t + m + 1)3

+ 2(−36t3 − 36t2 − 12t−m− 2)3 + (−6t− 2)3, (23)
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6m + 5 = (36t3 + 18t2 + 3t + m + 2)3 + (36t3 + 18t2 + 3t + m)3

+ 2(−36t3 − 18t2 − 3t−m− 1)3 + (−6t− 1)3, (24)

where m and t are arbitrary parameters.

To obtain the above identities, we begin with the following simple, readily veri-

fiable, identity:

6r = (r + 1)3 + (r − 1)3 − 2r3. (25)

On adding (−6t + j)3 to both sides, we get the identity

6r + (−6t + j)3 = (r + 1)3 + (r − 1)3 − 2r3 + (−6t + j)3. (26)

We now equate the left-hand side of Identity (26) to 6m+j, where j is an integer,

and solve for r. Since j3 ≡ j mod 6, we get a value of r, say r = r0, which is given

by a polynomial, with integer coefficients, in the parameters m and t. On replacing

r by r0 in Identity (26), we get an identity that expresses 6m + j as a sum of five

cubes of polynomials with integer coefficients. By successively taking j = 0, 1, 2, 3,

we obtained Identities (19)–(22).

While we can obtain identities expressing 6m + 4 and 6m + 5 as a sum of five

cubes of polynomials in the same way, we obtained the simpler Identity (23) by

adding (−6t − 2)3 (instead of (−6t + 4)3) to both sides of (25) and proceeding as

above, while for Identity (24), we added (−6t− 1)3 (instead of (−6t + 5)3) to both

sides of (25) and followed the same procedure. Identities (19)–(24) can also be

readily verified by direct computation.

Since any arbitrary integer n is expressible as 6m + j where j ∈ {0, 1, . . . , 5}, it

follows from Identities (19)–(24) that every integer is expressible as the sum of five

cubes of univariate polynomials with integer coefficients.

As numerical examples, taking m = 0 in Identities (22) and (23), we get the

following two identities expressing the integers 3 and 4, respectively, as a sum of

five cubes of polynomials:

(36t3 − 54t2 + 27t− 3)3 + (36t3 − 54t2 + 27t− 5)3

+2(−36t3 + 54t2 − 27t + 4)3 + (−6t + 3)3 = 3,

(36t3 + 36t2 + 12t + 3)3 + (36t3 + 36t2 + 12t + 1)3

+2(−36t3 − 36t2 − 12t− 2)3 + (−6t− 2)3 = 4.

4. Some Open Problems

It would be interesting to find identities expressing small integers such as 3 and

4 as a sum of four cubes of polynomials. In fact, it would be useful to determine
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which integers can be expressed as a sum of four cubes of polynomials and for which

integers it becomes necessary to use five polynomials.

It is a far more challenging problem to find new identities expressing an integer

as a sum of three cubes of polynomials with integer coefficients. In fact, it seems

unlikely that, apart from integers of the type a3 and 2a3 mentioned in the intro-

duction, there are any other integers that can be expressed as a sum of three cubes

of polynomials.
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